吉林人参BIBAC基因组文库的构建及其在人参功能基因组研究上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Mey.)是我国古老而名贵的中药材,因其大补元气,提高机体免疫力,抗衰老,抗肿瘤,宁神益智,调解二型糖尿病和改善性功能等多种功效现已广泛用于制药、保健、美容、食品、饮料等诸多行业,成为我国国民经济中最具特色和优势的产业之一。然而,人参生物学研究,特别是现代基因组学研究和遗传育种还很落后,这大大制约了我们对人参功能基因,特别是控制人参主要药用活性成分-人参皂苷生物合成相关基因的克隆、分析、开发和利用,制约着我国人参产业的现代化。研究证明,大片段DNA重组技术及大片段DNA BIBAC基因文库已成为现代基因组学研究和现代分子遗传育种核心技术之一和重要的研究平台,广泛用于基因组学和分子遗传育种研究各个方面,但大片段DNA重组技术及大片段DNA BIBAC基因文库在我国人参研究中尚属空白。
     本研究成功地在我国吉林人参中建立了数以兆级的大片段核DNA分离、纯化技术体系。人参富含代谢产物,特别是多酚、多糖和淀粉,常常限制大片段DNA酶解和克隆。至今,植物数以兆级的大片段核DNA分离、纯化多以幼苗或嫩叶为材料以减少这些代谢产物对大片段DNA酶解和克隆的影响。本研究首次选用人参须根为材料,并适当增加大片段核DNA分离、纯化程序中细胞核的离心与洗涤次数,从吉林人参须根中分离、纯化获得了大片段核DNA。分析表明,用此优化的方法提取的核DNA,不但片段大小数以兆级,而且容易酶解和克隆。因此,在我国吉林人参中建立了简单、有效的大片段核DNA提取和重组的技术体系。
     利用在吉林人参中建立的大片段DNA提取和重组技术体系,本研究以4年生吉林人参-大马牙须根为材料成功地构建了世界上第一个人参BIBAC基因文库。该基因文库包含141,312个克隆,有序存放于368个384孔平板中,在-80℃冰箱中长期保存。该基因文库克隆插入片段大小为45-200kb,平均为110kb,每个克隆可能含有几个至几十个基因。由于人参基因组约3,300Mb/1C,该基因文库相当于吉林人参基因组的4.8倍,用单考贝探针从中获得至少一个阳性克隆的机率在99%以上。更重要的是,这个基因文库是构建在细菌和植物双元载体上,可通过农杆菌或基因枪在不同植物中直接进行遗传转化,因此,适合于人参功能基因克隆、分析,多基因遗传转化、分子育种和分子农业。
     为进一步确认该基因文库的质量及其在功能基因克隆和分子育种上的应用,本研究将整个基因文库所有的克隆都点样、印记在尼龙膜上,并通过Southern杂交从中筛选出含有9个人参皂苷生物合成相关基因的36个阳性克隆,每个基因探针获得1-7个阳性克隆,平均为4.0个阳性克隆。这充分证明了该基因文库质量较高,适于人参功能基因组不同方面的研究。同时,本研究还发现DS(达玛烯二醇合成酶家族)和OSC(环氧角鲨烯环化酶家族)两个基因家族,共同杂交到5个阳性克隆上,说明人参皂苷生物合成有些基因在人参基因组中是群集的,这样有可能通过BIBAC将群集的不同基因同时转移到不同的物种中,用以探讨人参皂苷合成的分子农业。
     研究证明,大片段DNA BIBAC在植物中遗传转化成功的关键是大片段DNA BIBAC在农杆菌中遗传的稳定性。因此,本研究从吉林人参BIBAC基因文库中随机选择了两个插入片段大小分别为100kb和150kb的克隆(Pg100和Pg150)和上述9个人参皂苷生物合成相关基因的阳性BIBAC,利用电击法转化农杆菌菌株C1C58和COR308。结果表明,这些克隆在农杆菌中生长100多代后,经过限制性内切酶NotI酶切、琼脂糖凝胶电泳分析表明,都含有完整的原始BIBAC DNA。这些结果表明,人参大片段BIBAC可通过电击法完整地转化到农杆菌中,而且能稳定遗传。这为人参大片段BIBAC在不同植物中进行遗传转化提供了技术支撑。
     本研究在吉林人参中建立的大片段重组技术、构建的吉林人参BIBAC基因文库和相关研究结果,为吉林人参功能基因组研究,特别是对人参皂苷生物合成相关基因克隆、分析、开发和利用提供了技术体系、奠定了基础、建立了必需的平台,同时为吉林人参基因组测序后的组装提供了必要的工具。这些研究结果将大大促进人参功能基因的开发利用、人参产业现代化的发展。
Ginseng (Panax ginseng C. A. Mey.) has been historically well-known as a medicinal herb in China. Because of its roles in health recovery, immune improvement, anti-aging, anti-cancer, calming and intelligent benefits, type2diabetes adjustment and sexuality improvement, ginseng has been widely used in a variety of industries, including medicine, health care, cosmetics, foods and beverages. It has become a unique and rapidly developing industry in China. However, ginseng biological research, especially modern genomics research and genetic breeding, is far behind those of many crop plants. This situation is significantly restricting the identification, characterization and applications of its economically important genes, particularly those controlling the biosynthesis of its major medically active components-ginsenosides, thus restricting ginseng production and industry modernization in China. Studies have documented that high-molecular-weight (HMW) recombinant DNA technology and large-insert BIBAC libraries are important platforms, resources and essential tools for modern genomics research and molecular breeding, and have been widely used in different aspects of the research fields. Nevertheless, no such technology and large-insert BIBAC library have been available in Chinese ginseng.
     This study has successfully developed a technical system of megabase-sized nuclear DNA preparation, purification and manipulation in Jilin ginseng. Ginseng is abundant in polyphenolics, polysaccharides and starches that often significantly limit HMW DNA digestion and cloning; therefore, it is challenging to develop such a system. Currently, seedlings or young leaves are used as materials for preparation of megabase-sized DNA from plants in order to minimize these metabolites whereas they are abundant in such tissues of ginseng. In this study, fibrous roots were, for the first time, used as materials for megabase-sized DNA preparation from ginseng. In addition, additional centrifugations and washes were applied to purify nuclei from those cytoplasm contents. Analysis showed that the DNA prepared using this optimized method was not only megabase-sized, but also readily digestible and readily clonable. Therefore, we have established a simple and efficient system for preparation of high-quality megabase-sized nuclear DNA for Jilin ginseng.
     Moreover, a large-insert BIBAC library has been successfully constructed for Jilin ginseng from nuclear DNA of four-year old fibrous roots in this study using the technical system of HMW recombinant DNA that we developed in ginseng. This library represents the first large-insert BIBAC library of ginseng worldwide. It consists of141,312clones that were individually arrayed in368384-well microplates and stored at-80℃for long-term uses. The clones of the library have insert sizes arranging from45-200kb, with an average insert size of110kb, possibly each clone containing from a few to dozens of genes. Since ginseng has a genome size of approximately3,300Mb/1C, the library has a genome coverage equivalent to4.8x ginseng haploid genomes, with a probability of greater than99%of obtaining at least one positive clone using a single-copy probe. Importantly, this BIB AC library was constructed in a binary vector (pCLD04541) that can be directly transformed in a variety of plant species by either the Agrobacterium-mediated or bombardment method. Therefore, the BIBAC library can be widely used for cloning and analysis of functional genes in ginseng, multiple gene genetic transformation, molecular breeding and molecular farming.
     To further validate the quality and demonstrate applications of the Jilin ginseng BIBAC library in gene cloning and characterization, and molecular breeding, all the clones of the library were double-printed on Southern membranes and hybridized with the overgo probes designed from nine genes likely involved in the process of ginsenoside biosynthesis. A total of36positive clones were obtained, each probe resulting in1-7positive clones, with an average of4.0positive clones per probe. These results strongly indicate that the library is high in quality and well-suited for different aspects of ginseng functional genomics research. It was also discovered that the probes derived from DS and OSC genes were co-hybridized to five of the36positive clones, suggesting that at least these two gene families of genes involved in ginsenoside biosynthesis are physically clustered in the ginseng genome. This result has provided a strong support for genetically engineering the ginsenoside biosynthesis pathway via BIBAC transformation into different plant species for ginsenoside biosynthesis through molecular farming.
     Previous studies have documented that the key to the successful transformation of large-insert BIBACs in plants is their transformation and stability in the Agrobacterium strain mediator. Therefore, two large-insert BIBACs with insert sizes of100kb and150kb (named Pg100and Pg150), respectively, were randomly selected. These two clones and the36positive clones of the nine genes likely involved in ginsenoside biosynthesis were individually transformed into Agrobacterium strains C1C58and COR308by electroporation. Analysis of random transformants by their DNA digestion with Not I, followed by pulsed-field gel electrophoresis, showed that the BIBACs transformed were intact and stable in the Agrobacterium strains after they grew in the strains for over100generations. These results suggest that large-insert ginseng DNA BIBACs can be readily transformed by electroporation and stably maintained in Agrobacterium strains, thus having provided a technical support for large-insert ginseng BIBAC transformation in plants.
     In conclusion, a technical system for megabase-sized nuclear DNA isolation and manipulation has been successfully established in Jilin ginseng, a high-quality large-insert arrayed BIBAC library has been successfully constructed for Jilin ginseng, and large-insert ginseng BIBACs containing nine genes likely involved in ginsenoside biosynthesis have been isolated and stably transformed into Agrobacterium in this study. These results provide a technical system, a foundation and a essential platform for different aspects of ginseng functional genome research, especially cloning, characterization and uses of the genes involved in ginsenoside synthesis. The BIBAC library has also provided a tool necessary for sequencing and accurate assembly of the ginseng genome. These results will significantly promote research and application of genes economically important in ginseng, thus accelerating the modernization of ginseng production and industry.
引文
[1]国家药典委员会编.中国药典[M].2010年版一部,北京:化学工业出版社,2010:8.
    [2]徐杰.古之上党人参即为今之五加科人参略考.中国中医基础医学杂志[J],2001,7(6):50~53.
    [3]Shoji S. Chemistry and Cancer Preventing Activities of Ginseng Saponins and some Related Triterpenoid Cmpounds[J]. J Korean Med Sci,2001,16(suppl):28-37.
    [4]Jianyong W, Jian J Zh. Production of Ginseng and its Bioactive Components in Plant Cell Culture: Current Technological and Applied Aspects[M]. Journal of Biotechnology,1999, (68):89-99.
    [5]Taik K Y, Yun S L, You H L, et al. Anticarcingenie Effect of Panax ginseng C.A. Meyer and Identification of Active Compounds[J]. J Korean Med Sci,2001,16:6-18.
    [6]孔令武,孙海峰.现代实用中药栽培养殖技术[M].人民卫生出版社:2000,1.
    [7]匡海学.中药化学[M].北京:中国中医药出版社,2006:252.
    [8]Sticher 0. Getting to the root of ginseng[J]. Chemtech,1998,28:26-32.
    [9]Hong CP, Lee SJ, Park JY, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J].Mol Gen Genomics,2004,271:709-716.
    [10]杨涛,曾英.植物萜类合酶研究进展[J].云南植物研究,2005,27(1):1-10
    [11]陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展[J].分子植物育种,2004,2(6):757-764.
    [12]张长波,孙红霞,巩中军等.植物萜类化合物的天然合成途径及其相关合酶[J].植物生理学通讯,2007,43(4):779~786.
    [13]邢朝斌,王一曼,陈正恒等.三萜皂苷的生物合成[J].生命的化学,2005,25(5):420-422.
    [14]王莉,史玲玲,张艳霞等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500~508.
    [15]陈莉,吴耀生.三萜皂苷生物合成途径及相关酶[J].国外医药,2004,19(4):156-161.
    [16]Gual J C, Gonzalez-Bosch C, Dopazo J, et al. Phylogenetic analysisof the thiolase family Implications for theevolutionaryo riginof peroxisomes. [J] Journal of Molecular Evolution, 1992,35:147-155
    [17]韩军丽,李振秋,刘本叶等.植物萜类代谢工程[J].生物工程学报,2007,23.
    [18]兰文智,余龙江,蔡永君等.类异戊二烯非甲羟戊酸代谢途径的分子生物学研究进展[J].西北植物学报,2001,21(5)1039-1047.
    [19]Luskey K L, Stevens B. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase Conserved domains responsible for catalytic activity and sterol-regulated degradation[J]. The Journalof BiologicalChemistry,1985,260:10271-10277.
    [20]BassonM E, ThorsnessM, Finer2Moore J, et al. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthes[J].Molecular and Cellular Biology,1988,8:3797-3808.
    [21]刘涤,胡之壁.植物类异戊二烯生物合成途径的调节[J].植物生物学通讯,1998,34(1):1-9.
    [22]罗志勇,陆秋恒,刘水平等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560.
    [23]张云峰,魏东,邓雁如等.三萜皂苷的生物活性研究新进展[J].中成药,2006,28(9):1349~1353.
    [24]罗永明,刘爱华,李琴等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(2):46~49.
    [25]Harrison MD. The biosynthesis of triterpenoids, steroids, and carotenoids[J]. Nat Prod Rep, 1990,7:459-484.
    [26]Bishop GJ, Nomura T, Yokota T, et al. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid[J].Proc Natl Acad Sci USA,1999,96:1761-1766.
    [27]Suzuki H, Achnine L, Xu R, et al.A genom ics app roach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J]. Plant,2002,32:1033-1048.
    [28]Haralamp idis K, Trojanowska M,0 sbourn A E. B iosynthesis of triterpenoid-saponins in plants[J].Adv Biochem Eng Biotechnol,2002,75:31-49.
    [29]Kushiro T, Shibuya Y, Ebizuka Y. β-amyrin synthase:cloning of oxidosqualene cyclase that catalyze the formation of the most popular triterpene among higher plant[M]. Eur. J. Biochem, 1998,256:238-244.
    [30]Bach T J. Hydro xymet hylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis[J].Lipis,1986,21(1):82-88.
    [31]贾宁,仇燕,王刚.紫杉醇生物合成相关酶类的研究进展[J].生物学杂志,2002,19(6):9~13.
    [32]陈大华,叶和春,李国凤等.植物类异戊二烯代谢途径的分子生物学研究进展.[J]植物学报,2000,42(6):551-558.
    [33]CamposN, Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme Areductase[J]. Plant Cell,1995,7:2163-2174.
    [34]Choi D, Ward B L, Bostock R M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arechidonic acid[J]. Plant Cell,1992,4:1333-1344.
    [35]Choi D, Ward B L, Bostock R M.Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arechidonic acid[J]. Plant Cell,1992,4:1333-1344.
    [36]Korth KL, Stermer BA, Bhattachary, ya MK, et al. HMG-CoA reductase genefamilies that differentially accumulate transcript inpotatotubers are development ally expressed infloral tissues[J].Plant Mol Biol,1997,33:545-551.
    [37]Loguercio LL, Scott HC, Trolinder NL, et al. Hmg-CoA reductase gene family in cotton (Gossypium hirsutum L.):unique structural features and differential expression of hmg potentially associated with synthesis of specific isoprenoids in developing embryos[J].Plant Cell Physiol,1999,40:750-761.
    [38]Davis EM, Tsuji J, Davis GD, et al. Purification of (+)-deltacadinene synt hase, a sesquiterpene cyclase from bacteria inoculatedcotton foliartissue [J]. Phytochemistry,1996,41:1047.
    [39]Joost 0, Bianchini G, Bell AA, et al. Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with Verticillium[J].Mol Plant Microbe Interact,1995,8:880.
    [40]Park H-S, Denbow CJ, CramerCL. Structure and nucleotide sequence of tomato HMG- encoding 3-hydroxy-3-methylglutaryl-coenzyme Areductase[J]. Plant Mol Biol,1992,20:327-331.
    [41]Denbow CJ, Lang S, Cramer CL. The Nterminal domain of tomato 3-hydroxy-3- methylglutaryl -CoA reductases. Sequence, microsomal targeting, and glycosylation[J]. J Biol Chem,1996,271:9710.
    [42]Rodriguez Concepcion M, Gruissem W. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase independent lycopene accumulation[J].Plant Physiol,1999,119:41.
    [43]Liao Z H, Tan Q M, Chai Y R, et al. Cloning and characterization of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast[J]. Funct Plant Biol,2004,31:73-81.
    [44]Wang Y, Guo B, Zhang F, et al. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme a reductase from Ginkgo biloba[J].Mol Biol Rep,2006,33(2):117-127.
    [45]Jabalquinto AM, Alvear ME, Cardemil E. Physiological aspects and mechanism of action of mevalonate 5-diphosphate decarboxylase[J].Comp Biochem Physiol,1988,908:671-677.
    [46]Shan H, Wilson WK, Phillips DR, et al. Trinorlupeol:a major nonsterol triterpenoid in Arabidopsis[J]. Org. Lett,2008,10:1897-1900.
    [47]侯春喜.人参皂苷生物合成关键酶基因MVD和β-AS的克隆机p-AS的反义表达[D].吉林大学,2009,12.
    [48]Lois L M, Campos N, Putra SR, et al.Cloning and characterization of a gene from Escherichia coli encoding a transketolase like enzyme that catalyzes the synthesis of D-1-deoxyxylulose-5-phosphate, a common precursor forisoprenoid, thiamin, and pyridoxolbio synthesis[J].Proc Natl Acad Sci USA,1998,95:2105.
    [49]Lange BM, Wildung MR, McCaskill D, et al. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate independent pathway [J]. Proc Natl Acad Sci USA,1998,95:2100.
    [50]罗永明,刘爱华.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,1(15).
    [51]金蓉,朱长青等.1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因[J].细胞生物学杂志,2007,05.
    [52]开国银,王敬等.丹参1-脱氧木酮糖-5-磷酸合成酶基因1及其编码的蛋白质和应用.中国,发明专利,200810035718,2008年08月27日.
    [53]李嵘,王喆之.植物萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的分子结构特征与功能预测分析[J].植物研究,2007,01.
    [54]Burke C C, Wildung M R, Croteau R. Geranyl diphosphatesynthase:cloning, expression, and characterization of thisprenyltransferase as a heterodimer [J].Proc Natl Acad Sci,1999, 96(23):13062-13067.
    [55]Tholl D, Kish C M, Orlova I, et al. Formation of monoterpe-nes inAntirrhinum majusandClarkia breweriflowers in-volves heterodimeric geranyl diphosphate synthases [J]. Plant Cell,2004, 16:977-992.
    [56]Schmidt A, Gershenzon J. Cloning and characterization oftwo different types of geranyl diphosphate synthases fromnorway spruce(Piceaabies)[J]. Phytochemistry,2008,69:49-57.
    [57]丁一新.灵芝法呢基焦磷酸合酶基因的克隆和表达特性研究[D].南京农业大学,2008,6.
    [58]Grunler J, Eriesson J, Dallner G. Braneh-point reaetions in the biosynthesis of cholesterol, dolicho, ubiquinone and prenylated proteins.Biochim Biophys Acta[J].1994,1212:259-277.
    [59]Cunillera N, Boronat A, Ferrer A. The Arabidopsis thaliana PFS 1 gene generates a novel mRNA that encodes a mitochondrial famesyl-diphosphate synthase isoform[J]. JBiol Chem,1997, 272:15381-15388.
    [60]Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes[J].Bioehim Biophys Acta,2000, 1529:89-102.
    [61]Sanmiya K, Ueno O. Matsuoka M, et al. Localization of farnesyl diphosPhate sythase in chloroplasts[J].Plant Cell Physiol,1999,40:348-354.
    [62]Laskovies FM, Poulter CD. Prenyltransferase:determination of the binding mechanism and individual kinetic constants for famesylpyrophosphate synthetase by rapid quench and isotope partitioning experiments[J].Bioehemistry,1981,20:1893-1901.
    [63]Poulter CD, Riliing HC. Prenyltransferase:the mechanism of the reaetion[J]. Biochemistry, 1976,15:1079-1083.
    [64]Comforth JW, Comforth RH, Popjak G, et al. Studies on the biosythesis of cholesterol. ⅩⅩ. Steric course of decarboxylation of 5-pyrophosphomevalonate and of the carbon tocarbon bond formation in the biosynthesis of famesyl pyrophosphate[J]. J Biol Chem,1966,241:3970-3987.
    [65]Kim O T, Bang K H, Jung S J, et al. Molecular characteriza-tion of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate[J].Biol Plant,2010,54(1):47-53.
    [66]Jennings S M, Tsay Y H, Fisch T M, et al. Molecular cloning and characterization of the yeast gene for squalene synthetase[J]. Proc Natl Acad Sci USA,1991,88:6038-6042.
    [67]秦玉芝,赵小英,刘选明等.甾醇生物合成中的关键酶-环氧角鲨烯环化酶的分子生物学研究[J].生命科学研究,2007,1.
    [68]KARST F, L ACROU TE F. Ergo sterol biosynthesis in Saccharo myces cerevisiae:mutant sdeficient in the early steps of the pathway[J].Mol Gen Gent,1977,154:2692277.
    [69]Goldstein JL, Brown MS. Regulation of the mevalonate pathway[J]. Nature,1990,343:425-430.
    [70]Agnew W S, P, opjak G.Squalene synthetase. Solubilization from yeast microsomes of a phospholipids-requiring enzyme[J].J Biol Chem,1978,253:4574-4583.
    [71]Hanley K M, Nicolas 0, Donaldson T B, et al. Molecular cloning, in vitro expression and characterization of a plant squalene synthetase cDNA[J]. Plant Mol Biol,1996,30:1139-1151.
    [72]Takauyki I, Takashi 0, Shingo H. Molecular cloning and functional expression of a cDNA for mouse squalene synthase Biochem[J]. Biophysica Acta,1995,1260:49-54.
    [73]Kribil R, Arro M, Delarco A, et al. Cloning and characterization of the Arabidopsis thaliana SQSI gene encoding squalene synthase-involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway[J]. Eur J Biochem,1997,249:61-69.
    [74]刑朝斌,劳凤云,龙月红等.刺五加鲨烯合酶和鲨烯环氧酶基因单核苷酸多态性及其与总皂苷量的相关性研究[J].中草药,2011,10(43):2020~2024.
    [75]詹冬玲,韩葳葳,刘景圣.角鲨烯合成酶抑制剂的高通量虚拟筛选[J].吉林大学学报(理学版)2012,2(50):361~364.
    [76]郑祥正.葡萄鲨烯合酶基因的克隆与原核表达[D].福州,福建农林大学,2007.
    [77]卢虹玉,刘敬梅,阳文龙等.甘草鲨烯合成酶基因的分离及植物表达载体的构建[J].药物生物技术,2007,14(4):2552258.
    [78]蒋世翠,张明哲,王义等.人参SQS基因的干扰载体构建及转化人参愈伤组织[J].吉林大学学报(理学版),2011,6(49):1136~1140.
    [79]Bolwell G. P. PlantcytochromeP450. [J]Phytochemistry,1994,37(6):1491-1506.
    [80]Ji W, Wright MB, Cai L, et al. Efficacy of SSH PCR in isolating differentially expressed genes[J].BMC Genomics,2002,3(1):12.
    [81]Lee MH, Jeong JH, Seo JW, et al. Enhanced triterpene and phyotsterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J]. Plant Cell Physiol,2004,45:976-984.
    [82]Han JY, In JG, Kwon YS, et al. Regulation of ginsenoside and phytostero biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng[J]. Phytochemistry,2010,71: 36-46.
    [83]于彦婷,任丽,孙春玉等.人参SQE基因干扰载体的构建及转化[J].中国医药生物技术,2011,2(6):121~126.
    [84]蒋世翠,刘伟灿,王义等.西洋参不同器官中皂苷量与鲨烯合成酶和鲨烯环氧酶基因表达的相关性[J].中草药,2011,3(42):579~584.
    [85]刘宁,田玉华,孟星宇等.鲨烯环氧酶基因的克隆及其在人参根组织中的表达[J].吉林农业大学学报,2012,6.
    [86]胡微,刘宁,田玉华等.人参鲨烯环氧酶基因的克隆与原核表达[J].西北农林科技大学学报(自然科学版),2012,10(40):207-211.
    [87]Haralamp idis K, Trojanowska M,0 sbourn A E.Biosynthesis of triterpenoid saponins in plants[J].Adv Biochem Eng Biotechnol,2002,75:31-49.
    [88]Mohammad Basyuni H 0, Etsuko Tsujimoto. Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae[J].FEBS Journal,2007,274:5028-5042.
    [89]Mohammad Basyuni H 0, Etsuko Tsujimoto. Cloning and functional exp ression of cycloartenol synthases from Mangrove species Rhizophora stylosa Griff, and Kandelia candel(L.)[J]. Druce. Biosci. Biotechnol. Biochem.,2007,71(7):1788-1792.
    [90]陈迪,陈永勤,肖柳青等.盾叶薯蓣环阿屯醇合酶基因克隆与表达[J].西北植物学报,2009,45:80~92.
    [91]Muller T H, Schaller H, Benveniste P.Molecular cloning and expression in yeast of 2,3-oxidosqualene triterpene cyclases from A rabidopsis tha liana[J]. Plant Mol Biol,2001, 45:75-92.
    [92]ABE I, PRESTWICH G D. Squalene epoxidase and oxidosqualene:lanosterol cyclase-key enzymes in cholesterol biosynthesis[C]CANE D E. Comprehensive Natural Products Chemistry. New York:Elsevier,1999:267-298.
    [93]Kushiro T, Shibuya M, Ebizuka Y. Beta-Amyrin synthase:Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. Eur J Biochem, 1998,256:238-244.
    [94]Shibuya M, Katsube Y,0 tsuka M, et al. Identification of a product specific β-amyrin synthase from A rabidopsis thaliana[J].Plant Physiol Bioch,2009,47:26-30.
    [95]秦玉芝,赵小英,刘选明等.甾醇生物合成中的关键酶-环氧角鲨烯环化酶的分子生物学研究[J].生命科学研究,2007,1(10).
    [96]Haralamp idis K, Trojanowska M,0 sbourn A E.B iosynthesis of triterpenoid saponins in plants[J].Adv Biochem Eng Biotechnol,2002,75:31-49.
    [97]Kushiro T, Ohno Y, Shibuya M, etal. Invitroconversion of 2,3-oxidosqualece into dammarenediol byPanax ginsengmi-crosomes[J].Biol Pharm Bull,1997,20(3):292-294.
    [98]Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, inPanax ginseng[J].FEBS Lett,2006,580:5143-5149.
    [99]Kushiro T, Shibuya M, Ebizuka Y. β-Amyrin synthase cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. Eur JBiochem, 1998,256(1):238-244.
    [100]赵寿经,侯春喜,梁彦龙等.人参皂苷合成相关β-AS基因的克隆及其反义植物表达载体的建立[J].中国生物工程杂志,2008,28(4):74~77.
    [101]詹冬玲,王嵩,韩葳葳等.人参p-香树素合成酶同源模建及高通量虚拟筛选抑制剂的研究[J].化学学报,2012,3(70):217~222.
    [102]赵剑,杨文杰.细胞色素P450与植物的生代谢[J].生命科学,1999,11(3):127~131.
    [103]Durst, F. Biochemistry and Physiology of PlantCytochrome P450. Ruckpaul, K, et al. Microbial and Plant Cytochrome P450[J]. London:Taylor and Francis,1991.191-233.
    [104]Robert P. D, et al. Multiple Forms of Plan Cytochrome P450[J]. Plant Physiology,1991, 96:669-674.
    [105]Nelson D. "Cytochrome P450 Homepage".University of Tennessee. http://drnelson. utmem. edu/CytochromeP450. html. Retrieved 2009-02-09.
    [106]Li SG, Li W, Tan J, et al. Putative cytochrome P450 genes in rice genome (Oryza sativa L. ssp. indica) andt heir EST evidence[J]. Science in China (Series C),2002,45(5):512.
    [107]In, J. G., Yang, D. C., Lee, B. S. Isolation and characterization of cytochrome P450 in Panax ginseng[J]. Yeongi-gun Seomyeon, Korea,339-810.
    [108]JUNG J D, PARK H W, HAHN Y, et al. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags[J].Plant Cell Rep,2003,22(3):224-230.
    [109]Dooner HK et al. Controlling element-induced alterations in UDP glucose flavonoid glucosyltransferase, the enzyme specified by the bronze locus in maize[J]. Proc Natl Acad Sci USA,1977,74:5623-5627.
    [110]Jung JD, Hahm Y, Hur C G, et al. Discovery of genes forginsenoside biosynthesisby analysisofginseng expressed sequencetags[J]. Plant Cell Rep,2003,22:224-230.
    [111]吴琼,陈士林等.人参皂苷生物合成和次生代谢工程[J].中国生物工程杂志,2009,29(10):102~108.
    [112]Lahoucine Achnine D V H, Mohamed A Farag, L loyd W Sumner, et al. Genomics based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula[J].The Plant Journal,2005,41:875-887.
    [113]Burker DT, Carle GF, Olson.MV:Cloning of large fragments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science,1987,236:801-811.
    [114]Wu C, Xu Z, Zhang H-B. DNA Libraries. In:Encyclopedia of Molecular Cell Biology and Molecular Medicine[M].vol 3,2nd. Wiley, Weinheim,2004, pp.385-425.
    [115]Ren C, Xu ZY, Sun S, et al.Genomic DNA Libraries and Physical Mapping. In:The Handbook of Plant Genome Mapping:Genetic and Physical Mapping[M]. Wiley, Weinheim,2005, pp.173-213.
    [116]Shizuya H, Birren B, Kim U-J, et al.Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Echerichia coli using an F-factor-based vector[J]. Proc Natl Acad Sci USA,1992,89:8794-8797.
    [117]Hamilton CM, Frary A, Lewis C. Tanksley SD Stable transfer of intact high molecular weight DNA into plant chromosomes[J]. Proc Natl Acad Sci USA 1996,93:9975-9979.
    [118]Tao Q, Zhang H-B. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors[J].Nucleic Acids Res,1998,26:4901-4909.
    [119]Chang Y-L, Chuang H-W, Meksem K, et al. A plant-transformationready large-insert BIBAC library of Arabidopsis and bombardment transformation and expression of its largeinsert BIBACs in tobacco[J].Genome,2011,54:437-447.
    [120]Liu Y-G, Shirano Y, Fukaki H, Yanai Y, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning[J].Proc Natl Acad Sci USA,1999,96:6535-6540.
    [121]Zhang MP, Zhang Y, Huang JJ, et al. Physical mapping of polyploid genomes:a BIBAC physical map of allotetraploid upland cotton[J].PLoS One,2012,7:e33644.
    [122]Song R, Segal G, Messing J. Expression of the sorghum 10-member Kaf irin gene cluster in maize endosperm[J].Nucleic Acids Res,2004,32:e189.
    [123]Carol M.Hmailton, Anne Frary, Hong Bin Zhang, et al.Construction of tomato genomic DNA libraries in a binary-BAC(BIBAC) vector[J].The Plant jomual,1999,18:223-229.
    [124]Liu Y-G, Liu H, Chen L, et al.Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning[J]. Gene,2002, 282:247-255.
    [125]He R-F, Wang Y, Shi Z, et al. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large-insert DNA linked to BPH resistance locus[J].Gene,2003,321:113-121.
    [126]王文明,江光怀,王世全等.高覆盖率水稻BAC库的构建及抗病性基因相关克隆的筛选.遗传学报[J].2001,28(2):120~128.
    [127]Zhang H B. Mannual for construction and manipulation of large insert bacterial clone libraries[J].2000.
    [128]Zhang H-B, Woo SS, Wing RA. BAC, YAC and cosmid library construction. In:Foster G, Twell D (eds) Plant gene isolation:principles and practice [M]. Wiley, England,1996, pp.75-99.
    [129]Tao Q, Wang A, Zhang H-B. One large insert planttransformation competent BIBAC library and three BAC libraries of japonica rice for genome research in rice and other grasses[J]. Theor Appl Gene,2002,105:105-1066.
    [130]Meksem K, Ruben E, Zobrist K, et al. Two large-insert soybean genomic libraries constructed in a binary vector:applications in chromosome walking and genome-wide physical mapping[J]. Theor Appl Genet,2000,101:747-755.
    [131]Wu CC, Sun S, Lee M, et al. Whole-Genome Physical Mapping:An Overview on Methods for DNA Fingerprinting. In:Meksem K, Kahl G, eds[M]. The Handbook of Plant Genome Mapping:Genetic and Physical Mapping. Weinheim:Wiley-VCH Verlag GmbH.2005, pp257-284.
    [132]Tao QZ, Chang YL, Wang JZ, et al. Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis[J]. Genetics,2001,158: 1711-1724.
    [133]Wu C, Xu Z, Zhang H-B. DNA libraries[M]. In:Meyers RA(ed) Encyclopedia of molecular cell biology and molecular medicine,2004, vol 3,2nd edn. Wiley, Weinheim, pp385-425.
    [134]THANKSLEY S D. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes[J]. Trends in Genetics,1995, 11(2):63-68.
    [135]MADAM M. Genome mapping, molecular markers and marker-assisted selection in crop plants[J].Molecular Breeding,1997,3:87-103.
    [136]Zhang H-B. Map-based cloning of genes and quantitative trait loci. In:Kole C, Abbott AG (eds) Principles and practices of plant genomics[M]. Genome mapping, vol 1. Science, New Hampshire,2007, pp.229-267.
    [137]ALLIOUS S. Construction of a BAC library of pearl millet, Pennisetum glaucum[J]. Theor Appl Genet,2001,102:1200-1205.
    [138]MILLER J M. Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor[J]. Theor Appl Genet,1998,96:832-839.
    [139]Y-L. Chang, X.Henriquez, H. B. Zhang. A plant-transformation-competent BIBAC library from the Arabidopsis thaliana Landsberg ecotype for functional and comparative genomics[J]. Thero Appl Genet,2003,106:269-276.
    [140]Zhang MP, Li Y, Zhang H-B. Isolation of megabase-sized DNA fragments from plants. In:Liu D(ed) Handbook of nucleic acid purification[M]. Taylor & Francis Group, LLC,FL,2008,pp 513-524.
    [141]Zhang MP, Zhang Y, Scheuring CF, et al. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research[J].Nat Protoc,2012, 7:467-478.
    [142]Zhang H-B, Scheuring CF, Zhang MP, et al. Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research[J]. Nat Protoc,2012,7:479-499.
    [143]Zhang H-B, Zhao XP, Ding XD, et al. Preparation of megabase-sized DNA from plant nuclei [J]. Plant J,1995,7:175-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700