含分布式发电的配电网重构及故障恢复算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着地球上常规能源特别是石油、煤、天然气的逐渐衰竭以及全球对环境保护和节能问题的日益关注加之电力科学技术的不断发展,以风力发电、光伏发电等可再生能源为主的分布式发电(Distributed Generation, DG)技术的正日趋成熟,并逐渐成为国内外研究的热点。然而大量DG接入配电网对传统的配电网结构和运行控制方式都将发生巨大改变。国内外学者在DG并网后对电力系统的影响方面作了较多的研究,但对含多DG的配电网重构与故障恢复方面研究得还比较少,尤其是在如何合理运用DG的孤岛效应在确保重要负荷的供电可靠性的前提下对非故障停电区域尽快恢复供电方面研究更少,因此,对此进行研究具有很重要的理论意义和实际意义。本文对含多DG的配电网三相不平衡潮流算法,含DG的配电网故障诊断,重构与供电恢复等方面做了深入的研究,主要研究成果如下:
     (1)配电网的重构优化和故障定位以及供电恢复等都离不开潮流计算,大量DG接入配电网,使得潮流计算更加复杂。为解决不同类型DG并入配电网后的潮流计算问题,本文根据配电网中常见的不同类型的分布式发电所具有的不同特点,对它们分类建立了潮流计算模型,将分布式发电节点归类为PQ节点、PI节点、PV节点、P-Q(V)节点,鉴于前推回代法不能处理环网和PV节点,本文以传统电流前推回代法为基础,采用相分量法进行计算不平衡量,针对DG的特殊节点计算模型,利用叠加原理和迭代、补偿等手段得到分层改进前推回代算法,同时提出针对弱环网和PV节点的处理方法。从而使含DG的三相不平衡配电网潮流计算变得简单易行,并以IEEE33节点和一个实际配电网为算例验证了本文算法的有效性。
     (2)不同类型、多DG接入配电网会对配电网的重构优化产生较大影响,由于配电网负荷的频繁变化,DG并网运行时段的不确定性,配电网的实时重构就显得非常必要,实时重构最重要的一点就是计算速度和效率,以前的配电网重构要么计算速度慢,要么找不到最优解,本文了提出了采用改进混合整数差分进化算法来解决含分布式发电的配电网重构优化问题。该方法将网损最小作为目标函数,首先对传统差分进化算法(DE)进行改进,形成能处理离散变量的混合整数差分进化算法,再通过在算法中嵌入加速操作和迁移操作克服了种群规模较小时传统差分算法易早熟的问题,既提高了全局搜索能力,又提高了搜索速度,局部搜索能力也较强。同时提出以环路为基础的整数编码方法,减少了编码长度,大大提高了可行解的比例,进一步提高了计算效率,从而为配电网的实时重构打下基础。
     (3)大量分布式发电的引入使配电网结构愈加复杂,继电保护与故障诊断难度加大,而故障诊断定位是配电网故障后供电恢复的基础,其诊断定位速度则是提高配电网供电可靠性的关键,为此提出了适于含有大量DG的配电网快速故障定位新方法。该方法首先根据配电网潮流计算结果,建立节点电压暂降数据库,然后通过安装在配电网中关键节点处的电能质量监控器采集到的各节点的电压,电流,功率等信息,并对节点电压暂降数据库数据及节点电压采集数据进行相关分析,匹配度最接近1的节点即为故障点。该方法对发生的故障定位准确,快捷,其效率明显优于以往的故障定位方法。配电网结构变化后,只需适当修改相应节点电压暂降数据库,不会影响使用效果。
     (4)大量分布式发电引入使配电网后,对配电网故障后的供电恢复问题提出了新的挑战。鉴于传统的配电网供电恢复算法都没考虑DG并网后孤岛效应产生的影响,论文提出利用DG孤岛效应的配电网供电恢复算法。首先按照负荷的重要程度进行DG孤岛划分,称为计划孤岛,当配电网发生严重故障引起大面积停电时,配电网按DG孤岛划分方案转入孤岛运行模式维持对孤岛内重要负荷供电。然后对非故障停电区域采用改进混合整数差分进化算法,以开关操作次数最少和网损最小为目标函数进行故障后的配电网重构供电恢复,尽量恢复更多负荷,对无法恢复的负荷则进行切负荷处理,合理利用DG的孤岛运行,既保证了重要负荷的供电可靠性,又恢复了更多负荷。同时提出了故障消除后配电网恢复初始运行,如果存在非计划孤岛并网时应采取的措施。
In recent years, along with the gradually depletion of the conventional energy such as oil, coal and natural gas particularly on the earth, and the increasing global concerns for environmental protection, energy saving issues the development of the power science technology, the distributed generation (DG) technology based on wind power, photovoltaic power generation and other renewable energy technologies is becoming more and more mature and has become a hot research topic. However, after a great of DGs being connected into the distribution network, the distribution network structure, operation and control mode will be changed tremendously. The domestic and foreign researchers have done much research in the grid-connected DG impacts on the power system, but few of them studied on the distribution network reconstruction and service restoration after fault with large-scale DGs connected, to say nothing of the research on how to use the planned DG islanding resonablly to restore the service of the outage area with no fault under premise of ensuring the reliability of power supply of the important loads. So the study on this area has an important theoretical and practical significance. In this dissertation,the three-phase unbalanced power flow algorithm for the distribution network with multiple DGs and distribution network fault diagnosis, reconstruction, power supply recovery with DG have been studied intensively. The contributions of this dissertation are summarized as follows:
     (1) The distribution network reconfiguration, fault location and service restoration are all based on power flow calculation of distribution system. To solve the problem of power flow calculation of distribution network connected with various DGs, DG modes are constructed respectively according to the different features of different types of DGs, thus the nodes with DG are classified into PQ node, PV node, PI node and P-Q (V) node in this dissertation. In view that back/forward algorithm cannot cope with weakly meshed distribution network and PV nodes, this dissertation presents an improved layer-by-layer current back/forward sweep power flow algorithm based on traditional back/forward sweep algorithm by using superposition principle and iterative, compensation method to calculate the unbalanced current of three-phase loads and puts forward the method of coping with weakly meshed distribution network and PV nodes. The method simplifies power flow calculation of distribution system with DGs.The examples of IEEE33-bus test system and a practical distribution network has proved the efficiency and feasibility of the algorithm.
     (2) That different types and multiple DGs are connected into the distribution network will have great influence on the reconfiguration and optimization of the distribution network. Due to the frequently changes of the loads and the time uncertainty of DGs in the grid, The distribution network real-time reconstruction is very necessary, the calculation speed and efficiency are very critical in real-time reconfiguration, the previous distribution network reconfiguration were either slow in calculation or couldn't find the optimal solution. The dissertation presents an improved mixed-integer differential evolution algorithm based on traditional differential evolution algorithm that can deal with discrete variables to solve the reconstruction optimization problems of distribution network with distributed generation. The method takes the minimum network loss as the objective function, through the accelerated and migration operations to overcome premature convergence of the traditional differential algorithm due to a small population size and improve the global search capability. The integer encoding method based on loop circuit is proposed to reduce the code length, and greatly improves the proportion of feasible solutions, and further increases computational efficiency, laying the foundation of the real-time reconfiguration.
     (3) It makes the topology of distribution network more complex when a large number of distributed generations are connected into it, distribution network protection and fault diagnosis are more difficult to make. However, the fault diagnosis and location is the base of distribution power system service restoration after fault occurred; its response speed is the key to increase the reliability of power supply reliability. For this reason, a fault location approach suitable to the distribution network containing large-scale DGs is proposed. Firstly, according to the results of power flow calculation, a database of voltage sag is established; then power quality information such as voltages, currents and power is acquired by power quality monitors installed in the critical nodes of the distribution network and coordination analysis on collected nodal voltage data and voltage sag data of the established database is performed; and then the node with the matching extent value most close to1is determined as the fault point., The method is accurate and fast for fault location, and even if the distribution network structure changes, after modifying the corresponding node voltage sag database slightly,it is still suitable to locate the fault occurred effectively.
     (4)A new challenge is proposed for the service restoration of distribution network when a large number of distributed generations are connected into the distribution network, in view that the traditional distribution network service restoration algorithm did not consider the islanding of the grid-connected DG. A distribution network service restoration algorithm considering the DG islanding is proposed. First, according to the importance of the loads for DG Islanding division, called the planned islanding. When serious failures result in large area power blackout, DGs are transferred into the islanding operation mode based on islanding division method to maintain the power supply for the important load. Then using the binary improved mixed integer differential evolution algorithm to restore the service of the blackout area with the non-fault area, taking the minimum switch operations and the minimum network loss as the objective function, trying best to recover more loads, for those who can not be restored, just cut them.By using the DG islanding operation scientifically, not only the power supply reliability of the important loads are ensured, but also more common loads service are restored. Finally, the measures are presented after the faults have been eliminated and the network needs restoring the initial operation if there are unplanned DG islanding operation.
引文
[1]Dugan, R.C., McDermott T.E. Distributed generation[J]. IEEE Industry Applications Magazine,2002,8(2):19-25.
    [2]Palma-Behnke R, A J.L.C, Vargas L.S, etal. A distribution company energy acquisition market model with integration of distributed generation and load curtailment options[J]. IEEE Transactions on Power Systems,2005,20(4):1718-1727.
    [3]Ochoa L.F, Padiha-Feltrin A, Harrison G.P. Evaluating distributed generation impacts with a multi-objective index[J]. IEEE Transactions on Power Delivery,2006,21(3):1452-1458.
    [4]Keane A, Denny E, O'Malley M. Quantifying the impact of connection policy on distributed generation[J]. IEEE Transactions on Energy Conversion,2007,22(1):189-196.
    [5]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56.
    [6]王建,李兴源,丘晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [7]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [8]胡学浩.分布式发电技术及其并网问题[J].电工技术杂志,2004(10):1-5.
    [9]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.
    [10]张丽娟,陈庆国,陈海焱等.调速系统恶化阻尼的机理分析及其改进措施[J].水电能源科学,2005,23(3):9-11.
    [11]Mitchell C. The value of distributed generation-policy implication for the UK[C].IEE Colloquium on Economies of Embedded Generation.1998:80-88.
    [12]王庆一.可再生能源现状、前景与政策[J].中国电力,2002,36(1):68-73.
    [13]中华人民共和国可再生能源法[S].2005.
    [14]Iyer H, Ray S, Ramakumar R. Assessment of Distributed Generation Based on Voltage Profile Improvement and Line Loss Reduction[C]. IEEE Transmission and Distribution Conference and Exhibition,2006:1171-1176.
    [15]IEEE Std.929-2000 IEEE recommended practice for utility interface of photovoltaic system[S].2000.
    [16]IEEE Std.1547 IEEE standard for interconnecting distributed resources with electric power systems[S].2003.
    [17]M.Braun. Reactive Power supply by distributed generators[C].2008 IEEE Power and Energy Society General Meeting, Pittsburgh, USA,2008:1-8.
    [18]秦刚,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术,2009,33(2):105-110.
    [19]Puttgen,H.B.Mac Gregor,P.R. Lambert, F.C. Distributed generation:semantic hype or the dawn of a new era? [J]. IEEE Power & Energy Magazine,2003, 1(1):22-29.
    [20]王长贵,崔容强,周簧.新能源发电技术[M].北京:中国电力出版社,2003.
    [21]王承煦等主编.风力发电[M].北京:中国电力出版社,2003.
    [22]成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23.
    [23]龙泽强.风力发电:21世纪的绿色能源明[J].世界科技研究与发展,2001,23(4):32-34.
    [24]毕道治.中国燃料电池的发展[J].电源技术,2000,24(2):03-107.
    [25]熊一权.燃料电池发电技术[J].中国电力,1998,31(9):6-64.
    [26]陆虎瑜.太阳能光伏制氢储能-燃料电池发电系统[J].太阳能,2004,(2):22-23.
    [27]S.K. Goswami,S.K.Basu. Direct solution of distribution systems[C].IEE PROCEEDrNGS-C, 1991,138(1):180-187.
    [28]Jen-Hao Teng. A Direct Approach for Distribution System Load Flow Solutions[J]. IEEE Trans Power Delivery,2003,18(3):882-887.
    [29]Fan Zhang,Carol S.Cheng. A Modified Newton Method for Radial Distribution System Power Flow Analysis[J]. IEEE Trans Power Systems,1997,12(1):389-397.
    [30]蔡中勤,郭志忠.基于逆流编号法的辐射型配电网牛顿法潮流[J].中国电机工程学报,2000,20(6):13-16.
    [31]张尧,王琴,宋文南等.树状网的潮流算法[J].中国电机工程学报,1998,18(3):217-220.
    [32]颜伟,刘方,王官洁等.辐射型网络潮流的分层前推回代算法[J].中国电机工程学报,2003,23(8):76-80.
    [33]孙宏斌,张伯明,相年德.配电潮流前推回推法的收敛性研究[J].中国电机工程学报,1999,19(7):26-29.
    [34]王守相,李继平.配电网三相潮流算法比较研究[J].电力系统及其自动化学报,2000,12(2),26-30.
    [35]吴文传,张伯明.变压器详细模型推导与三相配电网潮流计算[J].电力系统自动化,2003,27(4):53-56.
    [36]颜伟,刘方.三相辐射型配电网络的相分量潮流计算[J].电力系统自动化,2002,24-27.
    [37]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报,2003,23(1):74-79.
    [38]张小平,陈珩.不对称三相潮流的对称分量分析法[J].中国电机工程学报,1993,13(6):1-12.
    39]吴政球,荆勇.考虑负序零序非线性求解的三相chaoliu7计算方法[J].中国电机工程学报2002,22(4):77-81.
    40]姜彤,郭志忠.多态相分量法及其在电力系统三相不对称分析中的应用[J].中国电机工程学报.2002,22(5):70-74.
    41] FEIJOOAE,, CIDRASJ. Modeling of Wind Farm in the Load Flow Analysis[J].IEEE Trans on Power Systems.2000,15(1):110-115.
    42]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    43]王守相,汪兴月.含风力发电机组的配电网潮流计算[J].电网技术,2006,30(21):42-45.
    44]王守相,黄丽娟.分布式发电系统的不平衡三相潮流计算[J].电力自动化设备,2007,27(8):11-15.
    45]丁明,郭学风.含多种分布式电源的弱环配电网三相潮流计算[J].中国电机工程学报,2009,29(13):35-40.
    46]崔金兰,刘天琪,李兴源.含有分布式发电的配电网重构研究[J],电力系统保护与控制,2008,36(15)37-40.
    47]赵晶晶,李新,彭怡等.基于粒子群优化算法的配电网重构和分布式发电注入功率综合优化算法[J].电网技术,2009,33(17):162-166.
    [48]Yuan-Kang Wu,Ching-Yin Lee,Le-Chang Liu,et al, Study of reconfiguration for the distribution system with distributed generators[J]. IEEE trans.on Power Delivery,2010, Vol 25(3),1678-1684.
    [49]刘健,倪建立,杜宇.配电网故障区段判断和隔离的矩阵方法[J].电力系统自动化,1999,23,(1):31-33.
    [50]朱发国,孙德胜,姚玉斌等.基于现场监控终端的线路故障定位优化矩阵算法[J].电力系统自动化,2000,24(15):42-44.
    [51]蒋秀洁,熊信银,吴耀东等.改进矩阵算法及其在配电网故障定位中的应用[J].电网技术,2004,28,(19):60-63.
    [52]张钊,配电网故障定位的通用矩阵算法[J].电力自动化设备,2005,25(5):40-43.
    [53]卫志农,何桦,郑玉平.配电网故障定位的一种新算法[J].电力系统自动化,2001,25,(14):48-50.
    [54]刘健,王兆安.配电网故障区域判断和隔离[J].西安交通大学学报,2000,34(2):7-10
    [55]王飞,孙莹.配电网故障定位的改进矩阵算法[J].电力系统自动化,2003,27(24):45-49.
    [56]丁同奎,陈欲技.配电网馈线末端故障定位优化算法[J].电力系统自动化,2005,29(20):60-62.
    [57]苏永智,潘贞存,丁磊.一种复杂配电网快速故障定位算法[J].电网技术,2005,9,(18):75-78.
    [58]邵学俭,田磊.基于GIS的专家系统在配电网故障定位中的应用[J].浙江电力,1998,(4):12-15.
    [59]毕天姝,倪以信等.基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法[J].中国电机工程学报,2005,25(14):12-18.
    [60]屠强,刘伟,等.基于故障投诉信息的配电网故障定位[J].继电器,2005,33(24):24-28.
    [61]杜红卫,孙雅明等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,25(5):52-55.
    [62]束洪春,孙向飞等.基于粗糙集理论的配电网故障诊断研[J].中国电机工程学报,2001,21(10):73-77.
    [63]孙雅明,吕航Petri网和冗余纠错技术结合的配网故障区段定位新方法[J].中国电机工程学报,2004,24(10):61-67.
    [64]刘淑萍,韩止庆等.基于多Agent的配电网故障处理方案的研究[J].继电器,2004,32(22):39-42.
    [65]刘健.配电网自动化新技术[M].北京:中国水利水电出版社.2003.145-174.
    [66]Galdi V,Piccolo A,Siano P.Dynamic performances and control for dispersed generators connected through inverter[C].Proceedings of 2003 International Conference on Intelligent Agents,Web Technologies and Internet Commerce:Vol 1,Nov 28-30,2005, Vienna, Austria:1060-1065.
    [67]Guerrero J M, Mstas J,De Vicna L G. et al. Wireless-control strategy for Parallel operation of distributed generation inverters[J], IEEE Trans on Industrial Electronics,2006, 53(5):1461-1470.
    [68]Wang C,Nehrir M H,Gao H.Control of PEM fuel cell distributed generation systems[J]. IEEE Trans on Energy Conversion,2006,21 (2):586-595.
    [69]S Civanlar, J.J.Grainger, H.Yin, S.S.H.Lee. Distribution feeder reconfiguration for loss reduction[J]. IEEE Trans.on Power Delivery 1988,3(3):1217-1223.
    [70]YuuanYih Hsu, H.M.huang, H.C.Kuo.Distribution System Service Restoration Using A Heuristic search Approach[J]. IEEE Trans.on Power Delivery,1993,7(2):734-740.
    [71]V S.Deni,D.P.Sen Gupta,G.Anandalingam. Optimal Restoration of Power supply in large Distribution Systems in Developing Countries[J]. IEEE Trans.on Power Delivery, 1995,10(1):430-438.
    [72]Sakae Toune,Hiroyuki Fudo,Takamu Genji,etc.A Reactive Tabu Search for Service Restoration in Electric Power Distribution System[C]. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC on Evolutionary Computation, ICEC May 4-9, 1998:763-768.
    [73]孙雅明,杜红卫.可靠性知识与最优评估配电网故障恢复(二)[J].电力系统自动化,2003, 27(13):36-39.
    [74]Chen Wenhui,Tsai Menshen,Kuo Hislin. Distribution system restoration using the hybrid fuzzy-grey method[J]. IEEE Trans on Power Systems,2005,20(1):199-205.
    [75]Luan W P, Irving M R, Daniel J S. Genetic algorithm for supply restoration and optimal load shedding in power system distribution networks[J].IEEE Trans on Power Deli very,2002,149(2):145-151.
    [76]毕鹏翔,刘健,张文元.配电网络重构的改进遗传算法[J].电力系统自动化,26(2),2002:57-61.
    [77]Chen Chao-shun, Lin Chia-hung, Tsai Hung-ying. A rule-based expert system with colored petri net models for distribution system service restoration [J]. IEEE Trans on Power Systems, 2002,17 (4):1073-1080.
    [78]Tsia Men-shen, Wu Wu-Chang. Development of an Objected-Oriented Expert System for Multi-Period Load Transfer [C].IEEE Trans and Distribution Conference and Exhibition, 2002:1170-1174.
    [79]雷绍兰,王世彬,胡晓倩等.配电网供电恢复的混沌免疫算法[J].高电压技术,2009,35(6):1492-1496.
    [80]刘莉,陈学允.基于模糊遗传算法的配电网络重构[J].中国电机工程学报,2000,20(2):66-69.
    [81]Zeineldin HH, Bhattacharya K, El-saadany EF,et al. Impact of intentional islanding of distributed generation on electricity market prices[C].IEE Proceedings of Generation, Transmission and Distribution, London, UK,2006.
    [82]卢志刚,董玉香.含分布式发电的配电网故障恢复策略[J].电力系统自动化,2007,31(1):89-92.
    [83]王守相,王成山.现代配电系统分析[M].第一版.北京:高等教育出版社,2007:56-79.
    [84]车仁飞.配电网潮流计算及重构算法的研究[D].济南:山东大学,2003.
    [85]陈海焱,段献忠,陈金富.计及配网静态电压稳定约束的分布式发电规划模型与算法[J].电网技术,2006,30(21):11-14.
    [86]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报,2003,23(1):74-79.
    [87]黄丽娟.分布式发电系统的三相潮流计算方法[D].天津大学,2007.
    [88]李裕能,夏长征.电路(上)[M].第一版.武汉:武汉大学出版社,2004:49-53.
    [89]张学松,刘焯,于尔铿,陈竟成.配电网潮流算法比较研究[J].电网技术,1998,22(4):45-49
    [90]A.O. Ekwue and J.F. Macqueen. Comparison of load flow solution methods [J]. Electric Power Systems Research,1991,22(3):213-222.
    [91]Kersting W. H. A Method to Teach the Design and Operation of a Distribution System [J]. IEEE Transactions on Power Apparatus and Systems,1984,PAS-103(7):1945-1952.
    [92]赵晶晶,含分布式发电的配电网优化运行研究[D].重庆:重庆大学,2009.10.
    [93]颜伟,刘方,王官洁.三相辐射型配电网络的相分量潮流计算[J].电力系统自动化,2002,26(10):24-27.
    [94]王星华.基于SIMULINK的同步直驱风力发电机并网控制研究[J].微计算机信息,2007,23(10-1):15-16.
    [95]马婉玲.分布式能源系统中燃气轮机热电联产的研究[D].合肥:合肥工业火学,2008.
    [96]Chen T H, Chen M S, Hwang K J, etc. Distribution System Power Flow Analysis-a Rapid Approach [J]. IEEE Trans on Power Delivery,1991.6(3):1146-1152.
    [97]江兴月.含分布式发电的配电网潮流和短路统一分析方法[D].天津:天津大学,2007.
    [98]方富淇.配电网自动化[M].北京:中国电力出版社,2000.
    [99]Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Trans on Power Delivery,1989,4(2):1401-1407.
    [100]王敏,丁明.含分布式发电的配电系统规划[J].电力系统及其自动化学报,2004,16(6):5-8.
    [101]N.D.R.Sarma, K.S.Prakasa Rao. A new 0-1 integer programming method of feeder reconfiguration for loss minimization in distribution systems[J]. Electrical Power System Research,1995(33):125-131.
    [102]余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构[J].中国电机工程学报,2000,20(9):44-49.
    [103]Avella, Pasquale, Villacci, Domenico. A steiner arborescence model for the feeder reconfiguration in electric distribution networks[J]. European Journal of Operational Research,2005,164(2):505-509.
    [104]D. Shirmohammadi, Hong HW. Reconfiguration of electric distribution networks for resistive line losses reduction[J]. IEEE Trans on Power Delivery.1989,4(2):1492-1498.
    [105]刘蔚,韩祯祥.基于最优流法和遗传算法的配电网重构[J].电网技术,2004,28(19):29-33.
    [106]K.Nara, A.Shiose, M.Kitagawoa, etc. Implementation of genetic algorithm for distribution systems loss minimum reconfiguration[J].IEEE Tran.on Power System,1992,7(3):1044-1051.
    [107]张栋,张刘春,傅正财.配电网络重构的快速支路交换算法[J].电网技术,2005,29(9):82-85.
    [108]Debapriya Das.A fuzzy multi-objective approach for network reconfiguration of distribution systems[J]. IEEE Trans. on Power Delivery,2006,21(2):202-209.
    [109]余健明,蔡利敏,杨文宇.基于提高系统可靠性降低网损的配电网络重构[J].电工技术学报,2004,19(10):70-73.
    [110]郑欣,杨丽徒,谢志棠.配电网络重构的改进混合遗传算法[J].继电器,2004,32(25):11-14.
    [111]刘杨,杨建军,魏立新等.基与混合遗传算法的配电网络重构优化[J].系统工程理论与实践,2004,11:122-127.
    [112]Ah King R. T. F, Radha B, Rughooputh H. C. S. A fuzzy logic controlled genetic algorithm for optimal electrical distribution network reconfiguration[C]. IEEE International Conference on Networking, Sensing & Control. Piscataway, NJ,USA:IEEE,2004.577-582.
    [113]Debapriya Das. A fuzzy multi-objective approach for network reconfiguration of distribution systems. IEEE Trans, on Power Delivery,2006,21(1):202-209.
    [114]Hayashi Y, Iwarnoto S, Furuya S, et al. Efficient determination of optimal radial power system Structure using Hopfield neural network with constrained noise[J]. IEEE Transactions on Power Delivery,1996,11(3):1529-1535.
    [115]Gauche E, Coelho J, Teive R. C. G. On-line distribution feeder optimal reconfiguration algorithm for resistive loss reduction using a multi-layer perceptron[C]. IEEE International Conference on Neural Networks. Piscataway,NJ, USA:IEEE,1997:179-182.
    [116]Nara Koichi, Kitagawa Minoru. Distribution systems loss minimum reconfiguration by simulated annealing method[C].International Conference on Advances in Power System Control, Operation and Management. Hong Kong:IEE,1991.461-466.
    [117]Chang Hong-Chan, Kuo Cheng-Chien. Network reconfiguration in distribution systems using simulated annealing[J]. Electric Power Systems Research,1994,29(3):227-238.
    [118]靳晓凌,赵建国.基于改进二进制粒子群优化算法的负荷均衡化配电网重构[J].电网技术,2005,29(23):40-43.
    [119]Higashi N, Iba H. Particle swarm optimization with Gaussian mutation[C]. Swarm Intelligence Symposium, SIS'03. Proceedings of the IEEE,2003:72-79.
    [120]Marcos A.N. GuimarZies, Jorge E.C. Lorenzeti, Carlos A. Castro. Reconfiguration of distribution systems for stability margin enhancement using tabu search[C].2004 International Conference on Power System Technology. Singapore,2004.
    [121]陈根军,李继洗,唐国庆.基于Tabu搜索的配电网络重构算法[J].中国电机工程学报,2002,10(22):28-33.
    [122]黄健,张尧,李绮雯.蚁群算法在配电网重构的应用[J].电力系统及其自动化学报,2007,19(4):59-64.
    [123]程浩忠,张焰.电力网络规划的方法与应用[M].上海:上海科学技术出版社, 2002:168-180.
    [124]陈根军,唐国庆.基于禁忌搜索与蚁群最优结合算法的配电网规划[J].电网技术,2005,29(2):23-27.
    [125]毕鹏翔,刘健,张文元.以提高供电电压质量为目标的配网重构[J].电网技术,2002,26(2):41-48.
    [126]S. Dasgupta, S.Das, A. Biswas, et al..On Stability and Convergence of the Population dynamics in Differential Evolution[J]. AI Communications,2009,22(l):1-20.
    [127]贺毅朝,王熙照,刘坤起,王彦棋.差分演化的收敛性与算法改进[J].软件学报,2010,21(5):875-885.
    [128]A.K. Qin, V L. Huang, P.N. Suganthan. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
    [129]S. Das, A. Konar, U.K. Chakraborty. Two Improved Differential Evolution Schemes for Faster Global Search[C]. In:Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington, DC:ACM Press,2005.991-998.
    [130]J. P. Chiou, C. F. Chang, C. T. Su. Ant Direction Hybrid Differential Evolution for Solving Large Capacitor Placement Problems[J]. IEEE Transactions on Power System,2004,19(4), 1780-1794.
    [131]Y P. Chang, C. Low. An Ant Direction Hybrid Differential Evolution Heuristic for the Large-scale Passive Harmonic Filers Planning Problem. Expert System with Application, 2008,35(3):894-904.
    [132]S.K. Wang, J. P. Chiou, C. W. Liu. Parameters Tuning of Power System Stabilizers Using Improved Ant Direction Hybrid Differential Evolution[J]. Electrical Power and Energy Systems,2009,31(1):34-42.
    [133]R. Thomsen. Multimodal Optimization Using Crowding based Differential Evolution[C].In Proceedings of the IEEE Congress on Evolutionary Computation. Portland:IEEE,2004:13 82-1389.
    [134]龚文引,刘小波,蔡之华.一种基于正交设计的快速差分演化算法及其应用研究[J].小型微型计算机系统,2007,28(7):1297-1301.
    [135]Q.F.Zhang, Y.W.Leung.Orthogonal Genetic Algorithm for Multimedia Multicast Routing[J]. IEEE Transactions on Evolutionary Computation,1999,3(1):53-62.
    [136]J.T. Tsai. T. K. Liu, J. H. Chou. Hybrid Taguchi Genetic Algorithm for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(4):365-377.
    [137]W. Y Gong, Z. H. Cai, L. X. Jung. Enhance the Performance of Differential Evolution Using Orthogonal Design Method[J]. Applied Mathematics and Computation,2008, 206(1):56-69.
    [138]A.Y Qing. Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES) [J]. IEEE Transactions on Antennas and Propagation,2004,52(5):1223-1229.
    [139]V.P.Plagianakos,M.N.Vrahatis. Parallel evolutionary training algorithms for "hardware-friendly" neural network[J]. Natural Computing,2001,1(2):307-322.
    [140]K.E. Parsopoulos. Cooperative micro-differential evolution for high dimensional problems[C]. In:Proceedings of Genetic and Evolutionary Computation Conference, Montreal, Canada:ACM Press,2009.531-538.
    [141]P. Noman, P Iba. Enhancing differential evolution performance with local search for high dimensional function optimization[C]. In:Proceedings of the 2005 conference on Genetic and Evolutionary Computation, Washington DC, USA:ACM Press,2005.967-974.
    [142]J.M. Yang, C:Y Kao. Integrating adaptive mutations and family competition into genetic algorithms as function optimizer[J]. Soft Computing,2000,4(2):89-102.
    [143]N. Noman, H. Iba. Accelerating Differential Evolution Using an Adaptive Local Search[J]. IEEE Transactions on Evolutionary Computation,2008,12(1):107-125.
    [144]Leandro dos Santos Coelho, Viviana Cocco Mariani.Combining of Chaotic Differential Evolution and Quadratic Programming for Economic Dispatch Optimization with Valve-Point Effect[J]. IEEE Transactions on Power Systems,2006,21(2):989-996.
    [145]Leandro dos Santos Coelho, Joao Guilherme Sauer, Marcelo Rudek. Differential evolution optimization combined with chaotic sequences for image contrast enhancement[J]. Chaos, Solitons&Fracals,2009,42(1):522-529.
    [146]P.K Tripathi, S.Bandyopadhyay,S.K Pal.Mufti-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information Sciences, 2007,177(22):5033-5049.
    [147]Y Wang, Y Yang. Particle swarm optimization with preference order ranking for mufti-objective optimization[J]. Information Science,.2009,179(12):1944-1959.
    [148]Y Wang, Y Yang. Particle swarm with equilibrium strategy of selection for mufti-objective optimization[J]. European Journal of Operational Research,2010,202(1):42-54.
    [149]Z.H. Hu. A mufti-objective immune algorithm based on a multiple-affinity model[J]. European Journal of Operational Research,2010,202(1):60-72.
    [150]J.Y Chen, Q.Z. Lin, Z. Ji. A hybrid immune mufti-objective optimization algorithm[J]. European Journal of Operational Research,2010,204(2):294-302.
    [151]J.Q. GAO, J. Wang. WBMOAIS:A novel artificial immune system for multi-objective optimization [J]. Computers and Operations Research,2010,37(1):50-61.
    [152]S.V Babu, P.G. Chakole, J.H. Syed Mubeen. Multi-objective differential evolution for optimization of adiabatic styrene reactor[J]. Chemical Engineering Science,2005,60(17): 4822-4837.
    [153]L.V. Santana-Quintero, C.A.C. Coello. An algorithm based on differential evolution for multi-objective problems [J].International Journal of Computational Intelligence Research,2005,1(2):151-169.
    [154]S. Kukkonen, J. Lampinen.GDE3:the third evolution step of generalized differential evolution[C]. In:Proceedings of the IEEE congress on evolutionary computation, Edinburgh, 2005.443-450.
    [155]张明明,赵曙光,王旭.一种自适应多目标离散差分进化算法[J].计算机工程与应用,2009,45(26):16-20.
    [156]苗世清,高岳林.求解0/1背包问题的离散差分进化算法[J]小型微型计算机系统,2009,30(9):1828-1830.
    [157]贺毅朝,寇应展,陈致明.求解多选择背包问题的改进差分演化算法[J].小型微型计算机系统,2009,28(9):1682-1685.
    [158][139]吴亮红,王耀南,陈正龙.求解混合整数非线性规划问题的改进差分进化算法[J].小型微型计算机系统,2007,28(4):666-669.
    [159]X.H. Yuan, A.J. Su, H. Nie, et al. Application of enhanced discrete differential evolution approach to unit commitment problem[J]. Energy Conversion and Management,2009,50(9):2449-2456
    [160]Storn R, Price K. Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space[J]. Technical Report, International Computer Science Institute, Berkley,1995,10(3):105-108.
    [161]Storn R, Price K. Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization,1997, 11(4):341-359.
    [162]J.P.Chiou and F.S Wang.A hybrid method of differential evolution with application to optimal control problems of a bioprocess system[C].in Proc.IEEE Evol, Comput.Conf,1998,627-632.
    [163]Wang, F. S. and J.P.Chiou. Optimal control and optimal time location problems of differential-algebraic system by differential evolution [J]. Ind & Eng,chem.,Research,1997,36(12):5348-5357
    [164]Wang, F. S,Jing, C.H.,and Tsao, GT. Fuzzy-decision-making problems of fuel ethanol production using a genetically engineering yeast[J].Ind.& Eng. Chem. Research,37 (8) (1998)3434-3443.
    [165]Lin Yung-Chien,Wang Feng-sheng, Huang Kao-shing. A hybrid method of evolutionary algorithms for mixed-integer non-linear optimization problems[C]. IEEE Proceeding of Evolutionary Computation. Piscataway,1999,2159-2166.
    [166]Lin Yung-Chien,Huang Kao-Shing, Wang Feng-sheng. Plant scheduling and planning using mixed-integer hybrid differential evolution with multiplier updating [C]. IEEE Proceeding of Evolutionary Computation. Piscataway,2000,593-600.
    [167]Mesut E.Baran, Felix F.Wu.Network reconfiguration in distribution systems for loss reduction and load balancing [J]. IEEE Trans.on Power Delivery,1989,4(2):1401-1407.
    [168]2002,26(2):41-48.李晓明,黄彦浩,尹项根.基于改良策略的配电网重构遗传算法[J].中国电机工程学报,2004,24(2):50-54.
    [169]李振坤,陈星莺,余昆等.配电网重构的混合粒子群算法[J].中国电机工程学报,2008,28(31):35-41.
    [170]麻秀范,张粒子.基于十进制编码的配网重构遗传算法[J].电工技术学报,2004,19(10):65-69.
    [171]Qin Y, Wang J, Gui W, et al. Particle clonal genetic algorithm using sequence coding for solving distribution network reconfiguration [C].The 9th International Conference for Young Computer Scientists. Zhang Jiajie, China:China Computer Federation,2008:1807-1812.
    [172]Wu Q, Cheng H, Zhang X, et al. Random spanning tree based improved GA for distribution network reconfiguration [C].Asia-Pacific Power and energy engineering conference. Wuhan, China:Wuhan University, IEEE Power and Energy Society, Chinese Society for Electrical Engineering, Scientific Research Publishing,2009:1-4.
    [173]李振坤,陈星莺,余昆等.配电网重构的混合粒子群算法[J].中国电机工程学报,2008,28(31):35-41.
    [174]卢开澄.卢华明.图论及其应用[M].北京:清华大学出版社,1995:45-48.
    [175]Lin W M, Cheng F S,Tsay M T. Distribution feeder reconfiguration with refined genetic algorithm[J]. IEEE Proceedings-Generation, Transmission and Distribution, 2000,147(6):349-354.
    [176]M.J.D.Powell.Algorithms for nonlinear constraints that use Lagrangian functionsfJ]. Math.Programming, Vol.14, pp.224-248,1978.
    [177]丁明,郭学凤.含多种分布式发电的弱环配电网三相潮流计算[J].中国电机工程学报,2009,29(13):35-40.
    [178]邹必昌,李涛,唐陶波,含分布式发电以提高供电电压质量为目的的配电网重构研究[J].电气应用,2011,30(12):23-26.
    [179]H.C.Cheng and C.C.Kou.Network work reconfiguration in distribution systems using simulated annealing [J], Elect.Power Syst.Res.vol.29, pp227-3-238, May 1994.
    [180]束洪春.配电网故障选线[M].北京:机械工业出版社2008年.
    [181]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9):72-76.
    [182]吴湘淇.信号、系统与信息处理[M].北京:电子工业出版社,1999.
    [183]李森,宋国兵,康小宁等.基于时域下相关分析法的小电流接地故障选线[J].电力系统保护与控制,2008,36(13):15-19
    [184]Hingorani, N.G."Introducing custom Power."[J]. IEEE Spectrum,32(6),1995, PP.41-48.
    [185]Wang Ke xing:Song Zhengxiang;ChenDegui;WangJianhua:GengYingsan:" Digital identification of voltage sag in distribution system" [C]. Power System Technology, 2002.International Conference,2002, vol.1, PP.459-463.
    [186]Beeker C, Braun W et al.Proposed chapter 9 for Predicting voltage sags(dips)in revision to IEEE Std.493, the Gold Book[J]. IEEE Transactions on Industry Applications,1994, 30(3):805-821.
    [187]Bollen M H J.Method of critical distanecs for stochastic assessment of voltage sags[J].IEE proceedings-Generation, Transmission and Distribution,1998,145(1):70-76.
    [188]Bollen M H J.Fast assessmen methods for voltage sags in distribution system[J].IEEE Transaction on industry Applications,1996,32(6):1480-1487.
    [189]Bollen M H J, Jenkins P W.Analysls and consequences of phase jump associated with a voltage sag[C].Power System Computation Conferenees, Dresden, Germany,1996.
    [190]Wang K, Song Z X, Chen DG et al.Digital identification of voltage sag in distribution system[C].Proeeedings of international Conferenee on Power system Technology, Kunming, China,2002.
    [191]Le T, Lamoree J, Me Granaghan M et al. distribution system voltage sags:interaction with motor and drive loads[C].Proeeedings of IEEE/PES Transmission and Distribution Conference, Chicago, USA,1994.
    [192]Yin Y X, Wu AY, Blackburn T.investigation of electric drive system responses to lightning related voltage sags[C].Record of Annual PulP and Paper Industry Technical Conference, Seattle, USA,1999.
    [193]Bollen M H J, YalcinkayaG, Pellis J et al.A voltage sag study in a large Industrial distribution system [C].Reeord of the 31th IEEE Industry Applications Conference, San Diego, USA,1996.
    [194]Won D J, Chung I Y, Kim J M, et al. A new algorithm to locate power-quality event source with improved realization of distributed monitoring scheme[J]. IEEE Trans on Power Delivery,2006,21(3):1641-1646.
    [195]李勋,龚庆武,肖辉,邹必昌.基于相关分析匹配度的配电网故障定位[J].电力系统自动化,2012,36(1):90-94.
    [196]钱军.考虑分布式发电的配电网综合负荷建模方法研究[D].长沙,湖南大学,2010.
    [197]章健.电力系统负荷模型与辨识[M].北京:中国电力出版社,2007.
    [198]王建勋,吕群芳,刘会金.含分布式发电的配电网潮流快速直接算法[J].电力自动化设备,2011,31(2):17-21.
    [199]张波.电压暂降特征提取与扰动原因分析[D].北京:中国电力科学研究院,2004.
    [200]Lin W M, Cheng F S,Tsay M T.Distribution feeder reconfiguration with refined genetic algorithm[J].IEEE Proceedings-Generation,Transmission and Distribution, 2000,147(6):349-354.
    [201]陈鹏,滕欢,滕福生.故障信息不足时配电网故障定位的方法[J].电力系统自动化,2003,27(10):71-72.
    [202]陈竟成,徐德超,于尔铿.配电网故障恢复系统[J].电力系统自动化,2000,24(4):46-51.
    [203]Econnect.Assessment of islanded operation of distribution networks and measures for protection. DTI/Pub URN 01/1119.Econnect:2001.
    [204]IEEE Std1547 IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.2003.
    [205]BOLLEN M H, SUN Y, AULT G W. Reliability of Distribution Networks with DER Including Intentional Islanding[C]. International Conference on Future Power Systems, Amsterdam, Netherlands,2005.
    [206]Rajamani K, Hambarde U K. Islanding and load shedding schemes for captive power plants [J].IEEE Trans Power Delivery,1999,14:805-809.
    [207]Chowdhury S P, Chowdhury S, Ten C F, et al. Operation and control of DG based Power Island in smart grid environment [C]. In:20th International Conference and Exhibition on Electricity Distribution. Prague,2009 June 8-11.
    [208]Zeineidin H, EI-Saadany E F, Salama M M A. Intentional islanding of distribution generation[C]. In:IEEE Power Engineering Society General Meeting.San Francisco. CA: IEEE,2005.1496-1502.
    [209]Fuangfoo P, Lee W J, Kuo M T. Impact study on intentional islanding of distributed generation connected to a radial sub-transmission system in Thailand's electric power system[J]. IEEE Trans Ind Appl,2007,43:1491-1498.
    [210]Atwa Y M, EI-Saadany E F. Reliability evaluation for distribution system with renewable distributed generation during islanded mode of operation[J].IEEE Trans Power Syst,2009,24: 572-581.
    [211]王旭东,林济铿.基于网络化简的含分布式发电的配电网可靠性分析[J].电力系统自动化,2010,34:38-43.
    [212]Caldon R, Stocco A, Turri R. Feasible of adaptive intentional islanding operation of electric utility systems with distributed generation[J]. Electr Power Syst Res,2008,78:2017-2023.
    [213]刘传铨,张焰.计及分布式发电的配电网供电可靠性[J].电力系统自动化,2007,31:46-49.
    [214]易新,陆于平.分布式发电条件下的配电网孤岛划分算法[J].电网技术,2006,30:49-54
    [215]丁磊,潘贞存,丛伟.基于有根树的分布式发电孤岛搜索[J].中国电机工程学报,2008,28:62-67.
    [216]Mao Yiming, Miu K N. Switch placement to improve system reliability for radial distribution system with distributed generation[J]. IEEE Trans Power Syst,2003,18: 1346-1352.
    [217]Baran M E, Wu F F. Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing [J].IEEE Trans on Power Delivery,1989,4(2):1401-1407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700