基于概率潮流的间歇性电源优化配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和科技的进步,人类对能源需求日益增加的同时,对环境保护也越来越重视,基于可再生清洁能源的风力发电(Wind Power Generation, WG)、太阳能光伏电池(Photovoltaic, PV)等新能源发电具有节能减排等优点,因此得到了广泛的关注和应用。但由于这类电源的出力受自然气象条件的影响,具有明显的间歇性和随机波动性,当其并网运行后会给系统带来更多新的不确定因素,降低系统的安全可靠性。因此本论文深入研究了考虑多风电场风速相关性的概率潮流及风电的优化配置;基于出力互补性的分布式风电、太阳能光伏电池的优化配置;以及考虑无功补偿影响的间歇性分布式电源综合优化配置。具体研究工作如下:
     1、针对不同风电场风速之间存在相关性,提出了一种考虑风速相关性的概率潮流模拟计算方法。在假设风电场风速满足正态分布的基础上,通过采用随机抽样技术和线性变换,运用蒙特卡罗模拟法进行了考虑风速相关性的概率潮流计算。基于异步发电机的稳态等值电路,在潮流计算中提出了一种描述其吸收无功的变系数二次多项式模型。分析了不同风速相关性对风电场并网点电压的概率密度和相关支路传输功率的概率分布的影响,以及考虑相关性后对风电场并网点无功补偿容量的配置。计算结果表明,在不同的风速相关性情况下,风电场并网节点电压及距风电场较近的支路潮流概率分布变化较大。
     2、在随机变量的半不变量基础上,提出并推导了一种考虑风速相关性的概率潮流解析算法,即通过引入多个相互独立的随机变量,并根据各个风电场风速的相关系数,将其余风电场风速拟合成参考风电场风速与引入的随机变量之和,然后再将风速离散化,计算各种风速组合下的系统潮流及其概率,最后再采用VonMises函数求得所有风电场风速组合下的系统概率潮流。在假设风速满足正态分布时,通过与考虑风速相关性的概率潮流模拟法所求得的结果进行比较,验证了此解析算法的有效性和准确性。在进一步将此解析模型用来求解各风电场风速服从Weibull分布时,分别采用不同型号的风力发电机,并计算其在风速低度相关、中度相关、强正相关和强负相关下的系统概率潮流。计算结果表明,风力发电机的型号参数不同时,系统概率潮流亦会发生明显的变化。
     3、在考虑风速相关性的概率潮流解析法的基础上,对风电场进行优化配置分别在3种不同的优化目标函数下,即系统最大风电安装容量配置、风电场经济运行效益最优配置和风电场无功优化配置,以风电场并网节点电压越限概率为机会约束条件,研究了不同型号的风力发电机,以及各风电场风速的相关性不同时,3种目标函数下的风电最优配置方案和无功补偿最优方案。优化结果表明,不同的风力发电机型号、不同的风速相关性情况下,其最优配置方案会出现较大的差别。
     4、通过对间歇性电源出力在时域和地域上的互补性分析,构建了基于这种互补性的间歇性分布式电源优化配置模型。即根据分布式风电、太阳能光伏电池出力在典型日内各个时段内的概率分布情况,结合系统负荷功率在不同时段内的分布水平,将典型日划分为多个时段,以整个时段内间歇性分布式电源售电、投资、降损、废气减排以及系统电压水平综合最优为目标函数,并采用机会约束规划方法对每个时段进行处理。计算结果表明,系统负荷功率和间歇性DG输出功率在整个时空范围内的概率分布差异性和互补性的变化会严重影响间歇性DG的最优配置方案和系统运行状况。
     5、由于间歇性DG和无功补偿电容都能改善系统电压水平和降低网损,而分别对间歇性DG和无功补偿电容进行独立的优化配置时,其最优配置方案并不能取得令人满意的效果。因此采用机会约束规划方法,对间歇性DG和补偿电容进行综合优化配置,能够充分利用补偿电容来改善系统概率潮流和提高节点电压期望值及其处于正常范围内的概率。计算结果表明,该方法降低了间歇性DG和补偿电容的总投资成本,取得了系统运行的经济效益、环境效益以及电压质量的综合最优。
Coupled with economic development and scientific advancement, human have placed greater stress on environmental protection while trying to meet the increasing demand of energy. New energy resources such as WG, PV, based on renewable clean resources, have thus received wide attention and application for their capacity to conserve energy and reduce gas emission. However, with obvious intermittence and randomicity of power output in consequence of natural climate changes, more uncertain factors are brought into system after integration decreasing stability and reliability. As a result, this paper are dedicated to probabilistic power flow and optimal allocation of WGs considering the correlation of wind velocity in various wind farms; optimal allocation of WGs and PVs based on output complementary; and comprehensive optimal allocation of intermittent DGs considering reactive compensation. The details are as follow:
     1. As for the correlation of wind velocity in various wind farms, this paper has put forward a simulation calculation method considering this correlation. Assuming the wind velocity in wind farms are all in line with normal distribution, probabilistic power flow taking wind velocity correlation into account can be calculated through random sampling technology, linear transformation and Monte Carlo simulation method. And on the basis of steady state equivalent circuit of induction generator, a coefficient-variable quadratic polynomial model is proposed to describe its reactive consumption in power flow calculation. The influence of different wind velocity correlations is analyzed on probabilistic density of integration voltage and probabilistic distribution of transmission power on related branches, and also the allocation of reactive compensation capacity at integration point. Results have demonstrated relatively considerable changes occurred in integration voltage and power probabilistic distribution on branches closer to wind farms under the circumstance of different correlations.
     2. With introduction of semi-invariant random variables, an analytical algorithm of probabilistic power flow considering correlation is proposed in this paper. In other words, several independent random variables are introduced in the first place. Then, according to those correlation coefficients of wind velocity in each wind farm, the wind velocity in the rest wind farms are fitted as the sum of that of a reference wind farm and the introduced random variables. After discretizing wind velocity, system power flow and its probability of different wind velocity combinations are worked out. Finally, with Von Mises function, the system probabilistic power flow under of all wind velocity combinations can be figured out. Assuming the wind velocity in wind farms are all in line with normal distribution and making comparison to the results of the simulation method considering wind velocity correlation, the validity and accuracy of this analytical algorithm are testified. Further this analytical model in the solution when wind velocity in each wind farm is under Weibull distribution, with different types of wind-fueled generator, calculation of system probabilistic power flow under low, median, strong positive and strong negative correlations are conducted. And the results have shown remarkable changes in system probabilistic power flow in compliance with parameters of different WGs.
     3. Based on the probabilistic power flow analytic algorithm considering wind velocity correlation proposed above, optimal allocation of wind farms is proposed. Under three different optimization objective functions-allocation for system maximum wind power installation capacity, allocation for optimal economic operation of wind farms and allocation for optimal reactive compensation of wind farms, research on different types of WGs are conducted setting voltage limitation violation probability at integration point as constraints. Besides, the optimal allocation scheme and compensation scheme of three objective functions under different correlations between all the wind farms. The optimization has demonstrated relatively remarkable changes in optimal scheme due to the difference of WG and wind velocity correlations.
     4. Complementarity analysis of the power output of intermittent DG on time domain and regional domain has given birth to its optimal allocation model. Given the probabilistic distribution of power output of DG and PV in each period of a typical day and the distribution level of system load in different periods, a typical day is divided into many parts. Then, an objective function aimed at comprehensive optimization of electricity sale, investment, line loss, gas emission and system voltage in an entire period is established with opportunity-constrained planning method applied in each part. The results have shown the great impact that difference and complementarity of the probabilistic distribution of system load and intermittent DGs' power output in the whole time-and-space area have on the optimal allocation scheme of DG and system operation.
     5. Intermittent DG and reactive compensating capacitor can both help to improve system voltage and reduce network loss, nevertheless, separate independent allocations of them have hardly turned out to be satisfying. In order to solve this problem, the comprehensive optimization of DG and reactive compensating capacitor has been conducted through opportunity-constrained planning method, which has taken full advantage of compensating capacitor to improve system probabilistic power flow, raise expectation of node voltage and increase its probability of remaining in the normal scope. Results have favored this method for reducing overall investment cost of intermittent DG and compensating capacitor and achieving a comprehensive optimization of economy, environment and voltage quality in operation.
引文
[1]中国电力企业联合会.全国电力工业统计快报(2011年).2012.1
    [2]张博庭.水电建设的生态环境影响与作用.电网与清洁能源,2011,27(7):1-6
    [3]郭瑞,黄玉臣.水电能源开发的两面性.科技信息,2008,35:748-750
    [4]李海英,冯顺新,廖文根.全球气候变化背景下国际水电发展态势,中国水能及电气化,2010,70(10):29-37
    [5]D.韦努戈帕尔,徐德辉.水电工程为环境保护让路,水利水电快报,2004,25(2):21-22
    [6]邹树梁,邹肠.日本福岛第一核电站核事故对中国核电发展的影响与启示.南华大学学报,2011,12(2):1-5
    [7]张力.日本福岛核电站事故对安全科学的启示.中国安全科学学报,2011,21(4):3-6
    [8]白云生,王亚坤.日本福岛核事故将对我国核电产业产生六大影响.中国核工业,2011,(3):12-15
    [9]罗上庚.核废物的安全和环境影响.安全与环境学报,2001,1(2):16-20
    [10]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施.中国电机工程学报,2010,30(25):1-9
    [11]魏晓霞.我国大规模风电接入电网面临的挑战.中国能源,2010,32(2):19-21
    [12]胡学浩,周孝信,白晓民,等.极大规模光伏发电在我国的发展前景展望.科技导报,2004,11:4-8
    [13]王献敏,马勇飞,王沧海,等.大规模光伏发电并网技术问题的探讨.科技信息,2011,23:371
    [14]国家电力监管委员会监管公告.风电安全监管报告(2011年).2011.11
    [15]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81
    [16]张鹏,赵喜,尹柏清,等.大规模运行风机脱网事故调查分析.内蒙古电力技术,2010,28(2):1-4
    [17]高赐威,何叶,胡荣.考虑大规模风电接入的电力规划研究.电网与清洁能源,2011,27(10):53-59
    [18]赵平,严玉廷.并网光伏发电系统对电网影响的研究.电气技术,2009,3: 41-44
    [19]魏晓霞,刘士玮.国外分布式发电发展情况分析及启示.能源技术经济,2010,22(9):58-61
    [20]程军照,李澍森,冯宇,等.发达国家微网政策及其对中国的借鉴意义.电力系统自动化,2010,34(1):64-68
    [21]黄东风.分布式能源发展的影响因素分析.能源工程,2005,1:7-10
    [22]宋永华,杨霞.以智能电网解决21世纪电力供应面临的挑战.电力技术经济,2009,21(6):1-8
    [23]谷永刚,王琨,张波.分布式发电技术及其应用现状.电网与清洁能源,2010,26(6):38-43
    [24]李鹏,张玲,王伟,等.微网技术应用与分析.电力系统自动化,2009,33(20):109-115
    [25]王守相,王慧,蔡声霞.分布式发电优化配置研究综述.电力系统自动化,2009,33(18):110-115
    [26]陈树勇,宋书芳,李兰欣,等.智能电网技术综述.电网技术,2009,33(8):1-7
    [27]陈海焱.含分布式发电的电力系统分析方法研究:[华中科技大学博士学位论文].武汉:华中科技大学,2008,3-5
    [28]任东明.中国可再生能源配额制和实施对策探讨.电力系统自动化,2011,35(22):25-28
    [29]赵勇强,时璟丽,高虎.中国可再生能源发展状况、展望及政策措施建议.中国能源,2011,33(4):5-9
    [30]孟宪淦.中国光伏发电的政策和市场.电网与清洁能源,2011,27(10):1-3
    [31]Larsson A. Flicker emission of wind turbines caused by switching operations. IEEE Transactions on Energy Conversion,2002,17 (1):119-123
    [32]王敏,丁明.含分布式电源的配电系统规划.电力系统及其自动化学报,2004,16(6):5-8,23
    [33]胡泽春,王锡凡,张显,等.考虑线路故障的随机潮流.中国电机工程学报,2005,25(24):26-33
    [34]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响.电力系统自动化,2004,28(16):56-60
    [35]Borkowska B. Probabilistic load flow. IEEE Transactions on Power Apparatus and Systems,1974,93 (3):752-755
    [36]Allan R N, Al-shakarchi M R G. Probabilistic techniques in AC load flow analysis. Proceedings of the Institution of Electrical Engineers,1977,124(2): 154-160
    [37]黄进安,吴惟静.保留潮流方程非线性的电力系统概率潮流计算.电力系统自动化,1986,10(6):3-12
    [38]林海源.交流模型下电力系统概率潮流计算.电力自动化设备,2006,26(6):53-56
    [39]Su C L. Probabilistic load-flow computation using point estimate method. IEEE Transactions on Power Systems,2005,20(4):1843-1851
    [40]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算.电网技术,2001,25(11):10-22
    [41]Leite da Silva A M, Allan R N, Soares S M, et al. Probabilistic load flow considering network outages. In:IEE Procceedings Conference on Generation, Transmission and Distribution, Part C,1985,132(3):139-145
    [42]Sanabria L A, Dillon T S. Stochastic power flow using cumulants and Von Mises functions. Electrical Power and Energy Systems,1986,8 (1):47-60
    [43]Allan R N, Leite da Silva A M, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Transactions on Power Apparatus and Systems,1981,100 (5):2539-2546
    [44]Tian W D, Sutanto D, Lee Y B, et al. Cumulant based probabilistic power system simulation using laguerre polynomials. IEEE Transactions on Energy Conversion,1989,4 (4):567-574
    [45]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用.中国电机工程学报,2000,20(3):26-29
    [46]张节潭,程浩忠,姚良忠,等.分布式风电源选址定容规划研究.中国电机工程学报,2009,29(16):1-7
    [47]Allan R N, Grigg C H, Newey D A, et al. Probabilistic power-flow techniques extended and applied to operational decision making. Proceedings of the Institution of Electrical Engineers,1976,123(12):1317-1324
    [48]Hatzaigyrion N D, et al. Probabilistic load flow for power system planning application. Modeling, Simulation and Control,1987,12(1):1455-1459
    [49]Inoue T, et al. Redundant measurement selection using stochastic load flow. Electric Engineering in Japan,1983,103 (1):1175-1181
    [50]Trmura Y, et al. State estimation allocation using stochastic load flow. Proceedings 7th PSCC, Lausnne,1981,10 (4):1224-1229
    [51]Maliszaw ski R M, Chan M. Application of probabilistic transfer capability analysis in transmission system performance studies. CIGRE, Paper 38.01, Paris,1988
    [52]Moti H, et al. VAR allocation using stochastic load flow. IFAC Symposium on Power Systems and Power Plant Control, Beijing,1986
    [53]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法.电力系统自动化,2009,33(21):32-35,81
    [54]胡金磊,张尧,郭力,等.概率潮流分析中节点电流和PV节点无功功率的均值和协方差计算.电网技术,2007,31(12):52-56
    [55]胡金磊,张尧,李聪.交直流电力系统概率潮流计算.电网技术,2008,32(18):36-40
    [56]刘怡芳,张步涵,李俊芳,等.考虑电网静态安全风险的随机潮流计算.中国电机工程学报,2011,31(1):59-64
    [57]王锡凡,王秀丽.电力系统的随机潮流分析.西安交通大学学报,1988,22(3):87-97
    [58]Schilling M Th, Leite da Silva A M, Billinton R, et al. Bibliography on power system probabilistic analysis. IEEE Transactions on Power Systems,1990,5 (1):1-11
    [59]宋晓通,谭震宇.基于最优抽样与选择性解析的电力系统可靠性评估.电力系统自动化,2009,33(5):29-33
    [60]崔雅丽,别朝红,王锡凡.输电系统可用输电能力的概率模型及计算.电力系统自动化,2003,27(14):36-40
    [61]别朝红,王锡凡.蒙特卡罗法在评估电力系统可靠性中的应用.电力系统自动化,1997,21(6):68-75
    [62]王成山,谢莹华,崔坤台.基于区域非序贯仿真的配电系统可靠性评估.电力系统自动化,2005,29(14):39-43
    [63]Ei-Khattam W, Hegazy Y G, Salama M M A. Investigating distributed generation systems performance using Monte Carlo simulation. IEEE Transactions on Power Systems,2006,21 (2):524-532
    [64]Caramia P, Carpinelli G, Pagano M, et al. Probabilistic three-phase load flow for unbalanced electrical distribution systems with wind farms. IET Renewable Power Generation,2007,1 (2):115-122
    [65]ALLAN R N, AISHAKARCHAI M. Probabilistic A. C.Load Flow. Proceedings of the Institution of Electrical Engineers,1976,123 (6):531-536
    [66]SOBIERAJSKIMA. Method of stochastic load flow calculation. Archivfiir Elektrotechnik,1978,60 (2):37-40
    [67]张建芬,王克文,宗秀红,等.几种概率潮流模型的准确性比较分析,郑州 大学学报(工学版),2003,24(4):32-36
    [68]Zhang Pei, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion. IEEE Transactions on Power Systems,2004,19 (1):676-682
    [69]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算.电力系统自动化,2005,29(24):39-44
    [70]Hu Zechun, Wang Xifan. A probabilistic load flow method considering branch outages. IEEE Transactions on Power Systems,2006,21 (2):507-514
    [71]Richard Von Mise. Mathematical theory of probability and statistics. Academic Press, New York and London,1964
    [72]J M Morales, J P Ruiz. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems,2007,22(4):1594-1601
    [73]E V Rosenblueth. Two-point estimates in probabilities. Applied Mathematical Modelling,1981,5 (5):329-335
    [74]H P Hong. An efficient point estimate method for probabilistic analysis. Reliability Engineering and System Safety,1998,59(3):261-267
    [75]Chun-Lien Su, Chan-Nan Lu. Two-point estimate method for quantifying transfer capability uncertainty. IEEE Transactions on Power Systems,2005,20 (2):573-579
    [76]钱科军,袁越,石晓丹,等.分布式发电的环境效益分析.中国电机工程学报,2008,28(29):11-15
    [77]胡骅,吴汕,夏翔,等.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报,2006,26(19):13-19
    [78]A M Berry, D J Cornforth, G Platt. An Introduction to Multiobjective Optimisation Methods for Decentralised Power Planning. In:Power & Energy Society General Meeting, IEEE,2009:1-9
    [79]D J Burke, M. J. O'Malley. Optimal Wind Power Location on Transmission Systems-A Probabilistic Load Flow Approach. In:Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems, 2008:1-8
    [80]Wan Y H, Adelman S. Distributed utility technology cost, performance, and environmental characteristic. United States, National Renewable Energy Laboratory,1995
    [81]Greene N, Hammerschlag R. Small and clean is beautiful:exploring the emissions of distributed generation and pollution prevention policies. Electricity Journal, 2000,13(5):50-60
    [82]董雷,程卫东,杨以涵.含风电场的电力系统概率潮流计算.电网技术,2009,33(16):87-91
    [83]余昆,曹一家,陈星莺,等.含分布式电源的地区电网动态概率潮流计算.中国电机工程学报,2011,31(1):20-25
    [84]别朝红,刘辉,李甘,等.含风电场电力系统电压波动的随机潮流计算与分析.西安交通大学学报,2008,42(12):1500-1505
    [85]雷亚洲,王伟胜,印永华,等.一种静态安全约束下确定电力系统风电准入功率极限的优化方法.中国电机工程学报,2001,21(6):25-28
    [86]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电穿透功率极限计算.中国电机工程学报,2002,22(5):32-35
    [87]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算.电网技术,2002,26(8):8-11
    [88]郑国强,鲍海,陈树勇.基于近似线性规划的风电场穿透功率极限优化的改进算法.中国电机工程学报,2004,24(10):68-71
    [89]王成山,孙玮,王兴刚.含大型风电场的电力系统最大输电能力计算.电力系统自动化,2007,31(2):17-21,31
    [90]G J Vachtsevanos, K C Kalaitzakis. Penetration of wind electic conversion systems into the utility grid. IEEE Trans on Power Apparatus and Systems,1985, 104 (7):1677-1683
    [91]Malatestas P B, Papadopoulos M P, Stavrakakis G S. Modeling and identification of diesel-wind turbines systems for wind penetration assessment. IEEE Transactions on Power Systems,1993,8(3):1091-1097
    [92]Liew S N, Strbac G. Maximising penetration of wind generation in existing distribution networks. IEE Proceedings-Generation, Transmission and Distribution,2002,149 (3):256-262
    [93]Billinton R, Chen H. Determination of the optimum site-matching wind turbine using risk-based capacity benefit factors. IEE Proceedings-Generation Transmission and Distribution,1999,146(1):96-100
    [94]J LTorres, E Prieto, A Garcia, et al. Effects of the model selected for the power curve on the siteeffectiveness and the capacity factor of a pitch regulated wind turbine. Solar Energy,2003,74 (2):93-102
    [95]Roy S. Market Constrained Optimal Planning for Wind Energy Conversion Systems Over Multiple Installation Sites. IEEE Transactions on Energy Conversion,2002,17 (1):124-129
    [96]Roy S. Optimal Planning of Wind Energy Conversion Systems Over an Energy Scenario. IEEE Transactions on Energy Conversion,1997,12 (3):248-254
    [97]Billinton R, Wangdee W. Reliability-Based Transmission Reinforcement Planning Associated With Large-Scale Wind Farmss. IEEE Transactions on Power Systems,2007,22 (1):34-41
    [98]Masoum M.A.S, Mousavi Badejani S.M, Kalantar M. Optimal Placement of Hybrid PV-Wind Systems Using Genetic Algorithm. Innovative Smart Grid Technologies (ISGT),2010:1-5
    [99]El-Khattam W, Bhattacharya K, Hegazy Y, et al. Optimal investment planning for distributed generation in a competitive electricity market. IEEE Transactions on Power Systems,2004,19 (3):1674-1684
    [100]El-Khattam W, Hegazy Y, Salama M M A. An integrated distributed generation optimization model for distribution system planning. IEEE Transactions on Power Systems,2005,20 (2):1158-1165
    [101]Keane A, O'Malley M. Optimal allocation of embedded generation on distribution networks. IEEE Transactions on Power Systems,2005,20 (3): 1640-1646
    [102]Griffin T, Tomsovic K, Secrest D, Law A. Placement of Dispersed Generation Systems for Reduced Losses. In:Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui(HI, USA):2000,1-9
    [103]Kashem M A, Le A D T, Negnevitsky M, et al. Distributed generation for minimization of power losses in distribution systems. In:Proceedings of IEEE Power Engineering Society General Meeting, Jun 18-22,2006, Montreal, Canada,1-8
    [104]Caisheng W, Nehrir M H. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power Systems,2004,19 (4):2068-2076
    [105]王志群,朱守真,周双喜,等.分布式电源接入位置和注入容量限制的研究.电力系统及其自动化学报,2005,17(1):53-57
    [106]郑漳华,艾芊,顾承红,等.考虑环境因素的分布式发电多目标优化配置.中国电机工程学报,2009,29(13):23-28
    [107]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容.电力系统自动化,2006,30(3):38-43
    [108]唐勇俊,刘东,阮前途,等.计及节能调度的分布式电源优化配置及其并行计算.电力系统自动化,2008,32(7):92-97
    [109]Celli G, Pilo F. Optimal distributed generation allocation in MV distribution networks. In:Proceedings of 2001 IEEE Power Engineering Society Meeting, Sydney (Australia),2001,81-86
    [110]Celli G, Pilo F. MV network planning under uncertainties on distributed generation penetration. In:Proceedings of 2001 IEEE Power Engineering Society Summer Meeting, Vol1. July 15-19,2001, Vancouver, Canada: 485-490
    [111]Kim J O, Park S K, Park K W, et al. Dispersed generation planning using improved Hereford ranch algorithm. Electric Power System Research,1998: 678-683
    [112]Gandomkar M, Vakilian M, Ehsan M. A combination of genetic algorithm and simulated annealing for optimal DG allocation in distribution networks. In: Proceeding of IEEE Canadian Conference on Electrical and Computer Engineering,2005:645-648
    [113]刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用.电工技术学报,2008,23(2):103-108
    [114]Kazemi A, Sadeghi M. A Load Flow Based Method For Optimal Location Of Dispersed Generation Units. In:Power Systems Conference and Exposition, 2009, PSCE'09, IEEE/PES:1-5
    [115]Aghaebrahimi M.R, Amiri M. Distributed Generator Placement Techniques Using Artificial Intelligence. In:International Conference on Sustainable Power Generation and Supply,2009, SUPERGEN'09:1-6
    [116]Rahman T.K.A, Rahim S.R.A, Musirin I. Optimal Allocation and Sizing of Embedded Generators. In:Proceedings National Power and Energy Conference, 2004:288-294
    [117]AlHajri M.F, El-Hawary M.E. Optimal Distribution Generation Sizing via Fast Sequential Quadratic Programming. In:Large Engineering Systems Conference on Power Engineering,2007:63-66
    [118]Celli G, Ghiani E, Mocci S, et al. A Multiobjective Evolutionary Algorithm for the Sizing and Siting of Distributed Generation. IEEE Transactions on Power Systems,2005,20 (2):750-757
    [119]Kazemi A, Sadeghi M. Distributed Generation Allocation for Loss Reduction and Voltage Improvement. In:Power and Energy Engineering Conference, 2009, Asia-Pacific:1-6
    [120]Borges C.L.T, Falcao D.M. Impact of Distributed Generation Allocation and Sizing on Reliability, Losses and Voltage Profile. In:Power Tech Conference Proceedings,2003, IEEE Bologna:1-6
    [121]Khoa T.Q.D, Binh P.T.T, Tran H.B. Optimizing Location and Sizing of Distributed Generation in Distribution Systems. In:Power Systems Conference and Exposition,2006, IEEE PES:725-732
    [122]Kazemi A, Sadeghi M. Sitting and Sizing of Distributed Generation for Loss Reduction. In:Power and Energy Engineering Conference,2009, Asia-Pacific: 1-4
    [123]MCKAYM D, BECKMAN R J, CONOVER WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics,1979,21 (2):239-245
    [124]OWEN A B. Controlling correlations in Latin hypercube samples, Journal of the American Statistical Association,1994,89:1517-1522
    [125]IMANRL. Uncertainty and sensitivity analysis for computer modeling applications. In:Proceedings of the Winter Annual Meeting of ASME, November 8-3,1992, Anaheim, CA, USA:153-168
    [126]南京大学数学系.概率统计基础和概率统计方法.北京:科学出版社,1979
    [127]Feijoo A E, Cidras J D. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems. IEEE Transactions on Energy Conversion,1999,14 (4):1582-1588
    [128]范荣奇,陈金富,段献忠.风速相关性对概率潮流计算的影响分析.电力系统自动化,2011,35(4):18-22
    [129]Xie Kaigui, Roy B. Considering wind speed correlation of WECS in reliability evaluation using the time-shifting techniqueJ. Electric Power Systems Research,2009,79 (4):687-693
    [130]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,1989
    [131]Fei Joo A E, Cidras J. Modeling of wind farms in the load flow analysis. IEEE Transactions on Power Systems,2000,15 (1):110-115
    [132]王海超,周双喜,鲁宗相,等.含风电场的电力系统潮流计算的联合迭代方法及应用.电网技术,2005,29(18):59-62
    [133]Lubosny Z. Wind turbine operation in electric power system. New York, USA: Springer Verlag,2003:1-20
    [134]吴义纯,丁明,张立军.含风电场的电力系统潮流计算.中国电机工程学报,2005,25(4):36-39
    [135]VILLAFAFILA R, GALCERAN S, BAKJENSEN B. Probabilistic assessment of wind power production on voltage profile in distribution networks. In: Proceedings of the 9th International Conference on Electrical Power Quality and Utilisation, October 9-11,2007, Barcelona, Spain:394-398
    [136]林元烈.应用随机过程.北京:清华大学出版社,2002
    [137]复旦大学.随机过程.北京:人民教育出版出版社,2002
    [138]Tian W D, Sutanto D, Lee Y B, et al. Cumulant based probabilitstic power system simulation using laguerre polynomials. IEEE Transactions on Energy Conversion,1989,4 (4):567-574
    [139]H Cramer. Numerical Methods of Statistics. Princeton, NJ:Princeton Univ, Press,1946
    [140]王巍,郑祖康.污染分布的Edgeworth展开.数学年刊:A辑,1999,20(6):727-732
    [141]叶江水,王仲刚,陈友良,等.基于前四阶矩的非高斯响应概率密度函数逼近方法研究.后勤工程学院学报,2010,26(1):12-16
    [142]仲雪荣,傅珏生.统计量Sn分布的Edgeworth展开式.苏州大学学报(自然科学版),2010,26(2):23-26
    [143]ASSAFSA, ZIRKLELD. Approximate analysis of nonlinear stochastic systems. INTJ Contro,1976,23 (4):477-492
    [144]朱位秋.随机振动.北京:科学出版社,1992
    [145]Sanabria L A, Dillon T S. Stochastic power flow using cumulants and Von Mises functions[J]. Electrical Power and Energy Systems,1986,8 (1):47-60
    [146]Richard Von Mises. Mathematical theory of probability and statistics. Academic Press, New York and London,1964
    [147]M Madrigal, K Pormambalam, V H Quintana. Probabilistic optimal power flow. In:IEEE Canadian Conference on Electrical and Computer Engineering, 1998,1:385-388
    [148]K W Wang, C T Tse, K M Tang. Algorithm for power system dynamic stability studies taking account the variation of load power. Electrical Power System Research,1998,46 (3):221-227
    [149]吴蓓,张焰,陈闽江.点估计法在电压稳定性分析中的应用.中国电机工程学报,2008,28(25):38-43
    [150]王承煦,张源.风力发电.北京:中国电力出版社,2003
    [151]宫靖远,等.风电场工程技术手册.机械T业出版社,2004
    [152][法]勒吉里雷斯(LeGourieres, D.)风力机的理论与设计.施鹏飞等译,机械工业出版社,1987
    [153]张希良.风能开发利用.化学工业出版社,2005
    [154]李白应,王明,陈二永,等.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究.太阳能学报,1998,19,(3):248-253
    [155]吴义纯.含风电场的电力系统可靠性与规划问题的研究:[合肥工业大学博士学位论文].合肥:合肥工业大学,2006,7-8
    [156]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响.电网技术,2006,30(19):27-30
    [157]Hadjsaid N, Canard J, Dumas F. Dispersed generation impact on distribution networks. IEEE Computer Applications in Power,1999,12 (2):22-28
    [158]Puttgen H, MacGregor P, Lambert F. Distributed generation:semantic hype of the dawn of a new era. IEEE Power and Energy Magazine,2003,1 (1): 22-29
    [159]裴玮,盛鹍,孔力,等.分布式电源对配网供电电压质量的影响与改善.中国电机工程学报,2008,28(13):152-157
    [160]Zhang W Y, Zhu S Z, Zheng J H, et al. Impacts of distributed generation on electric grid and selecting of isolation transformer. In:IEEE/PES Transmission and Distribution Conference and Exhibition:Asia and Pacific, Dalian, China, 2005
    [161]Kashem M A, Le A D T, Negnevitsky M, et al. Distributed generation for minimization of power losses in distribution systems. In:IEEE Power Engineering Society General Meeting, Montreal, Canada,2006
    [162]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究.中国电机工程学报,2007,27(25):25-31
    [163]J V Seguro, T W Lambert. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics,2000,85 (1):75-84
    [164]KARAKISH, CHEDID R B, RAMADAN. Probabibstic performance assessent of autonomous solar-wind energy conversion systems. IEEE Transactions on Engry Conversion,1999,14 (3):766-772
    [165]Blanchard M, Desrochers G. Generation of autocorrelated wind speeds for wind energy conversion System studies. Solar Energy,1984,33 (6):571-579
    [166]Justus C G, Hargraves WR, Mikhail A, et al. Methods for Estimating Wind Speed Frequency Distributions. Journal of Applied Meteorology,1978,17(3): 350-353
    [167]Jangamshetti S H, Rau V G. Site matching of wind turbine generators:a case study. IEEE Trans on Energy Conversion,1999,14(4):1537-1543
    [168]Ross B, Corotis Arden B, Sigl Joel Klein. Probability models of wind velocity magnitude And persistence. Solar energy,1978,20 (6):483-493
    [169]A Oarcia, J L Torres, E Prieto, A de Francisco. Fitting wind speed distributions: A case study. Solar energy,1998,62 (2):139-144
    [170]Anastasios Balouktsis, Dimitrios Chassapis, Thodoris D Karapantsios. A nomogram method for estimating the energy produced by wind turbine generators. Solar energy,2002,72 (3):251-259
    [171]Yacob Mulugetta, Frances Drake. Assessment of solar and wind energy resources in Ethiopia.11. Wind energy. Solar energy,1996,57(4):323-334
    [172]姚国平,余岳峰,王志征.如东沿海地区风速数据分析及风力发电量计算.电力自动化设备,2004,24(4):12-14
    [173]Jangamshetti Suresh H, Rau V. Optimum sitting of wind turbine generators. IEEE trans on Energy Conversion,2001,16 (1):8-13
    [174]吴学光,陈树勇,戴慧珠.最小误差逼近算法在风电场风能资源特性分析中的应用.电网技术,1998,22(7):69-74
    [175]李自应,王明,陈二永,等.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究.太阳能学报,1998,19(3):248-253
    [176]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究.中国电机工程学报,2005,25(10):107-110
    [177]胡泽春,王锡凡.考虑负荷概率分布的随机最优潮流方法.电力系统自动化,2007,31(16):14-18
    [178]刘健,徐精求,董海鹏.配电网概率负荷分析及其应用.电网技术,2004,28(6):67-75
    [179]Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Transactions on Power Delivery,1989,4 (4):1401-1407
    [180]谢建民,邱毓昌,张治源.风力发电机优化选型与云南省风力发电场规划研究.电力建设,2001,22(5):27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700