基于系统—合成生物学的天然产物异源生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物是生物体内产生的具有重要生理功能或生物活性的有机小分子化合物,是许多临床药物的直接或间接来源,在工农业生产中也有广泛应用。天然产物的异源生物合成是具有光明前景的一种生产方式,该领域近年来发展迅速,许多不同类型、不同来源、不同功能的复杂小分子化合物或其中间体已成功在大肠杆菌、酿酒酵母等异源宿主中进行了生物合成。
     天然产物的异源生物合成是合成生物学的重要研究内容,而合成生物学研究又与系统生物学密不可分。合成生物学和系统生物学都是新兴的前沿学科,系统生物学中的许多模型和方法同样适用于合成生物学研究。本文采用基于两者相结合(系统-合成生物学)的策略来初步构建天然产物异源生物合成的in silico研究平台。分别选取红霉素生物合成的关键中间体6-脱氧红霉内酯B (6-deoxyerythronolide B, 6dEB)和紫杉醇生物合成的关键中间体紫杉二烯(taxadiene)等为研究对象,作为聚酮和萜类化合物的代表进行in silico研究平台的初步构建,主要取得了以下成果:
     (1)针对6dEB异源合成产率低的问题(也是目前异源合成普遍存在的问题),采用系统生物学方法分析了6dEB在异源宿主中的最大理论产率,以及为提高产率而可能需要改造的潜在基因位点。理论产率分析结果表明,大肠杆菌是更高效的6dEB异源合成宿主,而葡萄糖是更理想的底物。以大肠杆菌作宿主,葡萄糖为底物,设计了两套算法(FDCA、LMOMA-Based)并用于预测一些可能提高6dEB产率的关键基因改造位点。进一步的计算分析发现,比生长速率、非生长维持能量消耗、比氧吸收速率和比碳源吸收速率是影响6dEB理论产率的关键因素。调节这些因素可使6dEB的产率得到提高。
     (2)前体途径的选择和前体供应的改善是萜类等天然产物异源生物合成的关键问题。本文用in silico的方式回答了萜类异源合成中前体供应途径的选择问题。通过包括理论产率分析和途径热力学分析在内的in silico分析比较,发现1-脱氧木酮糖-5-磷酸(1-deoxylulose 5-phosphate, DXP)途径比甲羟戊酸(mevalonate, MVA)途径在前体供应中更有优势,在萜类异源合成中更具潜力,而大肠杆菌也是更高效的萜类异源合成宿主(与酿酒酵母、枯草芽孢杆菌相比)。通过采用FDCA和LMOMA-Based算法预测了改善萜类前体供应水平的潜在基因改造位点,为构建高效的萜类异源合成宿主提供了理性指导。
     (3)基于上述研究成果,选择大肠杆菌为宿主、DXP途径为前体供应途径,对紫杉醇生物合成途径的关键中间体紫杉二烯进行了异源合成研究。经过上游DXP途径和下游紫杉二烯合成途径的途径工程强化改造,最终在大肠杆菌中得到了目前异源合成紫杉二烯的最高水平,其在生物反应器上的产量达到876±60 mg L-1。该结果表明DXP途径确实具有强大的萜类前体供应潜力,经过途径改造后完全能胜任萜类异源合成的需求。
     (4)由细胞色素P450酶所催化的反应广泛存在于天然产物生物合成途径中。这些酶在异源宿主尤其是大肠杆菌等原核宿主中难以实现高效功能表达,已成为制约紫杉醇等天然产物异源合成的关键瓶颈之一。本文选取了紫杉醇生物合成途径中的首个P450酶(CYP725A4,负责催化紫杉二烯在5α位的羟基化反应)为代表,利用生物信息学方法对其序列进行疏水性和跨膜区分析,构建了其分子进化树,在此基础上用同源建模方法构建了其天然态以及切除N端跨膜区后的三级结构,并对CYP725A4实现功能表达所必需的辅助还原酶也进行了天然态和切除N端跨膜区后的三级结构建模。这些工作为后续的分子工程和功能表达奠定了基础。
     由于所选取的目标化合物具有良好的代表性,所采用的研究方法也具有通用性,因此本文所构建的天然产物合成生物学研究平台也普遍适用于其他天然产物类别的研究,具有良好的普适性。随着系统生物学与合成生物学的发展,该平台也将得到逐步完善并趋于成熟。
Natural products are a large group of bioactive compounds produced by living organisms. Many of them have pharmacological use in drug discovery and development, and even industrial or agricultural use. Biosynthesis of natural products in heterologous hosts has become increasingly attractive due to new culture techniques that allow for large scale production. Various natural products or their key intermediates have been successfully obtained in heterologous hosts such as E. coli and S. cerevisiae.
     Heterologous biosynthesis of natural products becomes a key component of synthetic biology. The research of synthetic biology, however, is highly related to systems biology. Both disciplines are newly developed; the models and methods developed for systems biology are also suitable for the research of synthetic biology. Strategies based on their integration (termed systems-synthetic biology) were performed to construct the in silico platform for natural products heterologous biosynthesis research. The key intermediate in erythromycin and other polyketides biosynthesis, 6-deoxyerythronolide B (6dEB), and the key intermediate in taxol biosynthesis, taxadiene, were selected as the representative compounds for study. The main results were achieved and shown as follows:
     (1) To solve the problem of low yield of 6dEB (as well as other natural products), systems biology methods were used to analyze the theoretical 6dEB yields in heterologous hosts, and in silico efforts were invested onpredicting some potential key gene targets for improving 6dEB biosynthesis. The theoretical capability of different hosts on producing 6dEB was first evaluated by analyzing the maximum theoretical molar yield of 6dEB (MTMY of 6dEB or MTMY6dEB) under the three feasible carbon sources, glucose, propionate, and glycerol. Results support that glucose is the best substrate for 6dEB production from an economic and long-term standpoint, although presently propionate is more favorable in experiment. By comparing with S. cerevisiae and B. subtilis, E. coliis found to be the most efficient heterologous host for 6dEB biosynthesis due to the highest MTMY values under the same conditions. Besides, two strategies including the flux distribution comparison analysis (FDCA) method and the linear minimization of metabolic adjustment-based (LMOMA-Based) method were developed and specifically employed for in silico strain improvement for 6dEB production, and finally we obtained some potential gene targets for future experimental improvement. Further analysis also indicated that the specific growth rate (SGR), the non-growth associated maintenance (NGAM), the specific oxygen uptake rate (SOUR), and the specific carbon source uptake rate (SCUR) are the key factors directly affecting the MTMY of 6dEB production. For instance, increasing the SGR or NGAM decrease the MTMY, while increasing the SOUR or SCUR increase the MTMY. These findings may guide for further experimental improvement of 6dEB yields in practice.
     (2) The selection of precursor provision pathways and the improvement of precursor provision in heterologous hosts are key problems in the research of natural products heterologous biosynthesis. Here, we tried to solve these problems from an in silico standpoint of view. The central precursor of terpenoids, isopentenyl diphosphate (IPP), proceeds via two separate pathways, the 1-deoxylulose 5-phosphate (DXP) pathway and the mevalonate (MVA) pathway, in different organisms. Previous works far support the utilization of the MVA pathway for IPP over the DXP pathway for terpenoid biosynthesis. In this study, however, the MTMY of IPP (MTMYIPP) and the thermodynamic properties of these two pathways were analyzed and compared in silico, and results indicated that DXP is superior to MVA for IPP provision. Despite the organisms, for either glucose or glycerol as sole carbon source, the MTMYIPP produced by DXP pathway is obviously higher than MVA pathway. If both pathways were adopted, the MTMYIPP would be a bit higher than DXP pathway alone, but not better enough to support introducing a foreign pathway into the host due to a higher metabolic burden. Besides, the MTMYIPP values in either S. cerevisiae or B. subtilis are inferior to E. coli’s, regardless of the kinds of carbon sources. Furthermore, FDCA and LMOMA-Based methods were also applied to predict the key gene targets for improving IPP provision in E. coli, which may play a key role in constructing a high-performance heterologous host for terpenoids biosynthesis.
     (3) Based on above results, E. coli was selected as the host, and DXP pathway was determined to be the IPP provision pathway for biosynthesis of taxadiene– the key intermediate during taxol biosynthesis. The pathway engineering strategy was performed to improve taxadiene production in E. coli. Firstly, dxs, idi, and certain isp genes involved in DXP pathway were over-expressed with T7 promoter to generate more IPP; secondly, pathway engineering methods including promoter replacement and codon usage optimization were also performed on downstream taxadiene synthesis pathway (TXDP) for improving taxadiene biosynthesis. Finally, a high specific taxadiene production strain was successfully obtained, and 876±60 mg L-1 taxadiene was achieved in bioreactor. It confirms that the endogenic DXP pathway in E. coli has powerful potential in supplying IPP and thus an excellent choice for taxol as well as other terpenoids heterologous biosynthesis.
     (4) P450 enzymes widely exist in natural products biosynthetic pathways. Difficulties in functional expression of these enzymes in prokaryotic hosts such as E. coli are the bottleneck of research on taxol or other natural products biosynthesis. In this paper, bioinformatic strategies were employed to analyze the hydrophobic profile and the transmembrane helices of CYP725A4 sequence, and a molecular phylogenetic tree of CYP725A4 was constructed. Then, based on the results, the tertiary structures of native and N-terminal truncated CYP725A4 were reconstructed via the homology modeling, and similar operations were performed for native and truncated versions of cytochrome P450 reductase used for the functional expression of CYP725A4. Besides, some strategies for improving the functional expression in heterologous hosts were also outlined. These results may give guidances for ulterior works on molecular engineering and effective functional expression of CYP725A4 or other P450s in heterologous hosts.
     Because of the well representative research targets and the versatility of the research methods, the platform constructed by this work are also suitable for other kinds of natural products biosynthesis research. In future, the platform will get well developed step-by-step with the development of systems biology and synthetic biology.
引文
[1] Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? [J]. J Med Chem, 2008, 51(9): 2589-2599.
    [2] Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years [J]. J Nat Prod, 2007, 70(3): 461-477.
    [3] Pfeifer BA, Khosla C. Biosynthesis of polyketides in heterologous hosts [J]. Microbiol Mol Biol Rev, 2001, 65(1): 106-118.
    [4] Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia [J]. J Am Chem Soc, 1971, 93(9): 2325-2327.
    [5] Cusido RM, Palazon J, Bonfill M, Navia-Osorio A, Morales C, Pinol MT. Improved paclitaxel and baccatin III production in suspension cultures of Taxus media [J]. Biotechnol Prog, 2002, 18(3): 418-423.
    [6] Navia-Osorio A, Garden H, Cusido RM, Palazon J, Alfermann AW, Pinol MT. Production of paclitaxel and baccatin III in a 20-L airlift bioreactor by a cell suspension of Taxus wallichiana [J]. Planta Med, 2002, 68(4): 336-340.
    [7] Schmid G, Hofheinz W. Total synthesis of qinghaosu [J]. J Am Chem Soc, 1983, 105(3): 624-625.
    [8] Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, et al. Total synthesis of taxol [J]. Nature, 1994, 367(6464): 630-634.
    [9] Xu XX, Zhu J, Zhou WS. The sterospecific synthesis of arteannuin B [J]. Chinese Sci Bull, 1983(06):
    [10] Zhou WS, Zhang L, Xu XX. Studies on the Structures and Syntheses of Arteannuin and Related Compounds XVIII. Synthesis of Arteannuin A [J]. Acta Chimica Sinica, 1986(09):
    [11] Ji Y, Bi JN, Yan B, Zhu XD. [Taxol-producing fungi: a new approach to industrial production of taxol] [J]. Sheng Wu Gong Cheng Xue Bao, 2006, 22(1): 1-6.
    [12] Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew [J]. Science, 1993, 260(5105): 214-216.
    [13] Qiu DY, Huang MJ, Fang XH. Isolation of an endophytic fungus associated with Taxus yunnanensisi [J]. Acta Mycologica Sinica, 1994, 13(4): 314-316.
    [14] Yuan J. Taxol-producing Fungi: A New Approach to Industrial Production of Taxol [J]. Chin J Biotech, 2006, 22(1): 1-6.
    [15] Ma YC, Zhao K, Wang SW. Biological diversity of taxol-producing endophytic fungi [J]. J Fungal Res, 2003, 1(1): 28-32.
    [16] Zhou DP, Ping WX, Sun JQ. Study on isolation of taxol producing fungi [J]. J Microbiol Biotechnol, 2001, 21(1): 18-20.
    [17] Li CT, Li Y, Fang ZM. Diversity of endophytic fungi from Taxus cuspidata [J]. J Jilin Agricul Univ, 2004, 26(6): 612-614.
    [18] Zhou DP, Sun JQ, Yu HY. Nodulisporium, a genus new to China [J]. Mycosystema, 2001, 20(2): 277-278.
    [19] Zhao K, Zhou DP, Ping WX. Study on the mutagenesis of Taxol-producing fungus Nodulisporium sylviforme protoplast [J]. China Biotechnol, 2004, 24(9): 64-68.
    [20] Wang JF, Lu HY, Huang YJ, Zheng ZH, Su WJ, Lin SM. A Taxol producing Endophytic Fungus Isolated from Taxus mairei and It's Antitumor Activity [J]. JOURNAL OF XIAMEN UNIVERSITY (NATURAL SCIENCE), 1999(04):
    [21] Roberts SC. Production and engineering of terpenoids in plant cell culture [J]. Nat Chem Biol, 2007, 3(7): 387-395.
    [22] Kirby J, Keasling JD. Biosynthesis of Plant Isoprenoids: Perspectives for Microbial Engineering [J]. Annu Rev Plant Biol, 2009, 60: 335-355.
    [23] Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287(5451): 303-305.
    [24] Schaub P, Al-Babili S, Drake R, Beyer P. Why is golden rice golden (yellow) instead of red? [J]. Plant Physiol, 2005, 138(1): 441-450.
    [25] Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content [J]. Nat Biotechnol, 2005, 23(4): 482-487.
    [26] Li L, Van Eck J. Metabolic engineering of carotenoid accumulation by creating a metabolic sink [J]. Transgenic Res, 2007, 16(5): 581-585.
    [27] Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers [J]. J Exp Bot, 2008, 59(2): 213-223.
    [28] Zhang H, Wang Y, Pfeifer BA. Bacterial hosts for natural product production [J]. Mol Pharm, 2008, 5(2): 212-225.
    [29] Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells [J]. Science, 2006, 313(5788): 848-851.
    [30] Altincicek B, Kollas A, Eberl M, Wiesner J, Sanderbrand S, Hintz M, Beck E, Jomaa H. LytB, a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli [J]. FEBS Lett, 2001, 499(1-2): 37-40.
    [31] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants [J]. Nat Prod Rep, 1999, 16(5): 565-574.
    [32] Gehring AM, Mori I, Walsh CT. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF [J]. Biochemistry, 1998, 37(8): 2648-2659.
    [33] Liu J, Albers MW, Chen CM, Schreiber SL, Walsh CT. Cloning, expression, and purification of human cyclophilin in Escherichia coli and assessment of the catalytic role of cysteines by site-directed mutagenesis [J]. Proc Natl Acad Sci U S A, 1990, 87(6): 2304-2308.
    [34] Liu J, Quinn N, Berchtold GA, Walsh CT. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate [J]. Biochemistry, 1990, 29(6): 1417-1425.
    [35] Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, Meyers E, Fernandes P, Mayerl F. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity [J]. J Antibiot (Tokyo), 1995, 48(9): 997-1003.
    [36] Wilson KE, Flor JE, Schwartz RE, Joshua H, Smith JL, Pelak BA, Liesch JM, Hensens OD. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization [J]. J Antibiot (Tokyo), 1987, 40(12): 1682-1691.
    [37] Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan EC, Mochales S, Hernandez S, Currie SA, Tejera E, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity [J]. J Antibiot (Tokyo), 1987, 40(12): 1677-1681.
    [38] Zweerink MM, Edison A. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. III. Mode of action of difficidin [J]. J Antibiot (Tokyo), 1987, 40(12): 1692-1697.
    [39] Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42 [J]. J Bacteriol, 2006, 188(11): 4024-4036.
    [40] Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase [J]. Proc Natl Acad Sci U S A, 1999, 96(23): 13294-13299.
    [41] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation [J]. Biochem Biophys Res Commun, 1968, 31(3): 488-494.
    [42] Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R. Bacteria produce the volatile hydrocarbon isoprene [J]. Curr Microbiol, 1995, 30(2): 97-103.
    [43] Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis [J]. Appl Microbiol Biotechnol, 2007, 75(6): 1377-1384.
    [44] Mootz HD, Finking R, Marahiel MA. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis [J]. J Biol Chem, 2001, 276(40): 37289-37298.
    [45] Li W, Zhou X, Lu P. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis [J]. Res Microbiol, 2004, 155(8): 605-610.
    [46] Eppelmann K, Doekel S, Marahiel MA. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis [J]. J Biol Chem, 2001, 276(37): 34824-34831.
    [47] Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J]. Nature, 2002, 417(6885): 141-147.
    [48] Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 [J]. Nat Biotechnol, 2007, 25(4): 447-453.
    [49] Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis [J]. Nat Biotechnol, 2003, 21(5): 526-531.
    [50] Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms [J]. Curr Opin Chem Biol, 2003(7):
    [51] Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y, Horinouchi S. A new pathway for polyketide synthesis in microorganisms [J]. Nature, 1999, 400(6747): 897-899.
    [52] Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production [J]. Nat Prod Rep, 2008, 25(4): 656-661.
    [53] Cameron DC, Tong IT. Cellular and metabolic engineering. An overview [J]. Appl Biochem Biotechnol, 1993, 38(1-2): 105-140.
    [54] Dayem LC, Carney JR, Santi DV, Pfeifer BA, Khosla C, Kealey JT. Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli [J]. Biochemistry, 2002, 41(16): 5193-5201.
    [55] Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli [J]. Science, 2001, 291(5509): 1790-1792.
    [56] Pfeifer B, Hu Z, Licari P, Khosla C. Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B [J]. Appl Environ Microbiol, 2002, 68(7): 3287-3292.
    [57] Pfeifer BA, Wang CC, Walsh CT, Khosla C. Biosynthesis of Yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host [J]. Appl Environ Microbiol, 2003, 69(11): 6698-6702.
    [58] Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Muller R. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering [J]. Chem Biol, 2005, 12(3): 349-356.
    [59] Jung WS, Lee SK, Hong JS, Park SR, Jeong SJ, Han AR, Sohng JK, Kim BG, Choi CY, Sherman DH, Yoon YJ. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae [J]. Appl Microbiol Biotechnol, 2006, 72(4): 763-769.
    [60] Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Muller R. Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads [J]. Arch Microbiol, 2006, 185(1): 28-38.
    [61] Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer [J]. J Natl Cancer Inst, 1995, 87(23): 1767-1776.
    [62] Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature [J]. J Natl Cancer Inst, 1999, 91(4): 317-331.
    [63] Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway [J]. Appl Environ Microbiol, 1998, 64(7): 2676-2680.
    [64] Sandmann G, Albrecht M, Schnurr G, Knorzer O, Boger P. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli [J]. Trends Biotechnol, 1999, 17(6): 233-237.
    [65] Lee PC, Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms [J]. Appl Microbiol Biotechnol, 2002, 60(1-2): 1-11.
    [66] Matthews PD, Wurtzel ET. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase [J]. Appl Microbiol Biotechnol, 2000, 53(4): 396-400.
    [67] Kim SW, Keasling JD. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production [J]. Biotechnol Bioeng, 2001, 72(4): 408-415.
    [68] Sandmann G, Romer S, Fraser PD. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants [J]. Metab Eng, 2006, 8(4): 291-302.
    [69] Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control [J]. Nat Biotechnol, 2000, 18(5): 533-537.
    [70] Farmer WR, Liao JC. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli [J]. Biotechnol Prog, 2001, 17(1): 57-61.
    [71] Hemmi H, Ohnuma S, Nagaoka K, Nishino T. Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis [J]. J Biochem, 1998, 123(6): 1088-1096.
    [72] Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method [J]. Biotechnol Bioeng, 2005, 91(5): 636-642.
    [73] Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Shin YC, Keasling JD, Kim SW. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis [J]. Appl Microbiol Biotechnol, 2007, 74(1): 131-139.
    [74] Choi HS, Lee SY, Kim TY, Woo HM. In silico identification of gene amplification targets for improvement of lycopene production [J]. Appl Environ Microbiol, 2010, 76(10): 3097-3105.
    [75] Yoon KW, Doo EH, Kim SW, Park JB. In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli [J]. J Biotechnol, 2008, 135(3): 291-294.
    [76] Alper H, Stephanopoulos G. Uncovering the gene knockout landscape for improved lycopene production in E. coli [J]. Appl Microbiol Biotechnol, 2008, 78(5): 801-810.
    [77] Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene [J]. Trends Biotechnol, 2007, 25(9): 417-424.
    [78] Jin YS, Stephanopoulos G. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli [J]. Metab Eng, 2007, 9(4): 337-347.
    [79] Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate [J]. Biotechnol Bioeng, 2006, 94(6): 1025-1032.
    [80] Alper H, Miyaoku K, Stephanopoulos G. Characterization of lycopene-overproducing E. coli strains in high cell density fermentations [J]. Appl Microbiol Biotechnol, 2006, 72(5): 968-974.
    [81] Vadali RV, Fu Y, Bennett GN, San KY. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli [J]. Biotechnol Prog, 2005, 21(5): 1558-1561.
    [82] Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets [J]. Nat Biotechnol, 2005, 23(5): 612-616.
    [83] Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, Oh DK, Keasling JD, Kim SW. Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition [J]. Biotechnol Prog, 2007, 23(3): 599-605.
    [84] Yuan LZ, Rouviere PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli [J]. Metab Eng, 2006, 8(1): 79-90.
    [85] Meynial-Salles I, Cervin MA, Soucaille P. New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes [J]. Appl Environ Microbiol, 2005, 71(4): 2140-2144.
    [86] Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M. Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways [J]. J Biotechnol, 2008, 135(1): 78-84.
    [87] Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943.
    [88] Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nat Biotechnol, 2003, 21(7): 796-802.
    [89] Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli [J]. PLoS One, 2009, 4(2): e4489.
    [90] Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli [J]. Biotechnol Bioeng, 2006, 95(4): 684-691.
    [91] Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene [J]. Metab Eng, 2009, 11(1): 13-19.
    [92] Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli [J]. Metab Eng, 2007, 9(2): 193-207.
    [93] Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane [J]. Journal of Biological Chemistry, 2008, 283(10): 6067-6075.
    [94] Long RM, Lagisetti C, Coates RM, Croteau RB. Specificity of the N-benzoyl transferase responsible for the last step of Taxol biosynthesis [J]. Arch Biochem Biophys, 2008, 477(2): 384-389.
    [95] Li H, Horiguchi T, Croteau R, Williams RM. Studies on Taxol Biosynthesis: Preparation of Taxadiene-diol- and triol-Derivatives by Deoxygenation of Taxusin [J]. Tetrahedron, 2008, 64(27): 6561-6567.
    [96] Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production [J]. Metab Eng, 2008, 10(3-4): 201-206.
    [97] Frense D. Taxanes: perspectives for biotechnological production [J]. Appl Microbiol Biotechnol, 2007, 73(6): 1233-1240.
    [98] Nims E, Dubois CP, Roberts SC, Walker EL. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering [J]. Metab Eng, 2006, 8(5): 385-394.
    [99] Loncaric C, Merriweather E, Walker KD. Profiling a Taxol pathway 10beta-acetyltransferase: assessment of the specificity and the production of baccatin III by in vivo acetylation in E. coli [J]. Chem Biol, 2006, 13(3): 309-317.
    [100] Dejong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae [J]. Biotechnol Bioeng, 2006, 93(2): 212-224.
    [101] Long RM, Croteau R. Preliminary assessment of the C13-side chain 2'-hydroxylase involved in taxol biosynthesis [J]. Biochem Biophys Res Commun, 2005, 338(1): 410-417.
    [102] Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis [J]. Biotechnol Bioeng, 2005, 89(5): 588-598.
    [103] Jennewein S, Long RM, Williams RM, Croteau R. Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis [J]. Chem Biol, 2004, 11(3): 379-387.
    [104] Chau M, Walker K, Long R, Croteau R. Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5alpha-ol-O-acetyltransferase [J]. Arch Biochem Biophys, 2004, 430(2): 237-246.
    [105] Chau M, Jennewein S, Walker K, Croteau R. Taxol biosynthesis: Molecular cloning and characterization of a cytochrome P450 taxoid 7 beta-hydroxylase [J]. Chem Biol, 2004, 11(5): 663-672.
    [106] Chau M, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2alpha-hydroxylase involved in Taxol biosynthesis [J]. Arch Biochem Biophys, 2004, 427(1): 48-57.
    [107] Besumbes O, Sauret-Gueto S, Phillips MA, Imperial S, Rodriguez-Concepcion M, Boronat A. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol [J]. Biotechnol Bioeng, 2004, 88(2): 168-175.
    [108] Jennewein S, Rithner CD, Williams RM, Croteau R. Taxoid metabolism: Taxoid 14beta-hydroxylase is a cytochrome P450-dependent monooxygenase [J]. Arch Biochem Biophys, 2003, 413(2): 262-270.
    [109] Wheeler AL, Long RM, Ketchum RE, Rithner CD, Williams RM, Croteau R. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells [J]. Arch Biochem Biophys, 2001, 390(2): 265-278.
    [110] Walker K, Croteau R. Taxol biosynthetic genes [J]. Phytochemistry, 2001, 58(1): 1-7.
    [111] Jennewein S, Croteau R. Taxol: biosynthesis, molecular genetics, and biotechnological applications [J]. Appl Microbiol Biotechnol, 2001, 57(1-2): 13-19.
    [112] Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli [J]. Arch Biochem Biophys, 2000, 374(2): 371-380.
    [113] Walker K, Croteau R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli [J]. Proc Natl Acad Sci U S A, 2000, 97(2): 583-587.
    [114] Walker K, Croteau R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from taxus and functional expression in Escherichia coli [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13591-13596.
    [115] Walker K, Ketchum RE, Hezari M, Gatfield D, Goleniowski M, Barthol A, Croteau R. Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis [J]. Arch Biochem Biophys, 1999, 364(2): 273-279.
    [116] Hefner J, Rubenstein SM, Ketchum RE, Gibson DM, Williams RM, Croteau R. Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5alpha-ol: the first oxygenation step in taxol biosynthesis [J]. Chem Biol, 1996, 3(6): 479-489.
    [117] Huang Q, Roessner CA, Croteau R, Scott AI. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol [J]. Bioorg Med Chem, 2001, 9(9): 2237-2242.
    [118] Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J]. Nature Chemical Biology, 2007, 3(5): 274-277.
    [119] Huang KX, Huang QL, Wildung MR, Croteau R, Scott AI. Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway [J]. Protein Expr Purif, 1998, 13(1): 90-96.
    [120] Wildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis [J]. J Biol Chem, 1996, 271(16): 9201-9204.
    [121] Hefner J, Ketchum RE, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production [J]. Arch Biochem Biophys, 1998, 360(1): 62-74.
    [122] Schoendorf A, Rithner CD, Williams RM, Croteau RB. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast [J]. Proc Natl Acad Sci U S A, 2001, 98(4): 1501-1506.
    [123] Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase [J]. Proc Natl Acad Sci U S A, 2001, 98(24): 13595-13600.
    [124] Walker K, Fujisaki S, Long R, Croteau R. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis [J]. Proc Natl Acad Sci U S A, 2002, 99(20): 12715-12720.
    [125] Walker K, Long R, Croteau R. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus [J]. Proc Natl Acad Sci U S A, 2002, 99(14): 9166-9171.
    [126] Walker KD, Klettke K, Akiyama T, Croteau R. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis [J]. J Biol Chem, 2004, 279(52): 53947-53954.
    [127] Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane [J]. J Biol Chem, 2008, 283(10): 6067-6075.
    [128] Blake WJ, Isaacs FJ. Synthetic biology evolves [J]. Trends Biotechnol, 2004, 22(7): 321-324.
    [129] Greber D, Fussenegger M. Mammalian synthetic biology: engineering of sophisticated gene networks [J]. J Biotechnol, 2007, 130(4): 329-345.
    [130] Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology [J]. Annu Rev Genomics Hum Genet, 2001, 2: 343-372.
    [131] Hood L. Computing life: the challenge ahead [J]. IEEE Eng Med Biol Mag, 2001, 20(4): 20.
    [132] Hood L, Perlmutter RM. The impact of systems approaches on biological problems in drug discovery [J]. Nat Biotechnol, 2004, 22(10): 1215-1217.
    [133] Varmar A, Palsson BO. Metabolic Capabilities of Escherichia coli: I. Synthesis of Biosynthetic Precursors and Cofactors [J]. J Theor Biol, 1993, 165(4): 477-502.
    [134] Varmar A, Palsson BO. Metabolic capabilities of Escherichia-coli: 2. Optimal-growth patterns [J]. J Theor Biol, 1993, 165(4): 503-522.
    [135] Calik P, Akbay A. Mass flux balance-based model and metabolic flux analysis for collagen synthesis in the fibrogenesis process of human liver [J]. Med Hypotheses, 2000, 55(1): 5-14.
    [136] Edwards JS, Palsson BO. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions [J]. BMC Bioinformatics, 2000, 1: 1.
    [137] Mahadevan R, Edwards JS, Doyle FJ, 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli [J]. Biophys J, 2002, 83(3): 1331-1340.
    [138] de Jong H, Geiselmann J, Hernandez C, Page M. Genetic Network Analyzer: qualitative simulation of genetic regulatory networks [J]. Bioinformatics, 2003, 19(3): 336-344.
    [139] Finney A, Hucka M. Systems biology markup language: Level 2 and beyond [J]. Biochem Soc Trans, 2003, 31(Pt 6): 1472-1473.
    [140] Funahashi A. [The ERATO Systems Biology Workbench and Systems Biology Markup Language: an integrated environment and standardization for systems biology] [J]. Tanpakushitsu Kakusan Koso, 2003, 48(7): 810-816.
    [141] Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin, II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E,Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models [J]. Bioinformatics, 2003, 19(4): 524-531.
    [142] Wellock C, Chickarmane V, Sauro HM. The SBW-MATLAB interface [J]. Bioinformatics, 2005, 21(6): 823-824.
    [143] Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA, 3rd. E-CELL: software environment for whole-cell simulation [J]. Bioinformatics, 1999, 15(1): 72-84.
    [144] Fell DA. Metabolic control analysis: a survey of its theoretical and experimental development [J]. Biochem J, 1992, 286 ( Pt 2): 313-330.
    [145] Savageau MA. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation [J]. J Theor Biol, 1969, 25(3): 370-379.
    [146] Savageau MA. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions [J]. J Theor Biol, 1969, 25(3): 365-369.
    [147] Savageau MA. Finding multiple roots of nonlinear algebraic equations using S-system methodology [J]. Applied Mathematics and Computation, 1993(55): 187-199.
    [148] Fell DA. Underatanding the Control of Metabolism [J]. Portland Press, 1997:
    [149] Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks [J]. Proc Natl Acad Sci U S A, 2002, 99(23): 15112-15117.
    [150] Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations [J]. Proc Natl Acad Sci U S A, 2005, 102(21): 7695-7700.
    [151] Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q. Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions [J]. Mol Syst Biol, 2006, 2: 2006 0031.
    [152] Palsson B. In silico biology through "omics" [J]. Nat Biotechnol, 2002, 20(7): 649-650.
    [153] Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism [J]. Biophys J, 2002, 83(2): 808-818.
    [154] Kenanov D, Kaleta C, Petzold A, Hoischen C, Diekmann S, Siddiqui RA, Schuster S. Theoretical study of lipid biosynthesis in wild-type Escherichia coli and in a protoplast-type L-form using elementary flux mode analysis [J]. FEBS J, 2010, 277(4): 1023-1034.
    [155] Kurata H, Zhao Q, Okuda R, Shimizu K. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis [J]. BMC Syst Biol, 2007, 1: 31.
    [156] Price ND, Reed JL, Papin JA, Famili I, Palsson BO. Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices [J]. Biophys J, 2003, 84(2 Pt 1): 794-804.
    [157] Famili I, Palsson BO. Systemic metabolic reactions are obtained by singular value decomposition of genome-scale stoichiometric matrices [J]. J Theor Biol, 2003, 224(1): 87-96.
    [158] Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities [J]. Proc Natl Acad Sci U S A, 2000, 97(10): 5528-5533.
    [159] Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction [J]. Nature Protocols, 2010, 5(1): 93-121.
    [160] Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data [J]. Proc Natl Acad Sci U S A, 2007, 104(6): 1777-1782.
    [161] Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information [J]. Mol Syst Biol, 2007, 3: 121.
    [162] Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) [J]. Genome Biol, 2003, 4(9): R54.
    [163] Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli [J]. BMC Genomics, 2011, 12(1): 9.
    [164] Mo ML, Palsson BO, Herrgard MJ. Connecting extracellular metabolomic measurements to intracellular flux states in yeast [J]. BMC Syst Biol, 2009, 3: 37.
    [165] Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Bluthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novere N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasic I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttila M, Klipp E, Palsson BO, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology [J]. Nat Biotechnol, 2008, 26(10): 1155-1160.
    [166] Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism [J]. BMC Syst Biol, 2008, 2: 71.
    [167] Blank LM, Kuepfer L, Sauer U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast [J]. Genome Biol, 2005, 6(6): R49.
    [168] Duarte NC, Herrgard MJ, Palsson BO. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model [J]. Genome Res, 2004, 14(7): 1298-1309.
    [169] Forster J, Famili I, Fu P, Palsson BO, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J]. Genome Res, 2003, 13(2): 244-253.
    [170] Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessieres P, Aymerich S, Fromion V. Reconstruction and analysis of the genetic and metabolic regulatorynetworks of the central metabolism of Bacillus subtilis [J]. BMC Syst Biol, 2008, 2: 20.
    [171] Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data [J]. J Biol Chem, 2007, 282(39): 28791-28799.
    [172] Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis [J]. J Theor Biol, 2000, 203(3): 249-283.
    [173] Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype [J]. Journal of Biological Chemistry, 1999, 274(25): 17410-17416.
    [174] Thiele I, Vo TD, Price ND, Palsson BO. Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants [J]. J Bacteriol, 2005, 187(16): 5818-5830.
    [175] Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery [J]. Genome Res, 2004, 14(5): 917-924.
    [176] Huthmacher C, Hoppe A, Bulik S, Holzhutter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis [J]. BMC Syst Biol, 4: 120.
    [177] Plata G, Hsiao TL, Olszewski KL, Llinas M, Vitkup D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network [J]. Mol Syst Biol, 2010, 6: 408.
    [178] Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens [J]. Nat Biotechnol, 2004, 22(10): 1275-1281.
    [179] Kim TY, Kim HU, Park JM, Song H, Kim JS, Lee SY. Genome-scale analysis of Mannheimia succiniciproducens metabolism [J]. Biotechnol Bioeng, 2007, 97(4): 657-671.
    [180] Tsoka S, Simon D, Ouzounis CA. Automated metabolic reconstruction for Methanococcus jannaschii [J]. Archaea, 2004, 1(4): 223-229.
    [181] Borodina I, Krabben P, Nielsen J. Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism [J]. Genome Res, 2005, 15(6): 820-829.
    [182] Alam MT, Merlo ME, Hodgson DA, Wellington EMH, Takano E, Breitling R, Consortium S. Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor [J]. BMC Genomics, 2010, 11: -.
    [183] David H, Akesson M, Nielsen J. Reconstruction of the central carbon metabolism of Aspergillus niger [J]. Eur J Biochem, 2003, 270(21): 4243-4253.
    [184] Sun J, Lu X, Rinas U, Zeng AP. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics [J]. Genome Biol, 2007, 8(9): R182.
    [185] Andersen MR, Nielsen ML, Nielsen J. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger [J]. Mol Syst Biol, 2008, 4: 178.
    [186] David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans [J]. Genome Biol, 2006, 7(11): R108.
    [187] Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae [J]. BMC Genomics, 2008, 9: 245.
    [188] Oliveira AP, Nielsen J, Forster J. Modeling Lactococcus lactis using a genome-scale flux model [J]. BMC Microbiol, 2005, 5: 39.
    [189] Teusink B, van Enckevort FH, Francke C, Wiersma A, Wegkamp A, Smid EJ, Siezen RJ. In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with those from growth experiments [J]. Appl Environ Microbiol, 2005, 71(11): 7253-7262.
    [190] Becker SA, Palsson BO. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation [J]. BMC Microbiol, 2005, 5: 8.
    [191] Heinemann M, Kummel A, Ruinatscha R, Panke S. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network [J]. Biotechnology and Bioengineering, 2005, 92(7): 850-864.
    [192] Lee DS, Burd H, Liu JX, Almaas E, Wiest O, Barabasi AL, Oltvai ZN, Kapatral V. Comparative Genome-Scale Metabolic Reconstruction and Flux Balance Analysis of Multiple Staphylococcus aureus Genomes Identify Novel Antimicrobial Drug Targets [J]. Journal of Bacteriology, 2009, 191(12): 4015-4024.
    [193] Kjeldsen KR, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network [J]. Biotechnol Bioeng, 2009, 102(2): 583-597.
    [194] Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum [J]. Microbial Cell Factories, 2009, 8: -.
    [195] Jamshidi N, Palsson BO. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets [J]. BMC Syst Biol, 2007, 1: 26.
    [196] Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis [J]. Bmc Systems Biology, 2010, 4: -.
    [197] Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism [J]. Genome Biol, 2007, 8(5): R89.
    [198] Feist AM, Scholten JC, Palsson BO, Brockman FJ, Ideker T. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri [J]. Mol Syst Biol, 2006, 2: 2006 0004.
    [199] Resendis-Antonio O, Reed JL, Encarnacion S, Collado-Vides J, Palsson BO. Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli [J]. PLoS Comput Biol, 2007, 3(10): 1887-1895.
    [200] Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data [J]. J Biol Chem, 2004, 279(38): 39532-39540.
    [201] Sheikh K, Forster J, Nielsen LK. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus [J]. Biotechnol Prog, 2005, 21(1): 112-121.
    [202] Quek LE, Nielsen LK. On the reconstruction of the Mus musculus genome-scale metabolic network model [J]. Genome Inform, 2008, 21: 89-100.
    [203] Selvarasu S, Karimi IA, Ghim GH, Lee DY. Genome-scale modeling and in silico analysis of mouse cell metabolic network [J]. Mol Biosyst, 6(1): 152-161.
    [204] Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BO. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1 [J]. BMC Syst Biol, 4: 140.
    [205] Kim HU, Kim TY, Lee SY. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE [J]. Mol Biosyst, 6(2): 339-348.
    [206] Durot M, Le Fevre F, de Berardinis V, Kreimeyer A, Vallenet D, Combe C, Smidtas S, Salanoubat M, Weissenbach J, Schachter V. Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data [J]. Bmc Systems Biology, 2008, 2: -.
    [207] Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola [J]. Bmc Systems Biology, 2009, 3: -.
    [208] Roberts SB, Gowen CM, Brooks JP, Fong SS. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production [J]. Bmc Systems Biology, 2010, 4: -.
    [209] Islam MA, Edwards EA, Mahadevan R. Characterizing the Metabolism of Dehalococcoides with a Constraint-Based Model [J]. Plos Computational Biology, 2010, 6(8): -.
    [210] Raghunathan A, Shin S, Daefler S. Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis [J]. Bmc Systems Biology, 2010, 4: -.
    [211] Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R. Genome-scale constraint-based modeling of Geobacter metallireducens [J]. Bmc Systems Biology, 2009, 3: -.
    [212] Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling [J]. Applied and Environmental Microbiology, 2006, 72(2): 1558-1568.
    [213] Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 [J]. Plos Computational Biology, 2009, 5(2): -.
    [214] Baart GJE, Zomer B, de Haan A, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes [J]. Genome Biology, 2007, 8(7): -.
    [215] Mazumdar V, Snitkin ES, Amar S, Segre D. Metabolic Network Model of a Human Oral Pathogen [J]. Journal of Bacteriology, 2009, 191(1): 74-90.
    [216] Oberhardt MA, Puchalka J, Fryer KE, dos Santos VAPM, Papin JA. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1 [J]. Journal of Bacteriology, 2008, 190(8): 2790-2803.
    [217] Nogales J, Palsson BO, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory [J]. Bmc Systems Biology, 2008, 2: -.
    [218] Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, dos Santos VAPM. Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology [J]. Plos Computational Biology, 2008, 4(10): -.
    [219] Resendis-Antonio O, Reed JL, Encarnacion S, Collado-Vides J, Palsson BO. Metabolic reconstruction and Modeling of nitrogen fixation in rhizobium etli [J]. Plos Computational Biology, 2007, 3(10): 1887-1895.
    [220] Risso C, Sun J, Zhuang K, Mahadevan R, Deboy R, Ismail W, Shrivastava S, Huot H, Kothari S, Daugherty S, Bui O, Schilling CH, Lovley DR, Methe BA. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens [J]. BMC Genomics, 2009, 10: -.
    [221] Raghunathan A, Reed J, Shin S, Palsson B, Daefler S. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction [J]. Bmc Systems Biology, 2009, 3: -.
    [222] AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF. Genome Scale Reconstruction of a Salmonella Metabolic Model COMPARISON OF SIMILARITY AND DIFFERENCES WITH A COMMENSAL ESCHERICHIA COLI STRAIN [J]. Journal of Biological Chemistry, 2009, 284(43): 29480-29488.
    [223] Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK, Bazzani S, Charusanti P, Chen FC, Fleming RM, Hsiung CA, De Keersmaecker SC, Liao YC, Marchal K, Mo ML, Ozdemir E, Raghunathan A, Reed JL, Shin SI, Sigurbjornsdottir S, Steinmann J, Sudarsan S, Swainston N, Thijs IM, Zengler K, Palsson BO, Adkins JN, Bumann D. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2 [J]. BMC Syst Biol, 5: 8.
    [224] Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang XL, Osterman A, Scott JH, Reed SB, Romine MF, Konopka AE, Beliaev AS, Fredrickson JK, Reed JL. Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation [J]. Plos Computational Biology, 2010, 6(6): -.
    [225] Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of LacticAcid Bacteria [J]. Applied and Environmental Microbiology, 2009, 75(11): 3627-3633.
    [226] Fu PC. Genome-scale modeling of Synechocystis sp PCC 6803 and prediction of pathway insertion [J]. Journal of Chemical Technology and Biotechnology, 2009, 84(4): 473-483.
    [227] Montagud A, Navarro E, de Cordoba PF, Urchueguia JF, Patil KR. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium [J]. Bmc Systems Biology, 2010, 4: -.
    [228] Zhang Y, Thiele I, Weekes D, Li ZW, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B, Osterman A, Godzik A. Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima [J]. Science, 2009, 325(5947): 1544-1549.
    [229] Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery [J]. Mol Syst Biol, 7: 460.
    [230] Navid A, Almaas E. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001 [J]. Mol Biosyst, 2009, 5(4): 368-375.
    [231] Lee KY, Park JM, Kim TY, Yun H, Lee SY. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies [J]. Microb Cell Fact, 9: 94.
    [232] Gonzalez O, Gronau S, Falb M, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D. Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism [J]. Mol Biosyst, 2008, 4(2): 148-159.
    [233] Gonzalez O, Oberwinkler T, Mansueto L, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D. Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis [J]. PLoS Comput Biol, 6(6): e1000799.
    [234] Dal'Molin CGD, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis [J]. Plant Physiology, 2010, 152(2): 579-589.
    [235] Vanee N, Roberts SB, Fong SS, Manque P, Buck GA. A genome-scale metabolic model of Cryptosporidium hominis [J]. Chem Biodivers, 7(5): 1026-1039.
    [236] Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major [J]. Mol Syst Biol, 2008, 4: 177.
    [237] Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY. Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production [J]. Biotechnol J, 5(7): 705-715.
    [238] Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee DY. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement [J]. Microb Cell Fact, 2010, 9: 50.
    [239] Liao YC, Huang TW, Chen FC, Charusanti P, Hong JS, Chang HY, Tsai SF, Palsson BO, Hsiung CA. An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228 [J]. J Bacteriol, 2011:
    [240] Wang Q, Chen X, Yang Y, Zhao X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production [J]. Appl Microbiol Biotechnol, 2006, 73(4): 887-894.
    [241] Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation [J]. Proc Natl Acad Sci U S A, 2007, 104(19): 7797-7802.
    [242] Gonzalez-Lergier J, Broadbelt LJ, Hatzimanikatis V. Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli [J]. Biotechnol Bioeng, 2006, 95(4): 638-644.
    [243] Heinrich R, Schuster S. The Regulation of Cellular Systems [J]. Chapman and Hall, New York, 1996:
    [244] Papp B, Pal C, Hurst LD. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast [J]. Nature, 2004, 429(6992): 661-664.
    [245] Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox [J]. Nat Protoc, 2007, 2(3): 727-738.
    [246] Boghigian BA, Lee K, Pfeifer BA. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae [J]. J Theor Biol, 2009, 262(2): 197-207.
    [247] Lee PC, Momen AZ, Mijts BN, Schmidt-Dannert C. Biosynthesis of structurally novel carotenoids in Escherichia coli [J]. Chem Biol, 2003, 10(5): 453-462.
    [248] Sandmann G. Combinatorial biosynthesis of novel carotenoids in E. coli [J]. Methods Mol Biol, 2003, 205: 303-314.
    [249] Meng HL, Wang Y, Hua Q, Zhang SL, Wang XN. In silico Analysis and Experimental Improvement of Taxadiene Heterologous Biosynthesis in Escherichia coli [J]. Biotechnology and Bioprocess Engineering, 2011, 16(2): 205-215.
    [250] Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation [J]. Appl Environ Microbiol, 2005, 71(12): 7880-7887.
    [251] Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed [J]. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001:
    [252] Yu DG, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5978-5983.
    [253] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.
    [254] Wang Y, Pfeifer BA. 6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli [J]. Metab Eng, 2008, 10(1): 33-38.
    [255] Cunningham FX, Jr., Sun Z, Chamovitz D, Hirschberg J, Gantt E. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942 [J]. Plant Cell, 1994, 6(8): 1107-1121.
    [256] Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli [J]. Metab Eng, 2005, 7(3): 155-164.
    [257] Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria [J]. Metab Eng, 2000(2): 328-338.
    [258] Kovacs K, Zhang L, Linforth RS, Whittaker B, Hayes CJ, Fray RG. Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit [J]. Transgenic Res, 2007, 16(1): 121-126.
    [259] DeLano WL, Lam JW. PyMOL: A communications tool for computational models [J]. Abstracts of Papers of the American Chemical Society, 2005, 230(1): 1371-1372.
    [260] Laskowski RA, Macarthur MW, Moss DS, Thornton JM. Procheck - a Program to Check the Stereochemical Quality of Protein Structures [J]. Journal of Applied Crystallography, 1993, 26(1): 283-291.
    [261] Yoshioka S, Takahashi S, Hori H, Ishimori K, Morishima I. Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450(cam) [J]. European Journal of Biochemistry, 2001, 268(2): 252-259.
    [262] Floudas CA. Computational methods in protein structure prediction [J]. Biotechnology and Bioengineering, 2007, 97(2): 207-213.
    [263] Carrera J, Rodrigo G, Jaramillo A. Model-based redesign of global transcription regulation [J]. Nucleic Acids Res, 2009, 37(5): e38.
    [264] Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K. Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production [J]. J Biotechnol, 2010, 147(1): 17-30.
    [265] Lau J, Tran C, Licari P, Galazzo J. Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli [J]. Journal of Biotechnology, 2004, 110(1): 95-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700