氨基酸Schiff碱类配合物和金属—有机骨架聚合物的设计、结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸Schiff碱类金属配合物在磁学、非线性光学材料、荧光探针、生物活性等诸多领域有着潜在的应用价值,因此越来越引起广大化学工作者的极大关注。尽管对此类配合物领域的研究卓有成就,但是人们对配合物的报道相对较少,而且在其相应高维金属聚合物的组装方面一直难有实质进展,这可能是由于其配体的难溶性与不稳定性导致的。另一方面,多孔金属-有机骨架聚合物(MOFs)由于其多样化的拓扑结构类型和功能材料方面的广泛应用已经成为当今配位化学的热点话题。基于次级构筑单元(SBUs)合成策略构筑的MOFs材料往往具有非贯穿的稳定框架。本文中以氨基酸Schiff碱和吡啶基羧酸配体等为构建基元,与过渡金属离子自组装,采用常规挥发法和溶剂热合成了15个新配合物。对这些化合物进行了系列的结构解析和性质表征,包括X-ray单晶衍射、热重分析、磁性和光学性质等。
     1、选择2个类似配体丙氨酸Schiff碱和甘氨酸Schiff碱,与钴离子、锌离子反应,得到了7个结构新颖的配合物,展现了从零维单元到三维贯穿diamond网络的多样结构。通过引入双吡啶基桥连配体进行结构调控,在溶剂热条件下成功拓展了配合物结构体系的维数。对部分配合物的热稳定性、磁性、光学性质和切割DNA活性进行了研究。聚合物1和2,6和7在300℃以前整体骨架都能保持完整,钴离子间均表现为弱的反铁磁耦合作用;配合物1在有氧化和/或还原剂(H202)的存在下,均不同程度的表现出化学核酸酶的活性,对PBR322DNA有切割作用。
     2、利用溶剂热法设计合成了4个基于不同金属核数SBU的三维MOFs聚合物。在合成实验中反应溶剂的改变和溶剂的配比不同极大地影响MOFs的最终结构。通过氮气吸附实验测定了聚合物的孔隙大小,同时研究了聚合物8的变温磁化率和交流磁化率。磁性测试证明聚合物8钴簇中存在较强的反铁磁耦合作用。
     3、利用异烟酸和4-(异烟酰胺基)苯甲酸与过渡金属盐在溶剂热条件下反应,构筑了3个贯穿的diamond骨架聚合物。通过选用不同长度的桥连配体,成功控制了diamond拓扑网络的贯穿程度。另外还得到了一个的三维pcu拓扑Mn(Ⅱ)聚合物。TGA测试表明聚合物12有较高的热稳定性。
Extensive and continued interest exists in the design and construction of transition metal complexes with amino-acid-based Schiff bases, due to the wide range of potential applications in magnetism, nonlinear optics, luminescent probes and bioinorganic model compounds. Despite the wealth of studies in these systems, reports on the cobalt complexes of amino-acid based Schiff bases are far less in number. Meanwhile, it still remains a significant challenge for the assembly of higher dimensional (2D,3D) coordination polymers, possibly owing to the sparing solubility and unstability of the Schiff bases. On the other hand, considerable research has been devoted to the porous metal-organic frameworks (MOFs) for their fascinating topologies and promising applications as new materials. One of the efficient synthetic strategies for MOFs generation is the use of metal-carboxylate clusters known as the secondary building units (SBUs) that can be interconnected via various rigid organic linkers.The current studies on MOFs have indicated that SBUs can not only prevent the porous framework interpenetration and rigidify the framework, but also exhibit intriguing magnetic properties that can be imparted to the whole framework. In this paper, fifteen complexes with structural discrepancy have been achieved from normal crystal growth and hydro(solvo)thermal synthesis, and then characterized by single-crystal X-ray diffraction, IR, PXRD, TGA, optical spectra and magnetic measurement.
     1. Seven transition metal complexes have been synthesized successfully by the assembly of Co(Ⅱ)/Zn(Ⅱ) ions and two similar Schiff bases, N-(2-hydroxy-1-naphthylmethylidene)-DL-alanine(H2napala) and N-(2-hydroxy-1-naphthylmethylidene)-glycine(H2napgly). These complexes exhibit diversified structures from mononuclear unit to3-fold interpenetrated diamond framework. By the employment of the bridging co-ligands, Extended higher dimensional (2D,3D) networks were obtained under solvo(hydro)thermal conditions. The thermal stabilities, magnetic properties, Optical properties and specific DNA cleavage reactions of some compounds were studied.
     2. Heating the carboxylate ligands and transition metal ions gave rise to four new MOFs based on different SBUs. The results demonstrated that the same starting materials can resulting in completely different framework structures depending on the reaction conditions used. N2adsorption measurements were performed to estimate the porosity of activated samples, and magnetic studies of complex8indicate the dominant antiferromagnetic coupling between Co(Ⅱ) centers.
     3. Three3D interpenetrated diamond frameworks were constructed from isonicotinic acid and its derivatives,4-(isonicotinamido)benzoic acid. The interpenetration degrees of the same diomond nets are well controlled by employing the bridging pyridyl-based carboxylate ligands with different lengths. Moreover, a pcu type Mn(Ⅱ) polymer were obtained unexpectedly.
引文
[1]L. Carlucci, G. Ciani, D.M. Proserpio. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord. Chem. Rev.,2003,246 (1):247-289.
    [2]J. Reedijk. Platinum anticancer coordination compounds:study of DNA binding inspires new drug design[J]. Eur. J. Inorg. Chem.,2009,2009 (10):1303-1312.
    [3]T. Hang, D.-W. Fu, Q. Ye, R.-G. Xiong. Two novel noncentrosymmetric zinc coordination compounds with second harmonic generation response, and potential piezoelectric and ferroelectric properties[J]. Cryst. Growth Des.,2009,9 (5):2026-2029.
    [4]C. Ji, L. Huang, J. Li, H. Zheng, Y. Li, Z. Guo. Solvothermal syntheses, structures, and physical properties of four new coordination compounds constructed from a bent dicarboxylate ligand[J]. Dalton Trans.,2010,39 (35):8240-8247.
    [5]B.F. Hoskins, R. Robson. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J. Am. Chem. Soc.,1989,111 (15):5962-5964.
    [6]R.C. Moore, N.J. Redhead, J. Selfridge, J. Hope, J.C. Manson, D.W. Melton. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations[J]. Nat. Biotechnol.,1995,13 (9):999-1004.
    [7]H. Schiff. Mittheilungen aus dem Universitatslaboratorium in Pisa:eine neue Reihe organischer Basen[J]. Justus Liebigs Annalen der Chemie.,1864,131 (1):118-119.
    [8]B. Sun, X. Chen, Z. Li, L. Zhang, Q. Zhao. A novel large Ni-azido circle with tridentate(NNO) Schiff base co-ligands:hexagonal structure and ferromagnetic properties[J]. New J. Chem.,2010,34 (2):190.
    [9]J. Lopez, S. Liang, X.R. Bu. Unsymmetric chiral salen Schiff bases:A new chiral ligand pool from bis-schiff bases containing two different salicylaldehyde units[J]. Tetrahedron Lett.,1998,39 (24):4199-4202.
    [10]K. Akhbari, K. Alizadeh, A. Morsali, M. Zeller. A new two-dimensional thallium(Ⅰ) coordination polymer with 4-hydroxybenzylidene-4-aminobenzoate:Thermal, structural, solution and solvatochromic studies[J]. Inorg. Chim. Acta.,2009,362 (8):2589-2594.
    [11]C.-F. Jiang, F.-P. Liang, Y. Li, X.-J. Wang, Z.-L. Chen, H.-D. Bian. Synthesis, characterization and magnetic properties of copper(Ⅱ) complexes with 4-N-(2'-pyridyl imine)benzoic acid[J]. J. Mol. Struct.,2007,842 (1-3):109-116.
    [12]H.D. Yin, Q.B. Wang, S.C. Xue. Synthesis and spectroscopic properties of [N-(4-carboxyphenyl) salicylideneiminato] di- and tri-organotin(IV) complexes and crystal structures of{[nBu2Sn(2-OHC6H4CH=NC6H4COO)]2O}2 and Ph3Sn(2-OHC6H4CH= NC6H4COO)[J]. J. Organomet. Chem.,2005,690 (2):435-440.
    [13]J. Albert, L.a. D'Andrea, J.s. Bautista, A. Gonzalez, J. Granell, M. Font-Bardia, T. Calvet. Unexpected Structure of Palladacycles Containing Carboxylated Schiff Bases. Synthesis of Some Water-Soluble Metallacycles[J]. Organometallics.,2008,27 (19):5108-5117.
    [14]J. Harada, M. Harakawa, K. Ogawa. Torsional vibration and central bond length of N-benzylideneanilines[J]. Acta Crystallogr., Sect. B:Struct. Sci.,2004,60 (5):578-588.
    [15]J. Gao, J.H. Reibenspies, R.A. Zingaro, F.R. Woolley, A.E. Martell, A. Clearfield. Novel chiral "Calixsalen" macrocycle and chiral robson-type macrocyclic complexes[J]. Inorg. Chem.,2005,44 (2):232-241.
    [16]P.W. Roesky, A. Bhunia, Y. Lan, A.K. Powell, S. Kureti. Salen-based metal-organic frameworks of nickel and the lanthanides[J]. Chem. Commun.,2011,47 (7):2035-2037.
    [17]Y.N. Belokon, V.I. Maleev, D.A. Kataev, I.L. Mal'fanov, A.G. Bulychev, M.A. Moskalenko, T.y.F. Saveleva, T.y.V. Skrupskaya, K.A. Lyssenko, I.A. Godovikov, M. North. Potassium and silver chiral cobaltate(Ⅲ) complexes as precatalysts for asymmetric C-C bond formation[J]. Tetrahedron:Asymmetry.,2008,19 (7):822-831.
    [18]A. Erxleben. Synthesis and Structure of{[Ag(SalGly)]·0.33H2O}n:An Infinite Double Helical Coordination Polymer[J]. Inorg. Chem.,2001,40 (12):2928-2931.
    [19]M.S. Shongwe, S.K. Vandayar, M.A. Fernandes, H.M. Marques, M.J. Morris, S.L. Heath. Manganese(Ⅲ) in a pseudo-compressed mixed-donor octahedral environment:synthesis, X-ray crystal structure and physicochemical properties[J]. Polyhedron.,2001,20 (17): 2195-2201.
    [20]C.-T. Chen, J.-S. Lin, J.-H. Kuo, S.-S. Weng, T.-S. Cuo, Y.-W. Lin, C.-C. Cheng, Y.-C. Huang, J.-K. Yu, P.-T. Chou. Site-Selective DNA Photocleavage Involving Unusual Photoinitiated Tautomerization of Chiral Tridentate Vanadyl(V) Complexes Derived from N-Salicylidene a-Amino Acids[J]. Org. Lett.,2004,6 (24):4471-4474.
    [21]S.A. Warda. Polymeric,'-Pyrazine-N,N'-bis(N-salicylidene-R,S-alaninato)copper(Ⅱ) Tetra-hydrate[J]. Acta Crystallogr., Sect. C:Cryst. Struct. Commun.,1998,54 (3):302-304.
    [22]M. Tumer, H. Koksal, S. Serin. Synthesis, characterization and thermal studies of mononuclear and binuclear complexes of copper(II) with Schiff bases derived from 1-phenyl-2,3-dimethyl-4-amino-5-pyrazolone[J]. Syn. React. Inorg. Met..,1996,26 (9): 1589-1598.
    [23]R. Maurya, D. Mishra, R. Rathore, S. Jain. Synthesis, Magnetic and Spectral Studies of Some Mixed-Ligand Complexes of Copper(Ⅱ) and Cobalt(Ⅱ) with Schiff Bases and 2- or 3-Pyrazoline-5-one Derivatives[J]. Syn. React. Inorg. Met.,1994,24 (3):427-439.
    [24]D. Ray, P. Bharadwaj. A coumarin-derived fluorescence probe selective for magnesium[J]. Inorg. Chem.,2008,47 (7):2252-2254.
    [25]B.-Y. Lou, D.-Q. Yuan, B.-L. Wu, L. Han, F.-L. Jiang, M.-C. Hong. A self-assembled molecular ladder with Cu(H2O)4 units as cross rungs[J]. Inorg. Chem. Commun.,2005,8 (6):539-542.
    [26]M.R. Maurya, S. Khurana, D. Rehder. Six-coordinated oxovanadium (V) complexes of reduced Schiff bases derived from amino acids:synthesis, reactivity and redox studies[J]. Transit. Metal Chem.,2003,28 (5):511-517.
    [27]D. Rehder, C. Schulzke, H. Dau, C. Meinke, J. Hanss, M. Epple. Water and bromide in the active center of vanadate-dependent haloperoxidases[J]. J. Inorg. Biochem.,2000,80 (1):115-121.
    [28]P. B. Chatterjee, S. Bhattacharya, A. Audhya, K.Y. Choi, A. Endo, M. Chaudhury. Coordination asymmetry in divanadium(V) compounds containing a V2O3 core:synthesis, characterization, and redox properties[J]. Inorg. Chem.,2008,47 (11):4891-4902.
    [29]A. Garcia-Raso, J.J. Fiol, A. Lopez-Zafra, I. Mata, E. Espinosa, E. Molins. Synthesis of Zn N-salicylidene-1-aminoacidatos:X-ray structure of [(N-salicylidene-1-alaninato) (aqua)zinc (Ⅱ)]·0.25H2O and [(N-salicylidene-l-valinato)(aqua)zinc(Ⅱ)][J]. Polyhedron., 2000,19 (6):673-680.
    [30]B.-Y. Lou, D.-Q. Yuan, R.-H. Wang, Y. Xu, B.-L. Wu, L. Han, M.-C. Hong. Two supramolecular architectures constructed from dinuclear zinc(Ⅱ) unit[J]. J. Mol. Struct., 2004,698 (1-3):87-91.
    [31]H.-D. Bian, X.-E. Yang, Q. Yu, Z.-L. Chen, H. Liang, S.-P. Yan, D.-Z. Liao. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes[J]. J. Mol. Struct.,2008,872 (1):40-46.
    [32]S. Khatua, K. Kim, J. Kang, J.O. Huh, C.S. Hong, D.G. Churchill. Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuⅡ Complexes[J]. Eur. J. Inorg. Chem.,2009,2009 (22):3266-3274.
    [33]H. Bian, F. Huang, X. Yang, Q. Yu, H. Liang. Synthesis, crystal structures and magnetic properties of two new nickel(Ⅱ) complexes with a-amino acid Schiff base[J]. J. Coord. Chem.,2008,61 (5):802-809.
    [34]M.-Z. Wang, Z.-X. Meng, B.-L. Liu, G.-L. Cai, C.-L. Zhang, X.-Y. Wang. Novel tumor chemotherapeutic agents and tumor radio-imaging agents:Potential tumor Pharmaceuticals of ternary copper(Ⅱ) complexes[J]. Inorg. Chem. Commun.,2005,8 (4): 368-371.
    [35]Pattubala A.N. Reddy, M. Nethaji, Akhil R. Chakravarty. Hydrolytic Cleavage of DNA by Ternary Amino Acid Schiff Base Copper(Ⅱ) Complexes Having Planar Heterocyclic Ligands[J]. Eur. J. Inorg. Chem.,2004,2004 (7):1440-1446.
    [36]P.K. Sasmal, A.K. Patra, M. Nethaji, A.R. Chakravarty. DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene alpha-amino acids and phenanthroline bases in the photodynamic therapy window[J]. Inorg. Chem.,2007,46 (26): 11112-11121.
    [37]Z.Z. Li, L. Du, J. Zhou, M.R. Zhu, F.H. Qian, J. Liu, P. Chen, Q.H. Zhao. Rational design of two bpy-bridged 3D and 2D Co(Ⅱ) open frameworks with similar amino-acid-based Schiff bases[J]. Dalton Trans.,2012,41 (47):14397-14403.
    [38]J.C. Pessoa, I. Cavaco, I. Correia, M. Duarte, R. Gillard, R. Henriques, F. Higes, C. Madeira, I. Tomaz. Preparation and characterisation of new oxovanadium(Ⅳ) Schiff base complexes derived from amino acids and aromatic-hydroxyaldehydes[J]. Inorg. Chim. Acta.,1999,293(1):1-11.
    [39]B. Lou, F. Jiang, D. Yuan, B. Wu, M. Hong. Synthesis and Characterization of a 3D H-Bonded Supramolecular Complex with Chiral Channels Encapsulating 1D Left-Handed Helical Water Chains[J]. Eur. J. Inorg. Chem.,2005,2005 (16):3214-3216.
    [40]J. Vanco, Z. Travnicek, J. Marek, R. Herchel. Synthesis, spectral (UV-Vis, IR, ESI-MS), magnetic and structural characterizations, and the antimicrobial effect of potassium isothiocyanato-(N-salicylidene-amino-acidato)cuprates[J]. Inorg. Chim. Acta.,2010,363 (14):3887-3896.
    [41]J.K.a.D.G.C. Snehadrinarayan Khatua. Direct dizinc displacement approach for efficient detection of Cu2+ in aqueous media:acetate versus phenolate bridging platforms[J]. New J. Chem.,2010,34:1163-1169.
    [42]M.E.a.D. Rehder. Interaction of Vanadyl (VO2+) with Ligands Containing Serine, Tyrosine, and Threonine[J]. Inorg. Chem.,2006,45:7083-7090.
    [43]Yuri N. Belokon'a, Victor I. Maleev a, Dmitri A. Kataev a, Tatiana F. Saveleva a, Tatiana V. Skrupskaya a,, M.N.b. Yulia V. Nelyubina a. Chiral ion pairs in catalysis: lithium salts of chiral metallocomplex anions as catalysts for asymmetric C-C bond formation[J]. Tetrahedron:Asymmetry.,2009,20:1746-1752.
    [44]J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen, J.T. Hupp. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev.,2009,38 (5):1450-1459.
    [45]S. Marx, W. Kleist, A. Baiker. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J. Catal.,2011,281(1):76-87.
    [46]G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion. Guest-dependent spin crossover in a nanoporous molecular framework material[J]. Science.,2002,298 (5599):1762-1765.
    [47]D. Sarma, P. Mahata, S. Natarajan, P. Panissod, G. Rogez, M. Drillon. Synthesis, Structure, and Magnetic Properties of a New Eight-Connected Metal-Organic Framework (MOF) based on Co4 Clusters[J]. Inorg. Chem.,2012,51 (8):4495-4501.
    [48]G. Lu, J.T. Hupp. Metal-Organic-Frameworks as Sensors:A ZIF-8 Based Fabry-Perot Device as a Selective Sensor for Chemical Vapors and Gases[J]. J. Am. Chem. Soc.,2010, 132 (23):7832-7833.
    [49]B. Chen, L. Wang, F. Zapata, G. Qian, E.B. Lobkovsky. A luminescent microporous metal- organic framework for the recognition and sensing of anions[J]. J. Am. Chem. Soc.,2008,130 (21):6718-6719.
    [50]J.R. Li, R.J. Kuppler, H.C. Zhou. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38 (5):1477-1504.
    [51]L. Du, K.M. Wang, R.B. Fang, Q.H. Zhao. Multidimensional Snowflake-shaped (3, 9)-connected Metal-Organic Frameworks Composed of Ni3(μ3-O) Building Blocks and Symmetry Ligand Pyridine-3,5-dicarboxylic Acid[J]. Z. Anorg. Allg. Chem.,2009,635 (2):375-378.
    [52]S. Matsunaga, N. Endo, W. Mori. A New Metal Carboxylate Framework Based on Porphyrin with Extended π-Conjugation[J]. Eur. J. Inorg. Chem.,2011,2011 (29): 4550-4557.
    [53]W.J. Rieter, K.M. Pott, K.M.L. Taylor, W. Lin. Nanoscale coordination polymers for platinum-based anticancer drug delivery[J]. J. Am. Chem. Soc.,2008,130 (35): 11584-11585.
    [54]L. Hou, W.-X. Zhang, J.-P. Zhang, W. Xue, Y.-B. Zhang, X.-M. Chen. An octacobalt cluster based, (3,12)-connected, magnetic, porous coordination polymer[J]. Chem. Commun.,2010,46 (34):6311-6313.
    [55]S.K. Ghosh, J. Ribas, M.S. El Fallah, P.K. Bharadwaj. Mn(Ⅱ) staircase structures stitched by water clusters to a 3D metal-organic open framework:X-ray structural and magnetic studies[J]. Inorg. Chem.,2005,44 (11):3856-3862.
    [56]B.-W.H. Jiong-Peng Zhao, Qian Yang, Tong-Liang Hu, and Xian-He Bu. Single-Crystal-to-Single-Crystal Transformation in Unusual Three-Dimensional Manganese(II) Frameworks Exhibiting Unprecedented Topology and Homospin Ferrimagnet[J]. Inorg. Chem.,2009,48:7111-7116.
    [57]K.M. Blake, R.L. LaDuca. A self-penetrated chiral cobalt camphorate coordination polymer with antiferromagnetically coupled paddlewheel clusters[J]. Inorg. Chem. Commun.,2011,14(8):1250-1253.
    [58]B. Kozlevcar, P. Gamez, R. de Gelder, Z. Jaglicic, P. Strauch, N. Kitanovski, J. Reedijk. Counterion and Solvent Effects on the Primary Coordination Sphere of Copper(Ⅱ) Bis (3,5-dimethylpyrazol-1-yl) acetic Acid Coordination Compounds[J]. Eur. J. Inorg. Chem., 2011,2011(24):3650-3655.
    [59]T. Li, F. Li, Y. Wang, W. Bi, X. Li, R. Cao. Syntheses and characterization of two metal-water clusters[J]. Inorg. Chim. Acta.,2007,360 (12):3771-3776.
    [60]X. Li, X. Weng, R. Tang, Y. Lin, Z. Ke, W. Zhou, R. Cao. Conformational Isomerism of 1,2-Bis(imidazol-l'-yl)ethane Affected by the Orientation of Functional Carboxylate Groups in Cadmium and Cobalt Helical Coordination Polymers[J]. Cryst. Growth Des., 2010,10 (7):3228-3236.
    [61]L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, M. Hong. A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties[J]. Inorg. Chem.,2012,51 (4):2438-2442.
    [62]L. Cheng, J.-Q. Wang, S.-H. Gou. A new three-dimensional cobalt(II) coordination polymer based on biphenyl-2,2',6,6'-tetracarboxylic acid and 1,2,4-triazole:Synthesis, crystal structure and magnetic properties[J]. Inorg. Chem. Commun.,2011,14 (1): 261-264.
    [63]R. Ma, C. Chen, B. Sun, X. Zhao, N. Zhang. A new 3D metal-organic framework with (4,8)-connected A1B2 topology constructed from coordinated evolution of a C3 symmetry ligand[J]. Inorg. Chem. Commun.,2011,14 (9):1532-1536.
    [64]X. Feng, J. Zhao, B. Liu, L. Wang, S. Ng, G. Zhang, J. Wang, X. Shi, Y. Liu. A Series of Lanthanide-Organic Frameworks Based on 2-Propyl-lH-imidazole-4,5-dicarboxylate and Oxalate:Syntheses, Structures, Luminescence, and Magnetic Properties[J]. Cryst. Growth Des.,2010,10 (3):1399-1408.
    [65]B.W. Hu, J.P. Zhao, E.C. Sanudo, F.C. Liu, Y.F. Zeng, X.H. Bu. Nickel(Ⅱ)-azido ferromagnetic chains in a 3D porous metal-organic framework with breathing guest molecules[J]. Dalton Trans.,2008, (41):5556-5559.
    [66]C.-X. Meng, D.-S. Li, J. Zhao, F. Fu, X.-N. Zhang, L. Tang, Y.-Y. Wang. A novel CdⅡ coordination polymer with helical units and mix-connected network topology constructed form 2-propyl-4,5-imidazoledicarboxylate and N-donor co-ligands[J]. Inorg. Chem. Commun.,2009,12 (8):793-795.
    [67]Z. Su, M. Chen, T.A. Okamura, M.S. Chen, S.S. Chen, W.Y. Sun. Reversible single-crystal-to-single-crystal transformation and highly selective adsorption property of three-dimensional cobalt(II) frameworks[J]. Inorg. Chem.,2011,50 (3):985-991.
    [68]X.-L. Wang, Y.-Q. Chen, Q. Gao, H.-Y. Lin, G.-C. Liu, J.-X. Zhang, A.-X. Tian. Coordination Behavior of 5,6-Substituted 1,10-Phenanthroline Derivatives and Structural Diversities by Coligands in the Construction of Lead(II) Complexes[J]. Cryst. Growth Des.,2010,10 (5):2174-2184.
    [69]S.-Q. Xia, S.-M. Hu, J.-C. Dai, X.-T. Wu, Z.-Y. Fu, J.-J. Zhang, W.-X. Du. Syntheses and structures of 1D,2D,3D cadmium(Ⅱ) coordination polymers with oxalate and aromatic co-ligands[J]. Polyhedron.,2004,23 (6):1003-1009.
    [70]X. Hu, Y.-F. Zeng, Z. Chen, E. Sanudo, F.-C. Liu, J. Ribas, X.-H. Bu.3d- 4f Coordination Polymers Containing Alternating EE/EO Azido Chain Synthesized by Synergistic Coordination of Lanthanide and Transition Metal Ions[J]. Cryst. Growth Des., 2008,9 (1):421-426.
    [71]L. Han, L. Qin, L. Xu, Y. Zhou, J. Sun, X. Zou. A novel photochromic calcium-based metal-organic framework derived from a naphthalene diimide chromophore[J]. Chem. Commun.,2013,49 (4):406-408.
    [72]D.J. Mihalcik, T. Zhang, L. Ma, W. Lin. Highly porous 4,8-connected metal-organic frameworks:synthesis, characterization, and hydrogen uptake[J]. Inorg. Chem.,2012,51 (4):2503-2508.
    [73]D.R. Xiao, E.B. Wang, H.Y. An, Y.G. Li, Z.M. Su, C.Y. Sun. A Bridge between Pillared-Layer and Helical Structures:A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains[J]. Chem-Eur. J.,2006,12 (25):6528-6541.
    [74]T. Panda, P. Pachfule, R. Banerjee. Template induced structural isomerism and enhancement of porosity in manganese(II) based metal-organic frameworks (Mn-MOFs)[J]. Chem. Commun.,2011,47 (27):7674-7676.
    [75]A.K. Cheetham, G. Ferey, T. Loiseau. Open-framework inorganic materials[J]. Angew. Chem., Int. Ed.,1999,38 (22):3268-3292.
    [76]D.-P. Dong, J. Li, Z.-G. Sun, X.-F. Zheng, H. Chen, L. Meng, Y.-Y. Zhu, Y. Zhao, J. Zhang. Hydrothermal synthesis, crystal structure, and thermal stability of a novel 3D cadmium phosphonate with double-stranded helical channels[J]. Inorg. Chem. Commun., 2007,10(9):1109-1112.
    [77]L. Liu, Z.-G. Sun, N. Zhang, Y.-Y. Zhu, Y. Zhao, X. Lu, F. Tong, W.-N. Wang, C.-Y. Huang. Syntheses, Crystal Structures, and Luminescence Properties of a Series of Novel Lanthanide Oxalatophosphonates with Two Types of 3D Framework Structures[J]. Cryst. Growth Des.,2010,10 (1):406-413.
    [78]J. Zhang, J. Li, Z.-G. Sun, R.-N. Hua, Y.-Y. Zhu, Y. Zhao, N. Zhang, L. Liu, X. Lu, W.-N. Wang, F. Tong. Synthesis, crystal structure, and thermal stability of a novel 3D cadmium carboxyphosphonate containing left-hand helical chains Cd3Cl2[(O3PCH2-N(H)C5H9-COO)2(H2O)2]·4H2O[J]. Inorg. Chem. Commun.,2009,12 (3):276-279.
    [79]Y.-Y. Zhu, J. Li, Z.-G. Sun, J. Zhang, Y. Zhao, N. Zhang, L. Liu, X. Lu. Synthesis, characterizations, and crystal structure of a novel layered phosphonate: Zn2Cl[O3PCH2N(CH2CH2)2O][O3PCH2NH(CH2CH2)2O][J]. Inorg. Chem. Commun., 2009,12 (1):38-40.
    [80]Y. Zhu, Z. Sun, Y. Zhao, J. Zhang, X. Lu, N. Zhang, L. Liu, F. Tong. Synthesis, crystal structures and luminescence properties of lanthanide oxalatophosphonates with a three-dimensional framework structure[J]. New J. Chem.,2009,33 (1):119.
    [81]J. Li, L. Meng, Z.-G. Sun, Z.-m. Liu, Y. Zhao, J. Zhang, Y.-Y. Zhu, X. Lu, L. Liu, N. Zhang. Synthesis, crystal structure and characterizations of a new 3D porous zinc phosphonate:Zn6[(O3PCH2)2NHC6H11]4·6H2O[J]. Inorg. Chem. Commun.,2008,11 (2): 211-214.
    [82]Y.-Y. Zhu, Z.-G. Sun, H. Chen, J. Zhang, Y. Zhao, N. Zhang, L. Liu, X. Lu, W.-N. Wang, F. Tong. Seven novel lanthanide oxalatophosphonates with two types of 3D framework structures based on N-morpholinomethylphosphonic acid:syntheses, crystal Structures, and luminescence properties[J]. Cryst. Growth Des.,2009,9 (7):3228-3234.
    [83]J. An, C.M. Shade, D.A. Chengelis-Czegan, S. Petoud, N.L. Rosi. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations[J]. J. Am. Chem. Soc.,2011,133 (5):1220-1223.
    [84]H.K. Chae, J. Kim, O.D. Friedrichs, M. O'Keeffe, O.M. Yaghi. Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology[J]. Angew. Chem., Int. Ed.,2003,42 (33): 3907-3909.
    [85]X. Zhu, J. Lu□, X. Li, S. Gao, G. Li, F. Xiao, R. Cao. Syntheses, structures, near-infrared, and visible luminescence of lanthanide-organic frameworks with flexible macrocyclic polyamine ligands[J]. Cryst. Growth Des.,2008,8 (6):1897-1901.
    [86]J.A. Perman, K. Dubois, F. Nouar, S. Zoccali, L. Wojtas, M. Eddaoudi, R.W. Larsen, M.J. Zaworotko. Cocrystal Controlled Solid-State Synthesis of a Thermally Stable Nicotinate Analogue That Sustains an Isostructural Series of Porous Metal-Organic Materials[J]. Cryst. Growth Des.,2009,9 (12):5021-5023.
    [87]S. Xiang, J. Huang, L. Li, J. Zhang, L. Jiang, X. Kuang, C.Y. Su. Nanotubular metal-organic frameworks with high porosity based on T-shaped pyridyl dicarboxylate ligands[J]. Inorg. Chem.,2011,50 (5):1743-1748.
    [88]S. Bhattacharya, K. Ramanujachary, S. Lofland, T. Magdaleno, S. Natarajan. Stabilization of O-Mn-O clusters (Mn5) in three dimensionally extended MOF structures:synthesis, structure and properties [J]. CrystEngComm.,2012,14 (13):4323-4334.
    [89]X.N. Cheng, W.X. Zhang, Y.Y. Lin, Y.Z. Zheng, X.M. Chen. A Dynamic Porous Magnet Exhibiting Reversible Guest-Induced Magnetic Behavior Modulation[J]. Adv. Mater., 2007,19(11):1494-1498.
    [90]P. Mahata, D. Sarma, S. Natarajan. Magnetic behaviour in metal-organic frameworks-Some recent examples[J]. Journal of Chemical Sciences.,2010,122 (1): 19-35.
    [91]D. Sarma, S. Natarajan. An eight-connected metal organic framework based on Cu(5) clusters:Synthesis, structure, magnetic and catalytic properties[J]. Indian Journal of Chemistry-Section A:Inorganic, Physical, Theoretical and Analytical Chemistry.,2011, 50 (9-10):1281-1289.
    [92]R.-X. Yao, X. Xu, X.-M. Zhang. Magnetic Modulation and Cation-Exchange in a Series of Isostructural (4,8)-Connected Metal-Organic Frameworks with Butterfly-like [M4(OH)2 (RCO2)8] Building Units[J]. Chem. Mater.,2012,24 (2):303-3.10.
    [93]X.-H. Chang, J.-H. Qin, L.-F. Ma, J.-G. Wang, L.-Y. Wang. Two- and Three-Dimensional Divalent Metal Coordination Polymers Constructed from a New Tricarboxylate Linker and Dipyridyl Ligands[J]. Cryst. Growth Des.,2012,12 (9):4649-4657.
    [94]J.P. Zhao, Q. Yang, Z.Y. Liu, R. Zhao, B.W. Hu, M. Du, Z. Chang, X.H. Bu. A unique substituted Co(II)-formate coordination framework exhibits weak ferromagnetic single-chain-magnet like behavior[J]. Chem. Commun.,2012,48 (52):6568-6570.
    [95]M.-S. Chen, Z. Su, M. Chen, S.-S. Chen, Y.-Z. Li, W.-Y. Sun. Three-dimensional lanthanide-silver heterometallic coordination polymers:syntheses, structures and properties[J]. CrystEngComm.,2010,12 (10):3267.
    [96]B. Chen, X. Wang, Q. Zhang, X. Xi, J. Cai, H. Qi, S. Shi, J. Wang, D. Yuan, M. Fang. Synthesis and characterization of the interpenetrated MOF-5[J]. J. Mater. Chem.,2010, 20 (18):3758-3767.
    [97]O.R. Evans, W. Lin. Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks[J]. Chem. Mater.,2001,13 (8): 2705-2712.
    [98]J.-M. Gu, S.-J. Kim, Y. Kim, S. Huh. Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology[J]. CrystEngComm.,2012,14 (5): 1819-1824.
    [99]Z.-G. Kong, Q.-W. Wang, C.-B. Li. A novel polyoxometalate-templated chiral three-fold interpenetrated metal-organic framework:Synthesis, structure and properties[J]. Inorg. Chem. Commun.,2012.
    [100]Y.-W. Li, L.-F. Wang, K.-H. He, Q. Chen, X.-H. Bu. A sixfold interpenetrated microporous MOF constructed from heterometallic tetranuclear cluster exhibiting selective gas adsorption[J]. Dalton Trans.,2011,40 (40):10319-10321.
    [101]Y.-L. Liu, K.-F. Yue, B.-H. Shan, L.-L. Xu, C.-J. Wang, Y.-Y. Wang. A new 3-fold interpenetrated metal-organic framework (MOF) based on trinuclear zinc(II) clusters as secondary building unit (SBU)[J]. Inorg. Chem. Commun.,2012,17:30.
    [102]F. Luo, Z.-Z. Yuan, X.-F. Feng, S.R. Batten, J.-Q. Li, M.-B. Luo, S.-J. Liu, W.-Y. Xu, G.-M. Sun, Y.-M. Song. Multifunctional 3-Fold Interpenetrated Porous Metal-Organic Frameworks Composed of Unprecedented Self-Catenated Networks[J]. Cryst. Growth Des.,2012,12 (7):3392-3396.
    [103]Y. Wei, Y. Yu, K. Wu. Highly Stable Diamondoid Network Coordination Polymer [Mn(NCP)2]n with Notable NLO, Magnetic, and Luminescence Properties[J]. Cryst. Growth Des.,2007,7 (11):2262-2264.
    [104]H. Xu, W. Bao, Y. Xu, X. Liu, X. Shen, D. Zhu. An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks[J]. CrystEngComm.,2012,14 (18):5720-5722.
    [105]T. Yamada, S. Iwakiri, T. Hara, K. Kanaizuka, M. Kurmoo, H. Kitagawa. Porous interpenetrating metal-organic frameworks with hierarchical nodes[J]. Cryst. Growth Des.,2011,11(5):1798-1806.
    [106]Z. Yin, Q.-X. Wang, M.-H. Zeng. Iodine Release and Recovery, Influence of Polyiodide Anions on Electrical Conductivity and Nonlinear Optical Activity in an Interdigitated and Interpenetrated Bipillared-Bilayer Metal-Organic Framework[J]. J. Am. Chem. Soc., 2012,134 (10):4857-4863.
    [107]Y.L. Huang, Y.N. Gong, L. Jiang, T.B. Lu. A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties[J]. Chem. Commun.,2013,49 (17):1753-1755..
    [108]O.R. Evans, W. Lin. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Accounts. Chem. Res.,2002,35 (7):511-522.
    [109]X. Song, Y. Zou, X. Liu, M. Oh, M.S. Lah. A two-fold interpenetrated (3,6)-connected metal-organic framework with rutile topology showing a large solvent cavity[J]. New J. Chem.,2010,34 (11):2396.
    [110]S. Basak, A. Mondal, D. Chopra, K.K. Rajak. Synthesis and structural characterisation of new Re(Ⅲ) complexes using aldimines of a-amino acids as coligands[J]. Polyhedron., 2007,26 (13):3465-3470.
    [111]C.T. Chen, S. Bettigeri, S.S. Weng, V.D. Pawar, Y.H. Lin, C.Y. Liu, W.Z. Lee. Asymmetric aerobic oxidation of alpha-hydroxy acid derivatives by C4-symmetric, vanadate-centered, tetrakisvanadyl(V) clusters derived from N-salicylidene-alpha-aminocarboxylates[J]. J. Org. Chem.,2007,72 (22):8175-8185.
    [112]J. Muller, G. Kehr, R. Frohlich, G. Erker. Structural Features of Titanium Complexes of Salicylaldiminato Derivatives of Amino Acids[J]. Eur. J. Inorg. Chem.,2005,2005 (14): 2836-2841.
    [113]L.W. Xue, X.W. Li, G.Q. Zhao, Q.L. Peng. catena-Poly [[pyridinecopper(Ⅱ)]-mu-N-[(2-oxido-l-naphth-yl)methyl-ene]glycinato][J]. Acta. Crystallogr., Sect. E:Struct. Rep. Online.,2009,65 (10):m1237.
    [114]R.-M. Wang, C.-J. Hao, Y.-P. Wang, S.-B. Li. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen[J]. Journal of Molecular Catalysis A:Chemical.,1999,147 (1):173-178.
    [115]S. Khatua, J. Kang, J.O. Huh, C.S. Hong, D.G. Churchill. Synthesis, Structure, and Magnetic Properties of Closely Related Mono- and Di-Cu(Ⅱ) Schiff Base Complexes: Formation of Water Clusters and Hydrogen-Bonded Networks[J]. Cryst. Growth Des., 2010,10(1):327-334.
    [116]H.-Y. Zhao, Y.-H. Xing, Y.-Z. Cao, Z.-P. Li, D.-M. Wei, X.-Q. Zeng, M.-F. Ge. Synthesis, structure and properties of three new oxidovanadium complexes containing a tridentate salicylaldehydeglycine[J]. J. Mol. Struct.,2009,938 (1-3):54-64.
    [117]E.G. Ferrer, A.C.G. Baro, E.E. Castellano, O.E. Piro, P.A.M. Williams. Model complexes with naturally occurring ligands (salicylglycine and imidazol) and the biometals copper and cobalt[J]. J. Inorg. Biochem.,2004,98 (2):413-421.
    [118]W.L. Leong, J.J. Vittal. Self-Assembly of Ion-Pair Complexes[J]. Cryst. Growth Des., 2007,7 (10):2112-2116.
    [119]J. Lv, T. Liu, S. Cai, X. Wang, L. Liu, Y. Wang. Synthesis, structure and biological activity of cobalt(Ⅱ) and copper(Ⅱ) complexes of valine-derived schiff bases[J]. J. Inorg. Biochem.,2006,100(11):1888-1896.
    [120]G.i. Sheldrick. SADABS, program for empirical absorption correction of area detector data. University of Gottingen, Germany,1996.
    [121]G. Sheldrick. Program for the solution of crystal structures. University of Gottingen, Germany,1997.
    [122]G. Sheldrick. Program for the refinement of crystal structures. University of Gottingen, Germany,1997.
    [123]A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen?sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimida zol-2-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate[J]. Dalton. Trans.,1984, (7):1349.
    [124]B. Sreenivasulu, J.J. Vittal. A Metal Coordination Polymer with Hexagonal Diamondoid (or Lonsdaleite) Network Topology[J]. Cryst. Growth Des.,2003,3 (5):635-637.
    [125]B.-Y. Lou, D.-Q. Yuan, S.-Y. Gao, R.-H. Wang, Y. Xu, L. Han, M.-C. Hong. A chiral supramolecular architecture [Cu2(4,4'-bipyridine)2(sala)2]n·4.5H2O (sala=N-(2-hydroxy benzyl)-1-alanine anion)[J]. J. Mol. Struct.,2004,707 (1-3):231-234.
    [126]V.A. Blatov. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsletter,2006,7 (4).
    [127]A.L. Spek. PLATON, a multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands,2001,20.
    [128]G. De Munno, F. Cipriani, D. Armentano, M. Julve, J.A. Real. Polycatenane systems from Co(Ⅱ) and trans-1,2-bis (4-pyridyl) ethene (bpe). Synthesis and structure of Co(bpe)2(NCS)2·CH3OH, [Co(bpe)2(H2O)2](ClO4)2·2CH3OH and [Co(bpe)2(H2O)2 (CH3OH)2](ClO4)2·bpe·H2O[J]. New J. Chem.,2001,25 (8):1031-1036.
    [129]S.W. Lee, H.J. Kim, Y.K. Lee, K. Park, J.-H. Son, Y.-U. Kwon. Triply interpenetrating coordination polymers based on paddle-wheel type secondary-building units [J]. Inorg. Chim. Acta.,2003,353:151-158.
    [130]S.H. Park, K.M. Kim, S.-g. Lee, O.-S. Jung. Perpendicular Interpenetration of Independent Square Grid Sheets. Synthesis and Structural Properties of [Co(NCS)2(Py2L)2]n (Py2L=trans-1,2-Bis(4-pyridyl)ethylene, 1,2-Bis(4-pyridyl)ethane)[J]. Bull. Korean Chem. Soc.,1998,19 (1):79.
    [131]A. Garcia-Raso, J.J. Fiol, F. Badenas, M. Quiros. X-ray diffraction structures of two N-salicylidene tryptophananato diaquocopper(II) complexes:erythro and threo isomers[J]. Polyhedron.,1996,15 (24):4407-4413.
    [132]R. Fulwood, H. Schmidt, D. Rehder. [VO{N-(2-oxido-l-naphthylmethylene)-L-ala}OBus(HOBus)]:characterization of a complex containing four centres of chirality[J]. Chem. Commun.,1995, (14):1443.
    [133]A. Garcia-Raso, J.J. Fiol, A. Lopez-Zafra, A. Tasada, I. Mata, E. Espinosa, E. Molins. Different ways of interaction between binary copper(Ⅱ)-Schiff bases (Cu-N-salicylideneserinato) and pyrimidine derivatives[J]. Polyhedron.,2006,25 (11): 2295-2302.
    [134]J.M. Rueff, N. Masciocchi, P. Rabu, A. Sironi, A. Skoulios. Structure and Magnetism of a Polycrystalline Transition Metal Soap- CoⅡ[OOC(CH2)10COO](H2O)2[J]. Eur. J. Inorg. Chem.,2001,2001 (11):2843-2848.
    [135]J. Lu, H.-D. Yin, H.-T. Liu, S.-N. Wang, D.-C. Li, J.-M. Dou. A novel chiral interpenetrating 3D coordination polymer constructed by different numbers of left- and right-handed helical chains[J]. Inorg. Chem. Commun.,2012,26:7-10.
    [136]D.-C. Wen, S.-X. Liu, J. Ribas. Hydrothermal syntheses, structures and properties of three cyclic tetranuclear complexes and one 1D chain complex with 3,5-dinitrosalicylate[J]. Polyhedron.,2007,26 (14):3849-3856.
    [137]S. Su, C. Qin, S. Song, Z. Guo, R. Deng, W. Chen, X. Song, S. Wang, G. Li, H. Zhang. Three three-dimensional anionic metal-organic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters[J]. CrystEngComm.,2011,13 (20):6057.
    [138]J. Yang, B. Li, J.F. Ma, Y.Y. Liu, J.P. Zhang. An unusual ten-connected self-penetrating metal-organic framework based on tetranuclear cobalt clusters[J]. Chem. Commun.,2010, 46 (44):8383-8385.
    [139]M. Du, X.J. Jiang, X.J. Zhao. Molecular tectonics of mixed-ligand metal-organic frameworks:Positional isomeric effect, metal-directed assembly, and structural diversification[J]. Inorg. Chem.,2007,46 (10):3984-3995.
    [140]R. Fu, S. Xiang, S. Hu, L. Wang, Y. Li, X. Huang, X. Wu. Assembled bright green fluorescent zinc coordination polymer[J]. Chem. Commun.,2005, (42):5292-5294.
    [141]K.J. Franz, N. Singh, B. Spingler, S.J. Lippard. Aminotroponiminates as ligands for potential metal-based nitric oxide sensors[J]. Inorg. Chem.,2000,39 (18):4081-4092.
    [142]X. Ran, L. Wang, Y. Lin, J. Hao, D. Cao. Syntheses, characterization and biological studies of zinc(Ⅱ), copper(Ⅱ) and cobalt(Ⅱ) complexes with Schiff base ligand derived from 2-hydroxy-l-naphthaldehyde and selenomethionine[J]. Appl. Organomet. Chem., 2010,24 (10):741-747.
    [143]J. Do, Y. Lee, J. Kang, Y.S. Park, B. Lorenz, A.J. Jacobson. [M(rac-N-benzyl Asp)(H2O)] (M=Co, Ni):noncentrosymmetric coordination polymeric chains with racemic chiral ligands[J]. Inorg. Chem.,2012,51 (6):3533-3539.
    [144]J. Boonmak, M. Nakano, N. Chaichit, C. Pakawatchai, S. Youngme. Spin canting and metamagnetism in 2D and 3D cobalt(Ⅱ) coordination networks with alternating double end-on and double end-to-end azido bridges[J]. Inorg. Chem.,2011,50 (15):7324-7333.
    [145]I. Castillo, J.M. Fernandez-Gonzalez, J.L. Garate-Morales. Synthesis and solid state structures of copper(Ⅱ) complexes of Schiff bases derived from cyclopropyl and cyclobutylamine[J]. J. Mol. Struct.,2003,657 (1-3):25-35.
    [146]H. Chun, H. Jung. Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6 units and a nonlinear dicarboxylate ligand[J]. Inorg. Chem.,2008,48 (2):417-419.
    [147]M. Mathew, A. Carty, G.J. Palenik. Unusual complex containing bridging vanadyl groups. Crystal structure of N, N'-propylene bis(salicylaldiminato) oxovanadium (Ⅳ)[J]. J. Am. Chem. Soc.,1970,92 (10):3197-3198.
    [148]H. Wang, D. Zhang, D. Sun, Y. Chen, L.-F. Zhang, L. Tian, J. Jiang, Z.-H. Ni. Co(II) Metal-Organic Frameworks (MOFs) Assembled from Asymmetric Semirigid Multicarboxylate Ligands:Synthesis, Crystal Structures, and Magnetic Properties[J]. Cryst. Growth Des.,2009,9 (12):5273-5282.
    [149]J.H. Nettleman, R.M. Supkowski, R.L. LaDuca. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4'-bipyridine[J]. J. Solid State Chem.,2010,183 (2):291-303.
    [150]J. Zhang, Z.J. Li, Y. Kang, J.K. Cheng, Y.G. Yao. Hydrothermal syntheses, crystal structures, and properties of a novel class of 3,3',4,4'-benzophenone-tetra-carboxylate(BPTC) polymers[J]. Inorg. Chem.,2004,43 (25):8085-8091.
    [151]X. Xu, X. Liu, X. Zhang, T. Sun. Synthesis, characterization and properties of series coordination polymers constructed from a biphenyl dicarboxylate and nitrogen-containing mixed ligands[J]. Inorg. Chim. Acta.,2009,362 (15):5203-5210.
    [152]S.R. Marshall, A.L. Rheingold, L.N. Dawe, W.W. Shum, C. Kitamura, J.S. Miller. Corner Sharing Tetrahedral Network in Co3(HAT)[N(CN)2]6(H2O)2 (HAT=1,4,5,8,9,12-Hexaa-zatriphenylene)[J]. Inorg. Chem.,2002,41 (14):3599-3601.
    [153]D. Nelson, L.W. Ter Haar. Single-crystal studies of the zero-field splitting and magnetic exchange interactions in the magnetic susceptibility calibrant mercury cobalt-thiocyanate (HgCo(NCS)4)[J]. Inorg. Chem.,1993,32 (2):182-188.
    [154]A.C. Sudik, A.R. Millward, N.W. Ockwig, A.P. Cote, J. Kim, O.M. Yaghi. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra[J]. J. Am. Chem. Soc.,2005,127 (19):7110-7118.
    [155]D. Sarma, S. Natarajan. Usefulness of in Situ Single Crystal to Single Crystal Transformation (SCSC) Studies in Understanding the Temperature-Dependent Dimensionality Cross-over and Structural Reorganization in Copper-Containing Metal-Organic Frameworks (MOFs)[J]. Cryst. Growth Des.,2011,11 (12):5415-5423.
    [156]C.-D. Wu, A. Hu, L. Zhang, W. Lin. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. J. Am. Chem. Soc.,2005, 127 (25):8940-8941.
    [157]J. Zhang, S. Chen, R.A. Nieto, T. Wu, P. Feng, X. Bu. A tale of three carboxylates: cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors[J]. Angew. Chem., Int. Ed.,2010,49 (7):1267-1270.
    [158]Y. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V.C. Kravtsov, R. Luebke, M. Eddaoudi. Assembly of Metal-Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks:A Porous MOF with soc Topology and High Hydrogen Storage[J]. Angew. Chem., Int. Ed.,2007,46 (18):3278-3283.
    [159]L. Pan, H. Liu, X. Lei, X. Huang, D.H. Olson, N.J. Turro, J. Li. RPM-1:A Recyclable Nanoporous Material Suitable for Ship-In-Bottle Synthesis and Large Hydrocarbon Sorption[J]. Angew. Chem., Int. Ed.,2003,42 (5):542-546.
    [160]T. Panda, P. Pachfule, R. Banerjee. Template induced structural isomerism and enhancement of porosity in manganese(II) based metal-organic frameworks (Mn-MOFs)[J]. Chem. Commun.,2011,47 (27):7674-7676.
    [161]H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402 (6759):276-279.
    [162]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science.,2002,295 (5554):469-472.
    [163]E. Neofotistou, C.D. Malliakas, P.N. Trikalitis. Remarkable structural diversity and single-crystal-to-single-crystal transformations in sulfone functionalized lanthanide MOFs[J]. CrystEngComm.,2010,12 (4):1034.
    [164]J.L. Rowsell, O.M. Yaghi. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. J. Am. Chem. Soc.,2006,128 (4):1304-1315.
    [165]D. Kim, X. Song, J.H. Yoon, M.S. Lah.3,6-Connected Metal-Organic Frameworks Based on Triscarboxylate as a 3-Connected Organic Node and a Linear Trinuclear Co3(COO)6 Secondary Building Unit as a 6-Connected Node[J]. Cryst. Growth Des.,2012,12 (8): 4186-4193.
    [166]N.L. Rosi, M. Eddaoudi, J. Kim, M. O'Keeffe, O.M. Yaghi. Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks[J]. Angew. Chem., Int. Ed.,2002,114 (2):294-297.
    [167]J. Jia, F. Sun, Q. Fang, X. Liang, K. Cai, Z. Bian, H. Zhao, L. Gao, G. Zhu. A novel low density metal-organic framework with pcu topology by dendritic ligand[J]. Chem. Commun.,2011,47 (32):9167-9169.
    [168]P. Pachfule, Y. Chen, J. Jiang, R. Banerjee. Fluorinated metal-organic frameworks: advantageous for higher H2 and CO2 adsorption or not?[J]. Chem.-Eur. J.,2012,18 (2): 688-694.
    [169]Q. Chen, J.B. Lin, W. Xue, M.H. Zeng, X.M. Chen. A porous coordination polymer assembled from 8-connected{Co(Ⅱ)3(OH)} clusters and isonicotinate:multiple active metal sites, apical ligand substitution, H2 adsorption, and magnetism[J]. Inorg. Chem., 2011,50 (6):2321-2328.
    [170]A.D. Burrows, K. Cassar, R.M.W. Friend, M.F. Mahon, S.P. Rigby, J.E. Warren. Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks[J]. CrystEngComm,2005,7 (89):548.
    [171]W. Zhang, R.-G. Xiong, S.D. Huang.3D framework containing Cu4Br4 cubane as connecting node with strong ferroelectricity[J]. J. Am. Chem. Soc.,2008,130 (32): 10468-10469.
    [172]X. Zhao, H. He, T. Hu, F. Dai, D. Sun. Interpenetrating Polyhedral MOF with a Primitive Cubic Network Based on Supermolecular Building Blocks Constructed of a Semirigid C 3-Symmetric Carboxylate Ligand[J]. Inorg. Chem.,2009,48 (17):8057-8059.
    [173]A. Pichon, C.M. Fierro, M. Nieuwenhuyzen, S.L. James. A pillared-grid MOF with large pores based on the Cu2(O2CR)4 paddle-wheel[J]. CrystEngComm.,2007,9 (6):449-451.
    [174]Z.-Y. Li, J.-W. Dai, N. Wang, H.-H. Qiu, S.-T. Yue, Y.-L. Liu. A Series of Three-Dimensional 4d-4f Heterometallic Coordination Polymers with Six-Connected Doubly Interpenetrated pcu Net Topology:Structural, Photoluminescent, and Magnetic Properties[J]. Cryst. Growth Des.,2010,10 (6):2746-2751.
    [175]H.Y. Wu, R.X. Wang, W. Yang, J. Chen, Z.M. Sun, J. Li, H. Zhang. 3-Fold-interpenetrated uranium-organic frameworks:new strategy for rationally constructing three-dimensional uranyl organic materials[J]. Inorg. Chem.,2012,51 (5): 3103-3107.
    [176]J.L. Manson, C. Campana, J.S. Miller. Interpenetrating three-dimensional rutile-like frameworks. Crystal structure and magnetic properties of Mnn[C(CN)3]2[J]. Chem. Commun.,1998, (2):251-252.
    [177]H. He, D. Yuan, H. Ma, D. Sun, G. Zhang, H.-C. Zhou. Control over Interpenetration in Lanthanide-Organic Frameworks:Synthetic Strategy and Gas-Adsorption Properties[J]. Inorg. Chem.,2010,49 (17):7605-7607.
    [178]J. Zhang, L. Wojtas, R.W. Larsen, M. Eddaoudi, M.J. Zaworotko. Temperature and Concentration Control over Interpenetration in a Metal- Organic Material[J]. J. Am. Chem. Soc.,2009,131 (47):17040-17041.
    [179]S. Bureekaew, H. Sato, R. Matsuda, Y. Kubota, R. Hirose, J. Kim, K. Kato, M. Takata, S. Kitagawa. Control of interpenetration for tuning structural flexibility influences sorption properties[J]. Angew. Chem., Int. Ed.,2010,122 (42):7826-7830.
    [180]S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:Selective sorption and catalysis[J]. J. Am. Chem. Soc., 2007,129 (9):2607-2614.
    [181]X.-Y. Wang, L. Gan, S.-W. Zhang, S. Gao. Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials[J]. Inorg. Chem.,2004,43 (15): 4615-4625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700