(R)-四氢噻唑-2-硫酮-4-羧酸的应用研究兼论羧酸金刚烷胺盐的合成及抗肿瘤活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Application Study of (R)-tetrahydrothiazo-2-thione-4-carboxylic Acid and Synthesis of Carboxylic Acid Adamantanamine Salts and Antitumor Activities
  • 作者:李静
  • 论文级别:博士
  • 学科专业名称:有机化学
  • 学位年度:2008
  • 导师:李叶芝 ; 黄化民
  • 学科代码:070303
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-06-01
摘要
手性化合物在医药、农药、工业及许多领域均有重要用途。不对称合成法及外消旋体拆分法是获得手性物质的主要方法。
     我们以廉价易得的L-半胱氨酸盐酸盐为手性源合成了(R)-四氢噻唑-2-硫酮-4-羧酸[简称(R)-TTCA],由(R)-TTCA与氢化铝锂反应一步得到一种手性氨基醇((R)-4-(羟甲基)-四氢噻唑-2-硫酮1)催化剂。测定了1的晶体结构,证明它在常态下主要为含有硫羰基的化合物,以1为手性催化剂由苯甲醛与二乙基锌反应得到了手性仲醇其构型为S,探讨了该反应的机理。
     以(R)-TTCA为拆分剂对甲砜霉素化学合成过程中的重要中间体D,L-苏式-对-甲砜基苯基丝氨酸乙酯进行动力学拆分,直接得到了L-苏式-对-甲砜基苯基丝氨酸乙酯。
     以(R)-TTCA及其它含氮杂环化合物与金刚烷胺反应得到了相应的铵盐,采用MTT法对其进行了体外抗肿瘤活性的筛选,发现烟酸金刚烷胺具有较好的抗肿瘤活性,随后又建立小鼠荷瘤模型对其进行动物体内抗肿瘤作用实验,结果显示最高抑瘤率达51.94%。
     在此基础上,我们进一步研究了其它类型的有机酸金刚烷胺盐的体外抗肿瘤活性,发现氯乙酸金刚烷胺对肝癌和胃癌细胞有较好的抑制作用,随后又建立荷瘤动物模型对其体内抗肿瘤活性进行研究。结果证明氯乙酸金刚烷胺对H22小鼠实体瘤的抑制率达44.4%。
     以上工作均未见文献报道。
Chiral compounds are widely used in fields of medicine, pesticide, industry, etc. Asymmetric catalytic synthesis and racemic resolution are primary methods to obtain chiral compounds, which highly depend on chiral reagents and chiral resolving agents. Thus, developing new chiral catalysts and resolving agents have been a focus in research of asymmetric synthesis.
     In this paper, cheap and commercially available L-cysteine hydrochloride was used as chiral source to synthesize (R)-tetrahydrothiazo-2-thione-4-carboxylic acid [(R)-TTCA], which was used in preparation of chiral reagents for asymmetric catalytic reaction and in racemic resolvent as kinetic resolving reagents. One of the three major treatments for malignant tumor, anticancer drug with high efficiency and low toxicity is a hotspot with chemotherapy in medicine research. To expand application of (R) TTCA, we studied ammonium salts formed in reactions of antivirus adamantanamine with (R) TTCA and with other organic acids , performed research on their in vitro and in vivo anticancer effect, probed products with anticancer effect, and discussed potential influence of organic acid structure on effect of the ammonium salts.
     The main content of this paper are as follows:
     ⅠThe preparation and application of chiral ligand (R) TTCA.
     ⅰWe obtained (R)-4-hydroxymethyl-2-thioxo thiazolidine 1 from (R)TTCA via reduction with LiAlH4 , determined the crystal structure of 1 by X-ray diffraction method, and proved 1 mainly existed in form of thiocarbonyl under normal condition.
     But it could be noted by the crystal structure (Figure 1) that there are two kinds of the S-C bonds as shown in figure 1.
     The longer bond length of S(1)-C(3) and S(1)-C(1) is 1.810 ? and 1.741 ? respectively, Ascriping to the single bond between S and C atoms.On the other hand one relative short bond 1.675 ? between S(2)-C(1) was found .It suggests one weak double bond (typical C=S double bond distance =1.611 ?) between S(2)-C(1) which may originate from the fact that there is thio group in molecular of 1.The relative short bond lengths of N(1)-C(1) (1.310 ?) also declares the existence of 1b. It is showing that has a tautomer 1 and 1b(Figure 2)
     ⅱThe chiral ligand of 1 as catalyst was used to addition of benzaldehyde with diethylzinc and product 3, 90%e.e.was obtained. Interestingly we found the configuration of 3 is S. Although 1-phenyl-1-propyl alchohol with R configuration was obtained under the catalysis of
     Scheme 2 Enantioselective addition of diethylzinc to benzaldehyde
     ⅲWe studied the reaction mechanism of addition of diethylzinc to benzaldehyde as follow:
     Scheme3 A tentative mechanism for enantioselective diethylzinc addition to benzaldehyde in the presence of cat.1
     The ethyl group of zinc was attacked to carbonyl of benzaldihyde from Si-face and the product of S-configuration was obtained.
     ⅡResolution of D,L-threo-p-methylsulfonylphenylserine ester, with (R)TTCA as resolving agent.
     ⅰR(-)TTCA was used as resolving agent in kinetic resolution of D,L-threo-p-methylsulfonylphenylserine ester, the structure of R(-)TTCA·D -(+)-threo-p-methylsulfonylphenyl -serine ester derived from the reaction was characterized by infrared and NMR. The enantiomeric excess of L-threo-p-MethylsulfonylPhenyl serine ester and D-threo-p-methylsulfonylphenylserine ester obtained were higher than 99 % .
     ⅱWe observed the influence of solvents, reaction temperature and dosage of resolving agents on resolution reactions. the R(-)TTCA·D-(+)-threo-p-methylsulfonylphenylserine ester could not yield in solid form from the reaction When water and DMSO were used as solvents. General organic solvents could be used in the reaction. Suitable temperature was between room temperature and 50°C. The reaction could not proceed when temperature was down to 0°C.
     ⅲWe determined the molar ratio of resolving agents and the racemic ester that was 1:2.
     ⅢAmmonium salts were formed in reactions of adamantanamine with (R) TTCA or other organic acids and studied their anti-tumor activity.
     ⅰIn this paper, we prepared 17 kinds of ammonium salts of adamantanamine with (R) TTCA and with organic acids for the first time and determined their structure with IR, element analysis and NMR.
     ⅱThe anti-tumor effect of these ammonium salts were studied by the method of MTT in vitro. Nicotinic acid adamantanamine salt, chloroacetic acid adamantanamine salt and oxalic acid adamantanamine salt showed better anti-tumor effect to human hepatoma cell SMMC-7721 and human gastric cancer cell SGC-7901, and lower toxicity to normal cells.
     ⅲwe investigated the anti-tumor effect of nicotinic acid adamantanamine salt, by animal model of transplanted tumor in mice
     (i) The anti-tumor activity and side effects of nicotinic acid adamant -anamine salt were studied by using mice model bearing hepatoma H22. The results of this experiment indicated that nicotinic acid adamantanamine salt could inhibit the growth of transplanted tumor H22 in mice with a highest tumor inhibition rate of 51.49%; No toxicity to white cell of peripheral blood and no side effects as lowering weight of spleen and thymus were noted. In medium dosage group, nicotinic acid adamantanamine salt promoted proliferation of T Lymphocy in spleen.
     (ii) Using mice bearing transplanted hepatoma H22 and 5-fluorouracil as positive control drug, we observed influence of chloroacetic acid adamantanamine salt on tumor inhibition ratio, organ index, peripheral leukocytes, bone marrow nucleated cells, bone marrow DNA, catalase and malondialdehyde. The results indicated chloroacetic acid adamantanamine salt could effectively inhibit growth of hepatoma H22 in mice with a highest inhibition rate of 44.4% and showed dose dependent. In all three groups, leukocyte count in blood, weight of spleen and thymus were increased. No inhibition of hematopoietic function of bone marrow was noted in medium and high dosage group. MDA level in mice bearing hepatoma were lowered to some extent. Less side effects like bone marrow inhibition and immune system inhibition were caused compared with by positive control drug. No damage to immune function, hematopoietic function and antioxidation ability was exhibited.
     ⅳWe discussed the relationship between the structure of the organic acids which formed ammonium salts with adamantanamine and anti-tumor activity that electron-atracting group(electronegativity) ofα-position of carbosylic acid showed better anti-tumor activity.
     Compared structur of nicotinic adamantanamine salt isonicotinic adamantanamine salt that stereoscopic place of carboxy group have demonstrated a different effect of antitumor activity.
     We have been requesting patent of antitumor activity of nicotinic, chloroacetic acid and oxalic acid adamantanamine salts.
引文
1. 张礼和, 化学学科进展. 北京: 化学工业出版社, 2005, 75.
    2. 杜灿屏, 刘鲁生, 张恒生. 21 世纪有机化学发展战略[M]. 北京: 化学工业出版社, 2001, 51-79.
    3. Ben L. Feringa, Richard A. van Delden, Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality, Angew. Chem. Int. Ed. 1999, 38, 3418-3438
    4. 戴立信, 朱光美. 手性技术的兴起. 化学通报, 1995, 6: 15
    5. Collins A N, Schedrake G N, Croshy J Eds .Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds; New York: dekker,1993.
    6. Holton, R A, European Patent Application, EP-A 400971,1990.
    7. Holton, R. A., H. B. Kim, C. Somoza et al., First total synthesis of taxol.1. Functionalization of the B ring. J. Am. Chem. Soc., 1994 a, 116:
    8. Holton, R. A., H. B. Kim, C. Somoza et al., First total synthesis of taxol.
    2. Completion of the C and D rings. J. Am. Chem. Soc., 1994 a, 116: 1599-1600
    9. Wender, P. A., Badham, N. F. et al., The Pinene Path to Taxanes. 5. Stereocontrolled Synthesis of a Versatile Taxane Precursor, J. Am. Chem. Soc.,1997, 119, 2755-2756.
    10. 黄化民, 李叶芝. 紫杉醇全合成. 合成化学, 1998, 6 (3), 238
    11. Mukaiyama T. Shiina I. et al. Asymmetric total synthesis of Taxol, Proc. Japan. Acad.1997, 73(6), 95-100.
    12. 李正化, 药物化学[M]. 北京: 人民卫生出版社, 1987, 296-297.
    13. 叶秀林, 立体化学[M]. 北京: 人民卫生出版社, 1999.
    14. Jacobsen, R. A., Sharpless, K. B., In Catalytic Asymmetric Synthesis, Ojima, I. Ed. 2nd Ed. New York : VCH, 2000, 357-398.
    15. Li Yezhi, Guo Chunxiao, Bu Weiming and Huang Huamin. Resolution of racemic R-S-α-arylamine by a new reslving agent (R)-thiazolidine-2- thione-4-carboxylic acid . Science in China (Series B) 1998, 41(4) 361-370
    16. Lin Pu. 1, 1'-Binaphthyl Dimers, Oligomers, and Polymers: MolecularRecognition, Asymmetric Catalysis, and New Materials, Chem. Rev. 1988, 98, 2405.
    17. Yu Chen, Shahla Yekta, and Andrei K. Yudin, Modified BINOL Ligands in Asymmetric Catalysis, Chem. Rev. 2003, 103, 3155-3212.
    18. William S. Knowles, Asymmetric Hydrogenations (Nobel Lecture), Angew. Chem. Int. Ed. 2002, 41, 1998-2007
    19. Ryoji Noyori, Asymmetric Catalysis: Science and Opportunities (Nobel Lecture), Angew. Chem. Int. Ed .2002, 41, 2008-2022
    20. Harald Gr?ger, J?rg Wilken, The Application of L-Proline as an Enzyme Mimic and Further New Asymmetric Syntheses Using Small Organic Molecules as Chiral Catalysts, Angew. Chem. Int. Ed. 2001, 40, 529-532
    21. Peter I. Dalko, Lionel Moisan, Enantioselective Organocatalysis, Angew. Chem. Int. Ed. 2001, 40, 3726-3748.
    22. Benjamin List, Asymmetric Aminocatalysis, Synlett, 2001,1675.
    23.Rudolf O. Duthaler, Proline-Catalyzed Asymmetric -Amination of Aldehydes and Ketones-An Astonishingly Simple Access to Optically Active -Hydrazino Carbonyl Compounds, Angew. Chem. Int. Ed. 2003, 42, 975-978.
    24. K. N. Houk and Benjamin List, Asymmetric Organocatalysis, Acc. Chem. Res., 2004, 37, 487.
    25. Mohammad Movassaghi, Eric N. Jacobsen The Simplest "Enzyme", Science 2002, 298,1904-1905.
    26. Susumu Saito and Hisashi Yamamoto, Design of Acid-Base Catalysis for the Asymmetric Direct Aldol Reaction, Acc. Chem. Res. 2004, 37, 570-579.
    27. Benjamin List, Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents, Acc. Chem. Res. 2004, 37, 548-557.
    28. Nis Halland, Alan Braunton, et al. Direct Organocatalytic Asymmetric -Chlorination of Aldehydes, J. Am. Soc., 2004, 126, 4790-4791.
    29. Takasu K, Maiti S, Inora M, Heterocycles 2003, 59, 51.
    30. Zhuo Tang, Fan Jiang, Luo-Ting Yu, et al. Novel Small Organic Molecules for a Highly Enantioselective Direct Aldol Reaction, J. Am. Chem. Soc. 2003, 125, 5262-5263.
    31. Stefan France, David J. Guerin, et al. Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis, Chem Rev. 2003, 103, 2985-3012.
    32.Armando Córdova, Wolfgang Notz, Carlos F. Barbas III, Direct organocatalytic aldol reactions in buffered aqueous media, Chem. Commun.2002, 24, 3024-3025.
    33. Kenso Soai, Seiji Niwa, Enantioselective addition of organozinc reagents to aldehydes, Chem. Rev. 1992, 92, 833-856.
    34. Tobin J. Dickerson, Kim D. Janda, Aqueous Aldol Catalysis by a Nicotine Metabolite, J. Am. Soc. 2002, 124, 3220-3221.
    35.Kenso Soai, Shuji Yokoyama, Tomoiki Hayasaka, Chiral N,N-dialkylnorep -hedrines as catalysts of the highly enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes. The asymmetric synthesis of secondary aliphatic and aromatic alcohols of high optical purity, J. Org. Chem. 1991, 56, 4264-4268.
    36. Cordova A, Babas C. F, Tetrahedron Lett. 2003, 44, 1923.
    37. Sean P. Brown, Nicole C. Goodwin, and David W. C. MacMillan, The First Enantioselective Organocatalytic Mukaiyama-Michael Reaction: A Direct Method for the Synthesis of Enantioenriched γ-Butenolide Architecture, J. Am. Chem. Soc. 2003, 125, 1192-1194.
    38. Joel F. Austin, David W. C., MacMillan Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis, J. Am. Chem. Soc. 2002, 124, 1172-1173.
    39. 商艳梅. 新手性催化剂催化下不对称碳—碳键的合成研究. 吉林大学博士论文,2007.
    40. 陈新谦, 金有豫. 新编药物化学(12 版). 人民卫生出版社, 1985.
    41. 陈凯光, 蒋华良. 计算机辅助药物设计原理、方法及应用[M]. 上海:上海科学技术出版社, 2000.
    42. Shen J H, Xu X Y, Cheng F, et al. Virtual Screening on natural products for discovering action compounds and target slues, Curr Med Chem, 2003, 10, 2327-2347.
    43. Opren T I, Mattes H, Integrating Virtual Screening in lead discovery, Curr. Opin. Chem. Biol, 2004, 8: 349-358.
    44. Richarde W G. Virtual Screening using grid computing: the Screensaver projuct. Nature Rev. Drug Discov, 2002, 1: 551-555.
    1. Pu, L.; Yu,H-B. Catalytic Asymmetric Organozinc Additions to Carbonyl Compounds. Chemical Reviews .2001, 101,757-823.
    2. Cimarelli, C.; Palmieri, G.; Volpini,E.;A practical stereoselective synthesis of secondary and tertiary aminonaphthols: chiral ligands for enantioselective catalysts in the addition of diethylzinc To benzaldehyde. Tetrahedron: Asymmetry, 2002, 13 (22), 2417-2426.
    3. Le Goanvic, D.; Holler, M.; Pale, P.; Chiral tridentate versus bidentate pyridines as catalysts in the enantioselective alkylation of benzaldehyde with diethylzinc. Tetrahedron:Asymmetry, 2002, 13(2), 119-121.
    4. Vilaplana, M-J.; Molina, P.; Arques ,A.; et al. Synthesis of the novel chiral 1, 3-amino alcohol 8-N, N-bis(ferrocenylmethyl) amino-menthol and its use as catalyst in the enantioselective Addition of diethylzinc to aldehydes.Tetrahedron: Asymmetry, 2002,13(1),5-8.
    5. Superchi, S.; Giorgio, E.; Scafato, P.; Rosini. C.; Rational design of chiral 1,1′-binaphthylazepine-based ligands for the enantioselective addition of ZnEt2 to aromatic aldehydes.Tetrahedron: Asymmetry, 2002,13(13), 1385-1391.
    6. Oguni, N.; Omi.T.; Enantioselective addition of diethylzinc to benzaldehyde catalyzed by a small amount of chiral 2-amino-1-alcohols. Tetrahedron Lett, 1984, 25(26),2823-2824.
    7. Kitamura, M.; Suga,S.; Kawai, K.; Noyori. R. Catalytic asymmetric induction. Highly enantioselective addition of dialkylzincs to aldehydes.Journal of the American Chemical Society.1986, 108, 6071-6072.
    8. Noyori, R.; Suga, S.; Kawai, K. et al. Enantioselective addition of diorganozincs to aldehydes catalyzed by β-amino alcohols. Journal of Organometallic Chemistry, 1990, 382, 1-2, 19-37
    9. (a) Tanaka, K.; Ushio, H.; Suzuki. H;. Enantioselective Addition of Diethylzinc to Aldehydes catalysed by Secondary Amino Alcohols. J. Chem. Soc.Chem.commun.,1989,1700 ; ( b)Genov, M.; Kostova, K.; Dimitrov. V. Highly diastereoselective synthesis of new optically active aminoalcohols in one step from (+)-camphor and (?)-fenchone. Tetrahedron: Asymmetry ,1997, 8(11),1869-1876.
    10. Soai, K.; Hayase, T.; Takai,K.; Sugiyama.T. Asymmetric Synthesis of Chiral Secondary Alcohols with Isopropyl Substituents by the Catalytic Enantioselective Addition of Diisopropylzinc to Aldehydes using N,N-Dialkylnorephedrines as Chiral Catalysts. Journal of Organic Chemistry, 1994, 59, 7908-7909.
    11. Sato, I.; Soai, K.; Solvent-free catalytic enantioselective addition of diethylzinc to aldehydes. Chemical Communication 2000, 2471-2472
    12. Paleo, M. R.; ICabeza, I.; Sardina., F. J. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by N-(9-Phenylfluoren-9-yl)β-Amino Alcohols. Journal of Organic Chemistry , 2000, 65, 2108-2113
    13. Li , S.; Jiang , Y.; Mi , A. Asymmetric synthesis XVII. New chiral catalysts for the stereocontrolled addition of benzaldehyde by diethylzinc. Tetrahedron: Asymmetry, 1992,3(11),1469
    14. Delair, P.; Einhorn, C. J. Einhorn, and J. L. Luche. Synthesis of beta.- Amino Alcohols Derived from L-Valine. Journal of Organic Chemistry, 1994, 59, 4680-4682
    15. Sibi, M. P. ; Chen, J.X. Gregory R. Cook. Reversal of stereochemistry in diethylzinc addition to aldehydes by a simple change of the backbone substituent in L-serine derived ligands.Tetrahedron Lett, 1999, 40(17), 3301-3304.
    16. Goralski, C.T. ;Chrisman, W.; Hasha, D.L.; Nicholson, L.W.Rudolf,P.R. et al. Boranes in synthesis-VII. Synthesis of 2-dialkylamino-6, 6-Dimethylbicyclo [3.1.1] heptan-3-ols from (R)-(+)-nopinone. Chiral auxiliaries for the addition of diethylzinc to aromatic aldehydes Tetrahedron: Asymmetry, 1997, 8(23), 3863-3871.
    17. Lawrence,C.F.;Nayak,S.K.;Thijs,L.; Zwanenburg, B. N-Trityl-Aziridinyl (diphenyl) methanol as an Effective Catalyst in the Enantioselective Addition of Diethylzinc to Aldehydes. Synlett 1999, 1571-1572.
    18. Behnen, W.; Mehler, T.; Martens,J . Catalytic enantioselective addition of diethylzinc to aldehydes: Synthesis and application of a new cyclic catalyst.Tetrahedron:Asymmetry 1993, 4(7), 1413-1416.
    19. Shi, M.; Jiang, J-K.Chiral C2-symmetric 2,4-disubstituted azetidines as chiral ligands in the addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry , 1999, 10(9),1673-1679
    20.Soai, K.; Ookawa, A.; Kaba,T.; Ogawa,K.; Catalytic asymmetric induction.Highly enantioselective addition of dialkylzincs to aldehydes using chiral pyrrolidinylmethanols and their metal salts. Journal of the American Society, 1987,109, 7111-7115
    21. Shibata, T.; Tabira, H.; Soai, K. A catalytic and enantioselective cyclopropylation of aldehydes using dicyclopropylzinc. J. chem. Soc., Perkin Trans.1998, 998, 177-178.
    22. Soai, K.; Yokoyama,S.; Hayasaka,T. Chiral N,N-dialkyl- norephedrines as catalysts of the highly enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes. The asymmetric synthesis of secondary aliphatic and aromatic alcohols of high optical purity. Journal of Organic Chemistry , 1991, 56, 4264.
    23. (a) Wallbaum,S.; Martens,J. Catalytic enantioselective addition of diethylzinc to aldehydes: Application of a new bicyclic catalyst. Tetrahedron: Asymmetry, 1993, 4(4), 637-640; (b) J?rg Wilken, Michael Kossenjans, Harald Gr?ger, Jürgen Martens. Synthesis and application of new β-amino alcohols based on the octahydro-cyclopenta[b]pyrrole system in the catalytic enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry, 1997, 8(12), 2007-2015; (c) J. Eilers, J. Wilken, J. Martens. Syntheses of new chiral 1,2-diamines and δ-amino-alcohols and their application in catalytic enantioselective C-C bond formations at an elevated temperature of up to 110°C. Tetrahedron: Asymmetry, 1996, 7 (8), 2343-2357.
    24. Solà, L.; Reddy, K. S.; Vidal-Ferran, A. et al. A Superior, Readily Available Enantiopure Ligand for the Catalytic Enantioselective Addition of Diethylzinc to -Substituted Aldehydes. Journal of Organic Chemistry ,1998, 63,7078-7082
    25. Reddy, K. S.; Solà, L.; Moyano, A. et al. Highly Efficient Synthesis of Enantiomerically Pure (S)-2-Amino-1,2,2-triphenylethanol. Developm -ent of a New Family of Ligands for the Highly Enantioselective Catalytic Ethylation of Aldehydes. Journal of Organic Chemistry , 1999, 64, 3969-3974.
    26. Bolm, C.; Ewald,M.; Felder, M. et al .Enantioselective Synthesis of Optically Active Pyridine Derivatives and C2-Symmetric 2,2-Bipyridines. Chemische Berichte, 1992, 125(5), 1169-1190.
    27. Bolm, C.; Schlingloff, G.; Harms. K. Catalyzed Enantioselective Alkylation of Aldehydes. Chemische Berichte .1992, 125 (5),1191-1203
    28. Allen, J.V.; Frost, C.G.; Williams,J. M.J. Asymmetric addition of diethylzinc to aromatic aldehydes using enantiomerically pure hydroxymethyl oxazoline ligands.Tetrahedron: Asymmetry, 1993, 4(4), 649-650
    29. Ionescu, R. D.; Blom, A.; Frejd, T. Phenylalanine derivatives as catalysts in the enantioselective addition of diethylzinc to benzaldehydes. Tetrahedron: Asymmetry, 2003, 14(16), 2369-2380.
    30. Dave, R.; Sasaki, N.A.S. Synthesis of chiral C/N-functionalized morpholine alcohols: study of their catalytic ability as ligand in asymmetric diethylzinc addition to aldehyde.Tetrahedron: Asymmetry, 2006, 17(3), 388-401
    31. Szakonyi, Z.; Balázs, A.; Martinek, T.A.; Fül?p,F. Enantioselective addition of diethylzinc to aldehydes catalyzed by γ-amino alcohols derived from (+)- and (?)-α-pinene. Tetrahedron: Asymmetry, 2006,17(2), 199-204
    32. 商艳梅, 新手性催化剂催化下不对称碳-碳键的合成研究. 吉林大学博士论文, 2007, 6.
    33. Huang Hua-Min (黄化民), Li Ye-Zhi (李叶芝), Esterification of δ-Ketonic Acids. Chem. J. Chinese Universities (高等学校化学学报), 1984, 5(4), 499-501.
    34. Catalog Handbook of Fine Chemical, 1996-1997,1168.
    35. Ryoji Noyori, Masato Kitamura. Enantioselective Addition of Organometallic Reagents to Carbonyl Compounds: Chirality Transfer, Multiplication, and Amplification. Angewandte Chemie International Edition in English, 1991, 30, 49.
    1. 于平. 手性化合物研究进展.化工进展, 2002, 21(9): 635-638.
    2. 蒋光祖. 对我国开发手性药物的思考. 药学进展, 1997,21(4): 226-228.
    3. 宫丽, 卞俊. 手性药物的药理学立体选择性. 国外医学药学分册,药2007, 34(2): 123-126.
    4. 叶秀林. 立体化学. 北京: 高等教育出版社, 1980: 119-148.
    5. 黄蓓, 杨立荣, 吴坚平. 手性拆分技术的工业应用. 化工进展, 2002, 21 (6): 375-380.
    6. 任国宾, 詹予忠, 郭士岭. 手性拆分技术进展.北京: 科学出版社,2000: 1-3.
    7. 黄文义. dl-酒石酸化学拆分. 化学世界, 1999, 8: 372-374.
    8. 向燕龙, 蔡水洪. 胺类拆分剂从水溶液中拆分外消旋有机酸的研究. 化学通报, 2000, 9: 53-56.
    9. 潘建林, 王爱团, 包戚明等. (±)-1,2-二苯基乙二胺的合成与拆分. 杭州师范学院学报, 2003, 2(4): 43-45.
    10. 臧健, 王志军, 吴怡祖. 扁桃酸的光学拆分. 精细化工中间体, 2005, 35(1), 50-52.
    11. 唐除痴, 成俊然, 李广仁等. 用奎宁拆分顺式菊酸. 高等学校化学学报, 1988, 9(1): 1192-1195.
    12. 林云, 张灿, 华维一. 四氢小檗碱的拆分. 中国药科大学学报, 2002, 33(6): 470-472.
    13. 马红敏, 邵瑞链, 马治华. 成俊然.动力学拆分法的研究进展. 有机化学, 2000, 20(4): 454-463.
    14. Noyori R , Tokunaga M , Kitamura M . Stereoselective Organic Synthesis via Dynamic Kinetic Resolution. Bulletin of the Chemical Society of Japan., 1995, 68, 36-55.
    15. Hartmut Stecher, Kurt Faber. Biocatalytic Deracemization Techniques: Dynamic Resolutions and Stereoinversions. Synthesis,1997, 1-16.
    16. Victor S. Martin, Scott S. Woodard, Tsutomu Katsuki, et al. Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity.Jouranl of the American Chemical Society, 1981, 103, 6237-6240.
    17. Edwin Vedejs and Xinhai Chen. Parallel Kinetic Resolution. Jouranl of the American Chemical Society,1997, 119, 2584.
    18. 尤田耙. 手性化合物的现代研究方法. 安徽: 中国科学技术大学出版社, 1993.
    19. 李叶芝, 郭纯孝, 刁家寅等. 新拆分剂R(-)四氢噻唑-2-硫酮-4-羧酸对R,S-α-苯乙胺拆分的研究. 高等学校化学学报, 1998, 19(5): 757-759.
    20. 颜国和, 胡仲侃. 甲砜霉素合成中的L-苏式-对甲砜基苯基丝氨酸乙酯消旋工艺研究. 中国医药工业杂志, 1999, 23: 433-436.
    21. Huang Hua-Min,Li Ye-Zhi, Esterification of δ-Ketonic Acids. Chem. J. Chinese Universities. 1984, 5(4), 499-501.
    22. Ger Offen 1970,1938513(CA 1971:74,125140e)
    23. Ger Offen 1975,2349496(CA 1975:83,10872p)
    24. Fr Demande 1975,2246576(CA 1976:84,165103a)
    25. U.S. 1975, 2927054 (CA 1976:84,195193a)
    26. 日本公开特许 a) 70-29176 (CA 1971, 74, 64064j); b) 74-10222 (CA 1975, 82, 170426d); c) 77-20417 (CA 1975, 88, 62611a)
    27. Ger Offen 1987,8543021(CA 1987:107, 180628f)
    28. 徐勤丰, 甲砜霉素合成路线概述. 中国医药工业杂志, 1994, 25: 86.
    29. 董顺康. 苯基丝氨酸路线合成甲砜霉素.天津化工, 1975, 1:1.
    1. 金有豫. 药理学(第五版) .北京: 人民卫生出版社, 2001, 10.
    2. 彭司勋. 药物化学. 北京: 中国医药科技出版社, 1999.
    3. Shen J H , Xu X Y, Cheng F, et al. Virtual screening on natural products and target clues.Curr Med Chem, 2003, 10: 2327-2342.
    4. Abagyan R and Torrov M. High-throughput docking for lea generation. Curr Opin Chem Biol, 2201, 5: 375-382
    5. Waszkowycz B, Perkins T D J, Sykes R A, et al. Large-scale virtual screening for discovering leads in the postgenomic era. IBM Systems J. 2001, 40: 360-376.
    6. Oprea T I, Matter H. Integrating virtual screening in lead discovery. Curr Opin Chem Biol, 20048:349-358
    7. Rees D C, Congreve MMurry C W,Carr R.Fragment-base lead discovery. Nature Rev Drug Discov, 2004, 3: 660-672.
    8. Nagao, Y.; Yagi, M.; Ikeda, T.; Fujita, E. A new chiral recognition in aminolysis of 3-acyl-4(r)-methoxycarbonyl-1, 3-thiazolidine- 2-thione with racemic amines, Tetrahedron Lett, 1982, 23(2), 201 -204.
    9. 李叶芝, 郭纯孝, 鲁向阳等. (R)-四氢噻唑-2-硫酮-4-羧酸同 R.S-氨基醇的手性识别反应. 合成化学,1998, 6(2): 155-159.
    10. 李叶芝, 郭纯孝, 刁家寅等. 新拆分试剂 (R)-四氢噻唑-2-硫酮-4-羧酸对 R, S-α-苯乙胺拆分的研究. 高等学校化学学报, 1998, 19(5): 757-759.
    11. 李叶芝, 郭纯孝, 牛刚等, (R)-N-乙酰四氢噻唑-2-硫酮-4-羧酸与 D,L -氨基酸的识别反应. 吉林大学自然科学学报, 1998, 4(2): 85-88.
    12. Alexius F reyberger. In vitro characterization of the goitrogenic properties of 2–Thiothiazolidine-4-carboxylic acid. Toxicology Lettes, 1996, 88 (10):36-38.
    13. 王朝杰, 李永, 杨新宇等. 脯氨酸的构象及性质. 物理化学学报,2007, 23(3): 305-310.
    14. 王留成, 王娟, 赵建宏等. 4-甲基吡啶直接电氧化合成异烟酸工艺条件的研究. 化学反应工程与工艺, 2006, 22(4): 372-374.
    15. 禹良才, 周春山, 梁宏等. 新方法合成配合物异烟酸钻( Ⅱ) . 广西师范大学学报(自然科学版), 2004, 22(3): 66-69.
    16. 王利民. 烟酸的合成. 哈尔滨工程大学, 2003(3): 1-10 .
    17. 聂勇. 烟酸、烟酰胺的生产及市场概述. 吉林石油化工, 1994(4): 32-37.
    18. 李艳云, 尹振晏, 宫彩红. 烟酸的研究进展. 北京石油化工学院学报, 2006, 14(1): 59-63.
    19. 葛孝忠, 应黄慧,陈晓等. 金刚烷类药物的研究进展. 中国医药工业杂志, 2003, 34(11): 583-586 .
    20. 奥野良信. 金刚烷胺. 日报医学介绍, 2004, 25(7): 307-309.
    21. Hayden F G. Amantadine and rimantadine-clinical aspects in Richman DD. Antiviral Drug Resistance Chichester,1996: 59-77.
    22. Calne D B. Advancein Neurology. New York: Raven Press.1973. 105-102.
    23. Komnuber J, Weller M, Schoppmeyer K, et al Amantadine andmemantine are NMDA receptor antagonists with neuroprotective properties, J Neural Transm, 1994, 43: 91-104.
    24. Smith J P.Treatment of chronic hepatitis C with amantadine. Dig Dis Sci , 1997, 42(8):1681-1687.
    25. 周曙, 苏玲. 硫酸金刚烷胺注射液的一般药理学试验. 齐鲁药事, 2004, 23 (7): 48-49.
    26. 唐明月, 张艳. 硫酸金刚烷胺与盐酸金刚烷胺对流感病毒的作用比较. 齐鲁药事, 2004, 23(6): 44-45.
    27. 张伟红, 梁红芝, 赵志刚. 金刚烷胺治疗上呼吸道感染的疗效观察.哈尔滨医药, 1998, 18(1): 10-11.
    28. Connie Clark, Mildred M. Woodson, Herbert T. Nagasawa.Inhibition of lymphocyte proliferation by amantadine and its isomer, 2-aminoadam -antane; impact on Lyt-2+ T cells while sparing L3T4+ cells. Immunop -harmacology ,1991,21(1): 41-50
    29. Huang Hua-Min, Li Ye-Zhi, Chem. J. Chinese Universities, 1984, 5(4), 499-501.
    30. 司徒镇强, 吴军正. 细胞培养(第一版). 西安: 世界图书出版西安公司, 2004, 250-252.
    31. 许正新, 许俊, 刘晓梅等. 中药复方对荷瘤鼠肿瘤生长抑制作用的实验研究. 实用临床医药杂志, 2004, 8(1): 48-51.
    32. 张均田. 现代药理实验方法. 北京: 北京医科大学中国协和医科大学联合出版社, 1998, 724.
    33. 林清华. 免疫学实验. 武汉: 武汉大学出版社, 1999.
    34. 徐叔云, 卞如濂, 陈修. 药理实验方法学. 第 2 版, 北京: 人民卫生出版社, 1991: 1221.
    35. 秦善文. 抗肿瘤中药实验研究进展. 河南中医, 2005, 25(2): 76-78.
    36. 曾幼波, 陈琴. 肿瘤化疗药物的毒副作用及防治措施. 海峡药学, 2003, 15 (4): 98-100.
    37. 于守洋. 中国保健品的进展. 北京: 人民卫生出版社, 2001.
    38. 施伟民, 李德春, 高锦声. 自然杀伤细胞的临床研究进展. 国外医学生理、病理科学与临床分册, 1998, 18(3): 236-238.
    39. 林忠宁, 董胜璋, 董书云等. MTT 法检测 T 淋巴增殖功能的方法学探讨和应用. 中国卫生检验, 2000, 10(1): 8-10.
    40. 边兴艳, 杨明燕, 张英. 改良MTT比色法测定淋巴细胞增殖反应. 吉林医学院学报, 1997, 17(2): 28-29.
    1. 鲁凤珠. 我国肿瘤防治工作的回顾与展望. 中国肿瘤, 2001, 10(1): 1-2.
    2. 李天晓, 樊青霞. 恶性肿瘤介入治疗学(第一版). 郑州: 河南医科大学出版社, 2000, 9.
    3. 潘启超. 抗肿瘤药物的研究进展. 癌症, 1998,(3): 228-233.
    4. 孙燕. 肿瘤药物治疗百年回顾与展望. 中华肿瘤杂志, 2004, 26(11): 701-704.
    5. 廖子君, 南克俊, 韩军. 现代肿瘤药物治疗学(第 1 版). 西安: 世界图书出版西安公司, 2002.
    6. 郑 红, 周有骏, 王小燕. 抗肿瘤药物研究进展. 中国新药与临床杂志, 2005, 24(2): 139-143.
    7. Huang Hua-Min, Li Ye-Zhi, Chem. J. Chinese Universities. 1984, 5(4), 499-501.
    8. 司徒镇强, 吴军正. 细胞培养(第一版). 西安: 世界图书出版西安公司, 2004, 250-252.
    9. 韩锐. 抗癌药物研究与实验技术. 北京医科大学出版社,中国协和医科大学联合出版社, 1997: 297-298.
    10.张秀军. 甲基伏苓多糖对小鼠免疫功能的影响. 中国药学杂志, 2000, 37(12): 913-916.
    11.陈茂彬, 黄 琴. 植物甾醇乙酸酯和植物留醇油酸酯抗肿瘤作用探索.粮食与油脂, 2005(1): 16-17.
    12. 张秀娟, 刘佰华, 方桂珍. 阿拉伯半乳聚糖硫酸盐体内抗肿瘤研究. 哈尔商业大学学报(自然科学版), 2006, 22(4):4-7.
    13. 杨建英. 中西医结合治疗化疗中白细胞减少症. 河南肿瘤学杂志, 1999, 8(2): 78.
    14. Ballestar E,Wolffe A P.Methyl2CpG2binding proteins Specific gene repression .Eur J Biochem, 2001, 268: 126
    15. 徐有恒, 王绮如. 造血生理学和生血细胞检测技术. 长沙: 湖南科学技术出版社, 1997, 14-16.
    16 梁启廉, 张英, 谢杰荣等. 重组人白细胞介素-Ⅱ治疗恶性肿瘤化疗后血小板降低的临床疗效评价. 肿瘤防治杂志, 2005, 12(7): 530-531.
    17. 赵志刚, 杜述元. 斯普林配合放化疗治疗晚期恶性肿瘤的临床研究.临床军医杂志, 2001, 29(3): 52-54.
    18. 高德荣, 温珍平, 王磊等. 斯普林治疗化疗所致骨髓抑制和改善生活质量的效果. 现代肿瘤医学,2007, 15(2):262-263.
    19. 曹勇, 钟安朴, 孟华等. 化瘀破癥胶囊对荷瘤小鼠化疗所致骨髓抑制的保护作用研究. 时珍国医国药, 2006, 17(3): 314-315.
    20.崔澂, 王润田. 参与肿瘤免疫逃逸的免疫抑制分子. 临床肿瘤学杂志, 2005, 10(5): 545-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700