去细胞神经支架修复周围神经缺损的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经缺损在战争及和平时期都很常见,目前临床上仍采用自体神经
    游离移植的方法修复周围神经缺损,虽然其疗效比较肯定,但由于切取供移
    植的自体皮神经不可避免地造成新的感觉障碍,而且存在供区受限的问题,
    所以开发理想的神经桥接材料仍是周围神经外科的重要课题,具有十分重要
    的临床意义。虽然在非神经自体组织移植、神经组织工程和异体神经等方面
    的研究都取得了一定的进展,但至今尚未开发出能够代替自体神经移植的理
    想方法。
     本论文用形态学与功能相结合的方法对一种新型生物支架材料(去细胞
    神经支架)单独应用,以及与外源性生长因子联合应用修复同种异体神经缺
    损的效果进行了评价;并进一步对去细胞神经支架能否用于异种移植进行了
    初步研究。实验分为以下6个部分:
     1.用改良的化学程序对兔胫神经进行处理,制取去细胞的神经支架材
    料。组织学染色证明获得的去细胞神经支架内无任何细胞结构,免疫组织化
    学方法显示去细胞神经支架由含有丰富laminin的管状结构组成。支架本身外
    观完整,具有一定的韧性和抗牵拉能力,可操作性强,符合对神经桥接材料
    的一般要求。
    
    
     — —
     2·实验采用神经电生理功能学指标、抗神经微丝免疫组织化学染色、美
     兰髓鞘染色、透射电镜及计算机图象分析等技术,对去细胞神经支架异体移
     植修复周围神经*、ZCm和 3Cm长度缺损的远期神经再生进行了量化检
     测。免疫组化染色观察发现再生神经纤维比较流畅地通过了不同长度的移植
     体。各组动物的展趾功能和电生理功能均有不同程度的恢复。从动作电位幅
     值恢复率、传导速度恢复率等功能学指标和再生有髓纤维数量、髓鞘厚度等
     形态学量化指标比较来看,随着支架长度的延长神经再生效果减低,3。m支
     架的神经再生效果虽劣于自体神经移植组,但仍有、定的功能恢复。
     3、选用 bFGF经皮下导管多次注射的方法与去细胞异体神经支架联合修
     复周围神经缺损。首先研究不同浓度和剂量的外源性 bFGF对去细胞支架移
     植后早期神经再生的影响。实验采用抗神经微丝免疫组化染色观察各组神经
     纤维再生的距离,抗S-100免疫组化染色观察雪旺氏细胞的分布,碱性磷酸
     酶染色观察血管再生。发现高浓度 bFGF组门 和 500 AMl)的
     神经再生距离、血管再生密度在术后10天明显大于盐水对照组。而低浓度
     6厂GF组(50 AUAUhal和mo AU/ml)与盐水对照组无明显差别。此结果提示,
     在支架移植后早期应用一定浓度和剂量的 bFGF能明显提高再生轴突在支架
     内的生长速度。
     4·进一步研究成纤维细胞生长因子和去细胞异体神经支架联合修复神经
     缺损的远期效果。实验用 3cm支架修复异体神经缺损,实验组术后每日经皮
     下埋置的导管将1毫升500 AU恤的 bFGF注射到移植体周围,对照组注射
     等量生理盐水。术后20周时,进行展趾功能检查和动作电位、传导速度、肌
     张力等电生理检测,以及髓鞘染色、电镜观察和计算机图象分析。实验组动
     物功能恢复、再生有髓纤维的数量和成熟度等指标明显优于生理盐水对照组,
     有比较理想的恢复。提示外源性 bFGF局部应用能明显提高去细胞神经支架修
     ·5·
    
     第四军医大学整形外科博士学位论文
     一
     复神经缺损的功能效果,去细胞异体神经支架结合外源性生长因子能较满意
     修复一定长度的神经缺损,是有希望的一种方法。
     5.目的是探索去细胞神经支架材料用于异种移植的可行性。取预溃变和
     新鲜的兔腔神经形成去细胞神经支架材料,异种移植修复大鼠坐骨神经
     15rum缺损。术后 6个月,首先进行坐骨神经功能指数测定和疼痛试验,然
     后用美兰染色、免疫组化、透射电镜等方法对吻合口、移植体中央和远侧神
     经段的再生神经纤维进行形态学观察,并对再生有髓纤维的数量、直径、髓
     鞘厚度等进行量化分析。自体神经移植组、溃变支架组和支架组3个组比较,
     坐骨神经功能指数无显著性差异,均有较好恢复;自体移植组与溃变支架组
     再生有髓纤维数无显著差异,二者均高于正常对照和支架组;自体移植组移
     植体中央再生有髓纤维髓鞘厚度大于溃变支架组和支架组,但在远侧端3组
     无差别;3组再生神经有髓纤维的直径和大于spin有髓纤维数无显著性差
     异。结果提示去细胞神经支架能够在不使用任何免疫抑制措施的条件下,用
     于异种移植良好修复大鼠乃rum周围神经缺损。
     6.目的是观察CD4+、CDS+细胞在去细胞神经支
Peripheral nerve defects may occur frequently both hi war and peace periods, which can result in serious motor and sensory disabilities of the injured extremities. The autologous nerve grafting is still the standard method to repair a nerve gap clinically. For the reason that new sensory disturbance is unavoidable when an autologous cutaneous nerve having been harvested, it is very important to develop a new effective material instead of autologous nerve graft to repair the nerve defects.
    In this paper, a new developed biomaterial called acellular nerve scaffolds (ANS) was evaluated using morphometry combining with neurophisiological technique to show the efficacy of nerve regeneration when bridging an allogenic nerve gap alone or enhanced by exogenous bFGF. Also the possibility of ANS to repair a xenogeneic nerve defect was explored. There are six parts of work as
    
    
    
    
    follows.
    1. An improved chemical procedure was utilized to obtain acellular nerve scaffolds of the rabbit tibial nerve. The extracted ANSs were quite good in physical character and easy to be handled as being transplanted. Histology and immunohistochemistry were used to evaluate the results of extracting procedure, which showed that it is cell free in an acellular nerve constituted by numerous parallel lamina tubes.
    2.The aim of part two was to evaluate the effectiveness of acellular allogeneic nerve graft to bridge peripheral nerve defects. Various length of rabbit tibial nerve gaps were repaired by 1 cm, 2cm and 3 cm long acellular nerve scaffolds respectively and the nerve regeneration was evaluated by functional measurement combining with morphological observation. Nerve defects were successfully repaired with functional recovery in all experimental groups twenty weeks postoperatively. The results of nerve regeneration in the 1 cm-group and the 2cm-group were satisfactory; however, in the 3 cm-group nerve regeneration was inferior to autologous nerve grafting.
    3.The early mechanism of promoting effect by bFGF on nerve regeneration following ANS grafting was explored, and the effects of various concentration of bFGF on axon growth were compared. Immunohistochemistry staining of neurofilament-160 and S-100 was used to show the length of axonal growth and Schwann cell infiltration 10 days after the surgery. The average distance of regenerated nerve fibers in the high dose groups (lOOOAU/ml and 500 AU/ml ) was longer than that in the normal saline control group; but there was no difference between the low dose groups (250 AU/ml and 100 AU/ml) and the
    
    
    
    control group.
    4.The purpose of this part was to evaluate whether exogenous bFGF enhanced the long term effect of nerve regeneration after nerve repair with ANSs extracted by detergent. In the experimental group 3 cm long allogeneic ANSs were used to bridge the rabbit tibial nerve defects, and 1ml of 500 IU bFGF solution was given from the second day after surgery with the schedule once per day for 2 weeks and twice a week for another 6 weeks. In the control group normal saline solution was given as the same course as in the experimental group. The functional recovery and the maturity of regenerated myelinated nerve fibers in the experimental group were markedly superior to that in the control group in 20 weeks after surgery. So, it seems that allogeneic ANSs combining with exogenous some growth factors might be an alternative of autologous nerve grafting to bridge nerve defects.
    5. The aim was to explore the possibility of using xenogeneic acellular nerve scaffolds to bridge peripheral nerve defects. Two kinds of ANS, extracted from either a fresh rabbit tibial nerve or a predegenerated one, were transplanted to bridge 15 mm rat sciatic nerve gaps. Rats treated with orthotopic transplantation and unrepaired ones were as control respectively. Six months after the grafting, functional recovery was evaluated by gait analysis, pinch test, morphological and morphometric analysis. The sciatic nerve function index (SFI) was -30.7%?.8% in rats treated with xenogeneic acellular nerve,
引文
1.谢卫国,朱家恺.非神经组织移植修复周围神经缺损.见:朱家恺主编.周围神经外科进展.广州:广东高等教育出版社,1991年,第1版,P66-84.
    2.朱家恺.周围神经外科学.三环出版社,1991;277.
    3. Chiu DTW, et al. Autogenous vein graft as a conduit for nerve regeneration. Surgery 1982,91:226-232.
    4.洪光祥,王发斌,黄省秋,等.自体静脉移植修复周围神经缺损实验研究.中华显微外科杂志,1991;14(4):220-2.
    5.丛国辉,鲁开化.不同性质骨骼肌复合材料桥接周围神经缺损的比较研究.中华显微外科杂志,1995;18(4):275-6.
    6.韩岩,鲁开化,马福成,等.含有Ⅰ、Ⅳ型胶原的静脉管腔对周围神经缺损修复作用的影响.中华显微外科杂志,1999;22(3):198-200.
    7.利春叶,曹代成.碱性成纤维细胞生子因子结合静脉套接法修复周围神经缺损的实验研究.中国修复重建外科杂志,2000;14(1):14-16.
    8.韩岩,鲁开化.游离神经片段延长静脉桥接周围神经缺损长度的实验研究.中华外科杂志,1993;31(12):726-9.
    9. Tang JB. Vein conduits with interposition of nerve tissue for peripheral nerve defects. J Reconstr Microsurg. 1995;11(1):21-6.
    10. Brunelli GA, Battiston B, Vigasio A, et al. Bridging nerve defects with combined skeletal muscle and vein conduits. Microsurgery. 1993;14(4):247-51
    11. Tang JB, Gu YQ, Song YS. Repair of digital nerve defect with autogenous vein graft during flexor tendon surgery in zone 2. J Hand Surg Br. 1993;18(4):449-53.
    12. Tang JB. Group fascicular vein grafts with interposition of nerve slices for long ulnar nerve defects: report of three cases. Microsurgery. 1993;14(6):404-8.
    13. Walton RL, Brown RE, Matory WE, et al. Autogenous vein graft repair of digital nerve defects in the finger: a retrospective clinical study. Plast Reconstr Surg 1989,84:944-949.
    14. Chiu-DT. Autogenous venous nerve conduits. A review. Hand Clin. 1999,15(4):667-71.
    15.罗永湘,等.静脉桥接正中神经、尺神经缺损四例的教训.中华显微外科杂志,1990;13:229.
    
    
    16. Tang JB, Shi D, Zhou H. Vein conduits for repair of nerves with a prolonged gap or in unfavourable conditions: an analysis of three failed cases. Microsurgery. 1995;16(3):133-7.37.
    17.尹维田,等.静脉桥接治疗周围神经缺损.中华显微外科杂志,1990;13(1):13-14.
    18.洪光祥,王发斌,黄省秋,等.自体静脉移植修复周围神经缺损的疗效观察.中华手外科杂志,1993;9(1):10-12.
    19. Suematsu N, Atsuta Y, Hirayama T. Vein gaft for repair of peripheral nerve gap. J Reconstr Microsurg 1988,4:313-318.
    20. Chiu DTW, et al. Comparative electrophysiologic vein grafts as nerve conduits: an experimental study. J Reconstr Microsurg 1988,4:303-310.
    21. Chiu DTW and Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less. Plast Reconstr Surg 1990,86:928-934.
    22. Rice DH and Berstein FD. The use of autogenous vein for nerve grafting. Otolaryngol Head Neck Surg 1984,92:410.
    23. Sanes JR, Marshall LM, McMahan UJ. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978;78(1):176-98 42.
    24. Keynes RJ, Hopkins WG, Huang LH. Regeneration of mouse peripheral nerves in degenerating skeletal muscle: guidance by residual muscle fibre basement membrane. Brain Res 1984;295(2):275-81.
    25. Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S. Nerve regeneration through the basal lamina scaffold of the skeletal muscle. Neurosci Res 1984;1(3):379.
    26. Fawcett JW, Keynes RJ. Muscle basal lamina: a new graft material for peripheral nerve repair. J Neurosurg 1986;65(3):354-63
    27.孔吉明,钟世镇.用骨骼肌桥接神经缺损的实验研究.中华显微外科杂志,1986;9(1):63-65.
    28. Glasby MA, Gschmeissner S, Hitchcock RJ, Huang CL. Regeneration of the sciatic nerve in rats. The effect of muscle basement membrane. J Bone Joint Surg [Br] 1986:68(5):829-33
    29. Glasby MA, Gschmeissner SG, Hitchcock RJ, Huang CL. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol 1986;15(4):497-510.
    30.谢卫国,朱家恺。用骨骼肌桥接神经缺损的灵长类动物实验研究.中华显微外科杂志,1991;14(4):210-213.
    
    
    31.顾立强,朱家恺.血管植入变性骨骼肌修复不同长度神经缺损的实验研究.中华显微外科杂志,1990;13(2):85-88.
    32. Glasby MA, Gschmeissner SE, Huang CL, De Souza BA. Degenerated muscle grafts used for peripheral nerve repair in primates. J Hand Surg [Br] 1986;11(3):347-51.
    33. Lawson GM, Glasby MA. A comparison of immediate and delayed nerve repair using autologous freeze-thawed muscle grafts in a large animal model. The simple injury. J Hand Surg Br. 1995;20(5):663-700.
    34. Hems TE, Glasby MA. Comparison of different methods of repair of long peripheral nerve defects: an experimental study. Br J Plast Surg. 1992;45(7):497-502.
    35. Lawson GM, Glasby MA. Peripheral nerve reconstruction using freeze-thawed muscle grafts: a comparison with group fascicular nerve grafts in a large animal model. J R Coll Surg Edinb. 1998;43(5):295-302.
    36. Lenihan DV, Carter AJ, Glasby MA. An electrophysiological and morphological comparison of the microwave muscle graft and the freeze-thawed muscle graft. Br J Plast Surg. 1998;51(4):300-6.
    37. Santo Neto H, Teodori RM, Somazz MC, Marques MJ. Axonal regeneration through muscle autografts submitted to local anaesthetic pretreatment. Br J Plast Surg. 1998;51(7):555-60.
    38. Houstava L, Dubovy P, Haninec P, Grim M. An alternative preparation of the acellular muscle graft for reconstruction of the injured nerve morphological and morphometric analysis. Anat Anz. 1999;181(3):275-81.
    39.安贵林,辛畅泰,魏莉娜,等.不同骨骼肌桥接兔正中神经缺损的实验形态学研究.沈阳医学院学报,1996,10(3):1-3.
    40.张庭琛,安贵林,辛畅泰,等.对神经桥接物—肌桥纤维方向的初步观察.解剖学杂志,1996,19(增刊):201-4.
    41.辛畅泰,安贵林,张庭琛,等.不同骨骼肌桥接动物神经缺损的实验研究.中华外科杂志,1996,12(4):249-251.
    42.张爱华,朱家恺.血管植入变性骨骼肌与自体神经移植修复周围神经缺损的比较.中华显微外科杂志,1992;15(3):172-3。
    43.谢卫国,朱家恺.用血管植入的变性骨骼肌桥接中长段神经缺损的灵长类动物实验研究.中华显微外科杂志,1992;15(2):90-2.
    44.朱盛修,宋良发,刘郑生,等.用骨骼肌桥接周围神经缺损初步报告.中华显微外科杂志,1988;11(2):65-67.
    45.张爱华,朱家恺.骨骼肌修复周围神经缺损二例报告.中华显微外科杂志,1990;11(1):25.
    
    
    46. Brunelli GA, Battiston B, Vigasio A, Brunelli G, Marocolo D. Bridging nerve defects with combined skeletal muscle and vein conduits. Microsurgery. 1993;14(4):247-51.
    47. Battiston B, Tos P, Cushway TR, Geuna S. Nerve repair by means of vein filled with muscle grafts Ⅰ. Clinical results. Microsurgery 2000;20(1):32-6.
    48. Meek MF, Dijkstra JR, Den Dunnen WF, Ijkema Paassen J, Schakenraad JM, Gramsbergen A, Robinson PH. Functional assessment of sciatic nerve reconstruction: biodegradable poly (DLLA-epsilon-CL) nerve guides versus autologous nerve grafts. Microsurgery. 1999;19(8):381-8.
    49. Whitworth IH, Dore CJ, Green CJ, Terenghi G. Increased axonal regeneration over long nerve gaps using autologous nerve-muscle sandwich grafts. Microsurgery. 1995;16(12):772-8.
    50. Fansa H, Keilhoff G, Plogmeier K, Frerichs O, Wolf G, Schneider W. Successful implantation of Schwanncells in acellular muscles. J Reconstr Microsurg. 1999;15(1):61-5.
    51. Fansa H, Keilhoff G, Forster G, Seidel B, Wolf G, Schneider W. Acellular muscle with Schwann-cell implantation: an alternative biologic nerve conduit. J Reconstr Microsurg. 1999;15(7):531-7.
    52. 张爱华,朱家恺.骨骼肌修复周围神经缺损的研究进展.中华显微外科杂志,1992;15(2):114-116.
    53. Fansa H, Keilhoff G, Wolf G, Schneider W. Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg 2001;107(2):485-94.
    53. Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube:histological and electrophysiological evaluation of regenerated nerves. Brain Res 1996;740(1-2):66-74.
    54. Keeley R, Atagi T, Sabelman E, Padilla J, Kadlcik S, Keeley A, Nguyen K, Rosen J. Peripheral nerve regeneration across 14-mm gaps: a comparison of autograft and entubulation repair methods in the rat. J Reconstr Microsurg 1993;9(5):349-58
    55. Hazari A, Wiberg M, Johansson-Ruden G, Green C, Terenghi G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br J Plast Surg 1999;52(8):653-7
    56. Wells MR, Kraus K, Batter DK, Blunt DG, Weremowitz J, Lynch SE, Antoniades HN, Hansson HA. Gel matrix vehicles for growth factor application in nerve gap injuries repaired with tubes: a comparison of biomatrix, collagen, and methylcellulose. Exp Neurol 1997;146(2):395-402
    
    
    57. Madison-R; da-Silva-CF; Dikkes-P; Chiu-TH; Sidman-RL Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Exp-Neurol. 1985;88(3):767-72.
    58. Wang S, Wan AC, Xu X, Gao S, Mao HQ, Leong KW, Yu H. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 2001;22(10):1157-69.
    59. Rosen-JM; Pham-HN; Abraham-G; Harold-L; Hentz-VR. Artificial nerve graft compared to autograft in a rat model. J-Rehabil-Res-Dev. 1989;26(1):1-14.
    60. Mackinnon SE, and Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg. 1990;85(3):419-424.
    61. Dunnen WF, Vander LB, Schakenrad JM, et al. Poly(DL-lactide-epsiloncaprolactone) nerve guides perform better than autologous nerve grsfts. Microsurgery, 1996;17(7):348.
    62.匡勇,侯春林,苟三怀,等.几丁质及几丁糖与雪旺氏细胞相容性的研究.中国修复重建外科杂志,1998;12(2):90-92.
    63. Stanec S, Stanec Z. Ulnar nerve reconstruction with an expanded polytetrafluoroethylene conduit. Br J Plast Surg 1998;51(8):637-9.
    64. Guenard V, Kleitman N, Morrissey TK, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 1992;12(9):3310-3320.
    65.朱庆棠,朱家恺,程钢.人工神经的研究进展.中国修复重建外科杂志,2000;14(6):369-371.
    66. Mooney DJ, Mazzoni CL, Breuer C, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 1996;17(2):115.
    67. Lundborg G, Dahlin L, Dohi D, Kanje M, Terada N. A new type of "bioartificial" nerve graft for bridging extended defects in nerves. J Hand Surg [Br] 1997;22(3):299-303
    68. Williams LR, Danielsen N, Muller H, and Varon S. Exogenous matrix precursors promote functional nerve regeneration across a 15 mm gaps within a silicone chamber in the rat. J Comp Neurol 1987;264(2):284-290.
    69. Seckel BR, Jones D, Hekimian KJ, et al. Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rats. J Neurosci Res 1995;40:318-324.
    
    
    70. Labrador RO, Buti M, and Navarro X. Peripheral nerve repair: role of agarose matrix density on functional recovery. Neuro Report 1995;6:2022-2026.
    71. Tanihara M, Suzuki Y, Yamamoto E, Noguchi A, Mizushima Y. Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J Biomed Mater Res 2001;56(2):216-21.
    72. Sakiyama-Elbert SE, Panitch A, Hubbell JA. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J 2001 Mar 20; [epub ahead of print]
    73. Mohammad JA, Warnke PH, Pan YC, Shenaq S. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media. Ann Plast Surg 2000;44(1):59-64
    74. Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg 1998;124(10):1081-6
    75.苟三怀,侯春林,臧鸿声,等.几丁质室内植入雪旺氏细胞对神经再生影响的实验研究.中国修复重建外科杂志,1995;9(2):108-110.
    76.王光林,杨志明,解慧琪,等.周围神经组织工程材料的预构.中国修复重建外科杂志,2000;14(2):110-114.
    77. Jenq C-B. and Coggeshall R. E. Nerve regeneration through holey silicone tubes. Brain Res. 1985,361:233-241.
    78. Jenq C-B. and Coggeshall R. E. Permeable tubes increase the length of the gap that regenerating axons can span. Brain Res. 1987,408:239-242.
    79. Kim D. H., Connolly S. E., Zhao S., Beuerman R. W., Voorhies R. M. and Kline D. G. Comparison of macropore, semipermeable, and nonpermeable collagen conduits in nerve repair. J. Reconst. Microsurg. 1993,9:415-420.
    80. Kline D. G. and Hayes G. J. The use of a resorbable wrapper for peripheral nerve repair. J. Neurosurg. 1964,21:737-750.
    81.戴传昌,商庆新,王炜,等.用组织工程方法桥接周围神经缺损的实验研究.中华外科杂志,2000;38(5):388-390.
    82. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 2000;6(2):119-27.
    83. Lundborg G, Dahlin L, Dohi D, Kanje M, Terada N. A new type of "bioartificial"
    
     nerve graft for bridging extended defects in nerves. J Hand Surg [Br] 1997; 22(3) :299-303.
    84. Arai T, Lundborg G, Dahlin LB. Bioartif icial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments. Scand J Plast Reconstr Surg Hand Surg 2000;34(2) :101-8
    85. Yoshii S, Oka M, Lkeda N, Akagi M, Matsusue Y, Nakamura T. Bridging a peripheral nerve defect using collagen filaments. J Hand Surg [Am] 2001 Jan;26A(1) :52-59.
    86. Matsumoto K, Ohnishi K, Sekine T, Ueda H, Yamamoto Y, Kiyotani T, Nakamura T, Endo K, Shimizu Y. Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs. ASAIO J 2000;46(4) :415-20.
    87. Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with lam in in-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000 23;868(2) :315-28.
    88. Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett 1999;259(2) :75-8.
    89. Levi-AD; Bunge-RP Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp-Neurol. 1994; 130(1) : 41-52
    90. Levi-AD; Guenard-V; Aebischer-P; Bunge-RP The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J-Neurosci. 1994; 14(3 Pt 1) : 1309-19.
    91. Levi-AD; Sonntag-VK; Dickman-C; Mather-J; Li-RH; Cordoba-SC; Bichard-B; Berens-M . The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp Neurol. 1997; 143(1) : 25-36.
    92. Mackinnon SE, Hudson AR, Bain JR, et al. An assessment of nerve regeneration in the immunosuppressed host. Plast Reconstr Surg 1987;79:436-444.
    93. Bain JR, Mackinnon SE, Hudson AR, et al. The peripheral nerve allograft: an assessment of regeneration across nerve allografts in rats immunosuppressed with cyclosporin A. Plast Reconstr Surg 1988;82:1052-1066.
    
    
    94. Bain JR, Mackinnon SE, Hudson AR, et al. The peripheral nerve allograft: a dose-response curve in the rat immunosuppressed with cyclosporin A. Plast Reconstr Surg 1988;82:447-455.
    95. Mackinnon SE, Midha R, Bain JR, et al. An assessment of regeneration across nerve allografts in rats receiving short courses of cyclosporin A immunosuppression. Neuroscience. 1992;46:585-593.
    96. Midha R, Evans PJ, Mackinnon SE, et al. Comparison of regeneration across nerve allografts with temporary or continuous cyclosporin A immunosuppression. J Neurosurg 1993;78:90-100.
    97. Midha R, Evans PJ, Mackinnon SE, et al. Temporary immunosuppression for peripheral nerve allografts. Transplant Proc 1993;25:532-536.
    98. Midha R, Mackinnon SE, Wade J, et al. Chronic cyclosporin A therapy in rats. Microsurgery 1992;13:273-277.
    99. Midha R, Mackinnon SE, Evans PJ, et al. Subcutaneous injection of oral cyclosporin A solution. Microsurgery 1992;13:92-94.
    100. Midha R, Mackinnon SE, Becker LE. The fate of Schwann cells in peripheral nerve allografts. J Neuropathol Exp Neurol 1994;53:316-322.
    lOl.Muramatsu K, Doi K, Kawai S. Vascularizedallogeneic nerve transplantation with cyclosporine immunosuppression. Ann Plast Surg. 1994; 33(5) : 507-16.
    102. IshidaO, Daves J, Tsai TM, Breidenbach WC, FirrellJ. Regeneration following rejection of peripheral nerve allografts of rats on withdrawal of cyclosporine. Plast Reconstr Surg. 1993; 92(5) : 916-26.
    103. Muramatsu K, Doi K. Kawai S. Vascularized allogeneic joint, muscle, and peripheral nerve transplantation. Clin Orthop. 1995; (320) : 194-204.
    104. Takata H, Ishida O, Ochi M, Ikuta-Y. Rejection and regeneration in peripheral nerve homografts in rats after withdrawal of cyclosporin: morphological and immunohistochemical assessment. Scand J Plast Reconstr Surg Hand Surg. 1999; 33(4) : 373-7.
    105. Muramatsu K, Doi K, Kawai S. Nerve regenerating effect of short course administration of cyclosporine after fresh peripheral nerve allotransplantation in the rat: comparison of nerve regeneration using different forms of donor nerve allografts. Microsurgery. 1995; 16(7) : 496-504.
    106. Mackinnon SE. Nerve allotransplantation following severe tibial nerve injury. Case report. J Neurosurg. 1996; 84(4) : 671-6.
    107. Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y, Midha R.Cold
    
     preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21(11) : 1507-22.
    108. Evans PJ, MacKinnon SE, Midha R, Wade JA, Hunter DA, Nakao Y, Hare GM. Regeneration across cold preserved peripheral nerve allografts. Microsurgery. 1999;19(3) :115-27.
    109. Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP, Hunter DA, Midha R. Regeneration across preserved peripheral nerve grafts. Muscle Nerve. 1995 Oct;18(10) :1128-38.
    110. Evans PJ, Awerbuck DC, Mackinnon SE, Wade JA, McKee NH. Isometric contractile function following nerve grafting: a study of graft storage. Muscle Nerve. 1994 Oct;17(10) :1190-200.
    111. StrasbergSR, HertlMC, Mackinnon SE, Lee CK, Watanabe 0, TarasidisG, Hunter DA, Wong PY. Peripheral nerve allograft preservation improves regeneration and decreases systemic cyclosporin A requirements. Exp Neurol. 1996 ;139(2) :306-16.
    112. Strasberg SR, Mackinnon SE, Hare GM, Narini PP, Hertl C, Hay JB. Reduction in peripheral nerve allograft antigenicity with warm and cold temperature preservation. Plast Reconstr Surg. 1996;97(1) :152-60.
    113. Hare GM, Evans PJ, Mackinnon SE, Wade JA, Young AJ, Hay JB. Phenotypic analysis of migrant, efferent lymphocytes after implantation of cold preserved, peripheral nerve allografts. J Neuroimmunol. 1995;56(1) :9-16.
    114. Hare GM, Evans PJ, Mackinnon SE, Nakao Y, Midha R, Wade JA, Hunter DA, Hay JB. Effect of cold preservation on lymphocyte migration into peripheral nerve allografts in sheep. Transplantation. 1993 ;56(1) :154-62.
    115. Atchabahian A, Mackinnon SE, Hunter DA. Cold preservation of nerve grafts decreases expression of ICAM-1 and class II MHC antigens. J Reconstr Microsurg. 1999 May;15(4) :307-11.
    116. Hayflick J, Kilgannon P and Gallatin W. The intercellular adhesion molecule (ICAM) family of proteins. Immunol Res 1998, 17:313-327.
    117. Edwards C, Champe M and Gonzalez T et al. Identification of amino acids in the CDlla I-domain important for binding of the leukocyte function-associated antigen-1 (LFA-1) to intercellular adhesion molecule-12 (ICAM-1) J Biol Chem 1995, 270:12635-12640.
    118. Cosimi A, Conti D and Delmonico F, et al. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 1990, 144:4604-4612.
    
    
    119. Nakao Y, MacKinnon SE, Hertl MC, Miyasaka M, Hunter DA, Mohanakumar T. Monoclonal antibodies against ICAM-1 and LFA-1 prolong nerve allograft survival. Muscle Nerve. 1995 ;18(1) :93-102.
    120. Nakao Y, Mackinnon SE, Strasberg SR, Hertl MC, Isobe M, Susskind BM, Mohanakumar T, Hunter DA. Immunosuppressive effect of monoclonal antibodies to ICAM-1 and LFA-1 on peripheral nerve allograft in mice. Microsurgery. 1995;16(9) :612-20.
    121. Ochi M, Adachi N, Dohi D, Amano K, Masuda Y, Sawai T, Bashuda H, Okumura K. Improvement in nerve regeneration by monoclonal antibodies to ICAM-1 and LFA-1 in allogeneic mice. Scand J Plast Reconstr Surg Hand Surg. 1998;32(4) :373-80.
    122. Genden EM, Mackinnon SE, Yu S, Flye MW. Induction of donor-specific tolerance to rat nerve allografts with portal venous donor alloantigen and anti-ICAM-1/LFA-1 monoclonal antibodies. Surgery. 1998 ;124(2) :448-56.
    123. Stancic MF, Potocnjak M, Micovic V, Krmpotic A, Mackinnon SE. Evaluation of functional nerve recovery shows that allogeneic nerve graft treated with ICAM-1 and LFA-1 mAbs can be good alternative to syngeneic graft. Acta Neurochir (Wien). 1999;141(8) :875-9.
    124. Haug C., Colvin R. and Demonico F. A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 1993, 55:766.
    125. Kavanaugh A., David L. and Nichols L. Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule-1. Arthritis Rheum 1994, 37:992-999.
    126. Scott AT, Seetharama J, Teruna JS, Stephen HB and Marcia A. Linear and cyclic LFA-1 and ICAM-1 peptides inhibit T cell adhesion and function. Chan Peptides, 2000, 21(8) :1161-1167
    127. Ide C, Tohyama K, Yokota R, Nitatori, Onodera S. Schwann cell basal lamina and nerve regeneration. Brain Res 1983; 288: 61-75.
    128. Ide C. Nerve regeneration and Schwann cell basal lamina: oberservations of the long-term regeneration. Arch Histol Jpn 1983; 46: 243-57.
    129. Gulati AK, Cole GP. Nerve graft immungenicity as a factor determining axonal regeneration in the rat. J Neurosurg 1990; 16: 411-21.
    130. Tajima K, Tohyama K, Ide C. Regeneration through nerve allografts in the cynomolgus monkey (Macaca fascicularis). J Bone Joint Surg Am 1991; 73: 172-85.
    
    
    131. Gulati AK, Cole GP. Immunogenicity and regeneration potential of acellular nerve allografts to repair peripheral neve in rats and rabbits. Acta Neurochir Wien 1994; 126: 158-64.
    132. Ide C, Tohyama K, Tajia K. Long acellular nerve transplants for allogeneic grafting and the effects of basic fibroblast growth factor on the growth of regenerating axons in dogs: a preliminary report. Exp Neurol 1998; 154: 99-122.
    133. Gulati AK, Rai DR, Ali AM. The influence of cultured Shawann cells on regeneration through acellular basal lamina grafts. Brain Res 1995; 705: 118-24.
    134. Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl neurobiol. 1986; 12: 27-46.
    135. Dumont CE, Hentz VR. Enhancement of axon growth by detergent-extracted nerve grafts. Transplantation 1997; 63: 1210-5.
    136. Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res 1998; 795: 44-54.
    137. Meezan E, Hjelle JT, Brendel K. Simple, versatile, nondisruptive method for the isolation of morphologically and chemicaly pure basement membranes from several tissues. Life Sci 1975; 17(11) :1721-32.
    138. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 1997;18 (2) :147-55
    139. Barret JP, Dziewulski P, McCauley RL, Herndon DN, Desai MH. Dural reconstruction of a class IV calvarial burn with decellularized human dermis. Burns 1999;25(5) :459-62.
    140. Warren WL, Medary MB, Dureza CD, Bellotte JB, Flannagan PP, Oh MY, Fukushima T. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 2000;46(6) :1391-6.
    141. Tsai CC, Lin SD, Lai CS, Lin TM. The use of composite acellular allodermis-ultrathin autograft on joint area in major burn patients--one year follow-up. Kao Hsiung I Hsueh Ko Hsueh Tsa Chih 1999; 15(11) : 651-8.
    142. Kridel RW, Foda H, Lunde KC. Septal perforation repair with acellular human dermal allograft. Arch Otolaryngol Head Neck Surg 1998;124(1) :73-8.
    143. Sclafani AP, Romo T , JaconoAA, McCormickS, Cocker R, Parker A. Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized
    
    AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch Facial Plast Surg 2000;2(2):130-6.
    144. Castor SA, To WC, Papay FA. Lip augmentation with AlloDerm acellular allogenic dermal graft and fat autograft: A comparison with autologous fat injection alone. Aesthetic Plast Surg 1999;23(3):218-23.
    145. Achauer BM, VanderKam VM, Celikoz B, Jacobson DG. Augmentation of facial soft-tissue defects with Alloderm dermal graft. Ann Plast Surg 1998;41(5):503-7.
    146. Tobin HA, Karas ND. Lip augmentation using an alloderm graft. J Oral Maxillofac Surg 1998;56(6):722-7.
    147. Crook K. The use of Alloderm and allograft to augment a mandibular arch for implant development. N M Dent J 1999;50(5):22-4.
    148. McFeely WJ Jr, Bojrab DI, Kartush JM. Tympanic membrane perforation repair using AlloDerm. Otolaryngol Head Neck Surg 2000;123(1):17-21.
    149. Chaplin JM, Costantino PD, Wolpoe ME, Bederson JB, Griffey ES, Zhang WX. Use of an acellular dermal allograft for dural replacement: an experimental study. Neurosurgery 1999;45(2):320-7.
    150. Oalla VL, Engum S, Kogon B, Jensen E, Davis M, Grosfeld J. Evaluation of small intestine submucosa and acellular dermis as diaphragmatic prostheses. J Pediatr Surg 1999;34(1):167-71.
    151. Johnson PC, Duhamel RC, Meezan E, Brendel K. Preparation of cell-free extracellular matrix from human peripheral nerve. Muscle Nerve 1982;5(4):335-44.
    152. Muller H. Further evaluation of the effects of laminin, testosterone, ganglioside GM 1, and catalase on early growth in rat nerve regeneration chambers. Exp Neurol. 1988;101(2):228-33.
    153. Bailey SB, Eichler ME, Villadiego A, Rich KM. The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol. 1993;22(3):176-84.
    154. Bailey SB, Eichler ME, Villadiego A, Rich KM. The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol. 1993;22(3):176-84.
    155. 杨勤,沈撀亚,刘才栋.层粘连蛋白对雪旺氏细胞在三维网架上迁移的影响.剖学杂志,1996,19(5):400-402.
    156. Tonge DA, Golding JP, Edbladh M, Kroon M, Ekstrom PE, Edstrom A. Effects of extracellular matrix components on axonal outgrowth from peripheral nerves of adult animals in vitro. Exp Neurol. 1997;146(1):81-90.
    
    
    157. Ohbayashi K, Inoue HK, Awaya A, Kobayashi S, Kohga H, Nakamura M, Ohye C. Peripheral nerve regeneration in a silicone tube: effect of collagen sponge prosthesis, laminin, and pyrimidine compound administration. Neurol Med Chir Tokyo. 1996;36(7):428-33.
    158.池雷霆,杨志明.碱性成纤维细胞生长因子与神经再生综述.中国修复重建外科杂志,1997;11(5):269-271.
    159. Aebischer P, Salessiotis AN, Winn SR. Basic fibroblast growth factor released from synthetic guidance channel facilitates peripheral nerve regeneration across long nerve gaps. J Neurosci Res. 1989;23(3):282-289.
    160. Danielsen N, Pettmann B, Vahlsing HL, Monthope M, and Varon. Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model. J Neurosci Res. 1988;20(3):320-330.
    161.柏志全,刘建华,黎昭洪.碱性成纤维细胞生长因子促进周围神经功能恢复的研究.中华创伤杂志,1999;15(2):127-129.
    162.利春叶,曹代成.碱性成纤维细胞生长因子结合静脉套接法修复周围神经缺损的实验研究.中国修复重建外科杂志,2000;14(1):14-16.
    163.张庭深,辛畅泰,安贵林,等.BFGF复合膜对自体神经移植的影响.中国临床解剖学杂志,2000;18(3):257-259.
    164.李学拥,陈壁.电损伤后局部应用bFGF促进周围神经再生.第四军医大学学报,1999;20(5):448-9.
    165.呙长模,张代录,吴凯南.成纤维细胞生长因子的生物学功能及应用综述.中国修复重建外科杂志,1997;11(5):272-275.
    166.付小兵.再论成纤维细胞生长因子与软组织创伤修复.中国修复重建外科杂志,2000;14(5):257-260.
    167.席保平,朱家恺.成纤维细胞生长因子与神经再生.见:朱家恺主编.周围神经外科进展.广州:广东高等教育出版社,1991年,第1版,P304-318.
    168. Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration, Microsurgery 1998;18(7):397-405
    169.许家军,陈尔瑜,路长林.神经营养因子与周围神经的损伤和修复.国外医学·创伤与外科基本问题分册,2000;21(3):154-157.
    170. Santos X, Rodrigo J, Hontanilla B, Bilbao G. Local administration of neurotrophic growth factor in subcutaneous silicon chambers enhances the regeneration of the sensory component of the rat sciatic nerve. Microsurgery 1999;19(6):275-80
    171. Lewin SL, Utley DS, Cheng ET, Verity AN, Terris DJ. Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope 1997;107(7):992-9
    
    
    172. Pu SF, Zhuang HX, Marsh DJ, Ishii DN. Insulin-like growth factor-Ⅱ increases and IGF is required for postnatal rat spinal motoneuron survival following sciatic nerve axotomy. J Neurosci Res 1999;55(1):9-16
    173. Santos X, Rodrigo J, Hontanilla B, Bilbao G. Evaluation of peripheral nerve regeneration by nerve growth factor locally administered with a novel system. J Neurosci Methods 1998;85(1):119-27.
    174.邵景范,罗永湘.神经生长因子的载体及其控释系统.中华显微外科杂志,1995;18(4):303-305.
    175.李幼平,马玉奎,何秋明.临床异种大动物器官移植的现状、问题与对策综述.中国修复重建外科杂志,1998;12(2):99-106.
    176.何秋明,李幼平,李胜富.异种移植社会伦理问题.中国修复重建外科杂志,1998;12(6):363-366.
    178. Osawa T, Tohyama K, Ide C. Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. J Neurocytol, 1990,19:833-849.
    179. Tohyama K, Ide C, Osawa T. Nerve regeneration through the cryo-injured allogeneic nerve graft in the rabbit. Acta Neuropathol, 1990,80:138-144.
    180. Ochi M, Wakasa M, Ikuta Y. Nerve regeneration in predegenerated basal lamina graft: the effect of duration of predegeneration on axonal extention. Exp Neurol, 1994,128:216-225.
    181. Danielsen N, Kerns JM, Holmquist B. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res 1995;11:447-53.
    182.李跃军,陈绍宗,李学拥等.猴指神经皮下植入后中远期再生效果的电生理研究.中华显微外科杂志,1999;22(1):43-44.
    183.万赤丹,陈实.异种移植排斥反应机理.见:陈实主编.移植免疫学.武汉:湖北科学技术出版社,1998年,第1版,P318-329.
    184.葛建军,内田孝之,张启伟等.异型反应性CD4+T淋巴细胞在MHC-类分子差异的异体移植排斥反应中的作用.中华微生物学和免疫学杂志,1998;18(6):469-473.
    185.谈景旺,王烈,杨甲梅等.T淋巴细胞在异种鼠肝移植免疫排斥反应中的作用.中华医学杂志,1999;79(7):549-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700