慢病毒介导bcr/abl基因长期沉默对K562细胞生物学特性与姜黄素抗肿瘤作用影响及其相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性粒细胞白血病(chronic myelogeous leukemia, CML),是以费城染色体(Philadephia, Ph)和bcr/abl融合基因为特征的多能干细胞异常的骨髓恶性增殖性疾病。bcr/abl基因编码的P210bcr/abl蛋白具有很强的酪氨酸激酶活性,与CML凋亡缺失、分化抑制、耐药有密切关系。
     RNA干扰(RNAi)是一种转录后基因沉默(PTGS)的基因阻断技术,近年来被广泛应用于哺乳动物细胞抑制基因表达。通过RNase III内切酶Dicer的作用产生有活性的小的21-23nt干扰性RNA(short interence RNA, siRNA),介导其互补同源mRNA序列的特异性降解,沉寂目的基因的表达。
     本研究采用慢病毒介导的RNAi技术,设计合成针对bcr/abl的siRNA,感染人慢性粒细胞白血病K562株,构建bcr/abl长期沉默的细胞模型。利用该细胞模型探讨bcr/abl基因长期沉默对K562细胞生物特性、相关信号分子及姜黄素抗肿瘤作用的影响。
     一、慢病毒介导bcr/abl基因长期沉默的K562细胞株构建
     为研究慢病毒介导的K562细胞bcr/abl基因RNA干扰的效率及稳定度,并为后续研究提供细胞模型,我们建立了bcr/abl RNAi稳定转染的B/A-K562模型。
     研究方法(:1)利用RNAi技术和慢病毒转基因技术,构建pNL-EGFP-U6-bcr/abl-I质粒,使它和pVSV,pHelper组成慢病毒三质粒转染系统,共转染293T细胞,生产EGFP- B/A-I病毒;(2)用EGFP、EGFP-B/A-I病毒分别感染K562细胞,获取混合克隆;(3)极限稀释法、集落形成法挑取稳定表达EGFP、EGFP-B/A-I的克隆;(4)Realtime RT-PCR检测bcr/abl mRNA水平;(5)细胞免疫荧光、Western blotting法检测P210bcr/abl蛋白含量。
     结果显示:(1)成功包装出具有感染能力的EGFP和EGFP- B/A-I慢病毒;(2)获得稳定表达EGFP和EGFP-B/A-I的EGFP-K562、B/A-K562细胞;(3)体外传代半年后,慢病毒介导RNAi可使bcr/abl mRNA下调63.5 %;(4)P210bcr/abl蛋白含量减少74.5 %。
     二、Bcr/abl基因长期沉默对K562细胞生物学特性及相关基因表达的影响
     bcr/abl基因是与CML发生、发展、转归密切相关的癌基因。bcr/abl基因长期“缺席”,可能导致K562细胞各种生物学特性及相关信号分子表达的变化。本部分,我们以bcr/abl基因长期沉默的B/A-K562细胞为模型,与正常对照的K562细胞及空载体对照的EGFP-K562细胞进行比较,分析其主要生物学特性及信号分子的变化。
     研究方法:(1)锥虫蓝染色法检测细胞增殖能力变化;(2)集落形成法观察RNAi对集落形成能力的影响;(3)联苯胺染色观察细胞分化;(4)流式细胞仪分析细胞周期变化;(5)ELISA法检测酪氨酸激酶活性;(6)AO-EB、Heochst 33342染色观察细胞凋亡;(7)比色法检测Caspase-3、Caspase-9活性;(8)Western blotting法观察RNAi对细胞增殖凋亡相关信号分子的影响。
     结果显示:(1)bcr/abl RNAi显著抑制K562细胞增殖,细胞倍增时间明显延长;(2)bcr/abl RNAi抑制细胞集落形成,集落形成抑制率达55.05 %;(3)bcr/abl RNAi诱导K562细胞向成熟红系分化,联苯胺染色阳性率达24.83 %;(4)bcr/abl RNAi使细胞周期阻滞在S期,出现凋亡的亚二倍体峰;( 5)bcr/abl RNAi使酪氨酸激酶活性降低约41.88 %;(6)bcr/abl RNAi诱导K562细胞凋亡,自发凋亡率达26.67 %;(7)bcr/abl RNAi触发线粒体Cyt-C释放,Caspase-3及Caspase-9活性提高,从线粒体途径诱导细胞凋亡;(8) bcr/abl RNAi下调K562细胞Src、P-Src、Raf-1、P-Erk1/2、P-Stat 1、P-Stat 5、P-P38、C-myc、Bcl-2和Hsp 90含量,上调P53、PKC及Bax含量,对Erk1/2、P-Akt、NF-КB、Hsp 70影响不大。
     三、慢病毒介导bcr/abl基因长期沉默对K562细胞裸鼠成瘤的影响及相关机制研究
     慢病毒介导的RNA干扰,在体外能实现bcr/abl基因的长期沉默,抑制K562细胞增殖,诱导其向成熟红系细胞分化,促进细胞凋亡。本部分我们关注的是:B/A-K562细胞在裸鼠体内能否继续保持对bcr/abl基因的RNA干扰以及成瘤能力和相关信号分子的变化。
     研究方法:(1)皮下注射K562、EGFP-K562、B/A-K562细胞,建立裸鼠异种移植瘤模型;(2)观察成瘤情况,比较肿瘤体积;(3)称量离体瘤块质量、计算抑瘤率;(4)肿瘤组织测定Caspase-3、Caspase-9活性;(5)肿瘤组织冰冻切片观察荧光;(6)HE染色光镜下观察肿瘤组织的形态结构;(7)免疫组织化学检测肿瘤组织P210bcr/abl、Bcl-2、Bax蛋白表达;(8)免疫印迹检测肿瘤组织中Src、Erk1/2、P-Stat 1、Hsp 90的蛋白含量。
     结果显示:(1)B/A-K562组肿瘤生长速度明显低于K562组及EGFP-K562组, K562组及EGFP-K562组成廇率100 %,B/A-K562组成瘤率80 %;(2)B/A-K562组抑瘤率达78.4 % (P<0.01);(3)B/A-K562组肿瘤组织Caspase-3、Caspase-9活性显著提高;(4)荧光显微镜观察,慢病毒感染的EGFP-K562及B/A-K562细胞形成的移植瘤均可见绿荧光;(5)免疫组化显示,K562组及EGFP-K562组P210bcr/abl、Bcl-2蛋白呈强阳性表达,Bax蛋白呈弱阳性表达;B/A-K562组P210bcr/abl、Bcl-2蛋白表达明显减弱,Bax蛋白表达明显增强;(6)免疫印迹结果显示,B/A-K562组Erk1/2、Src、P-Stat 1、Hsp 90含量低于K562组及B/A-K562组。
     四、慢病毒介导K562细胞bcr/abl基因长期沉默对姜黄素抗肿瘤作用的影响及相关机制研究
     bcr/abl基因及其相关蛋白是Cur作用的重要靶点。本部分,我们用Cur分别处理K562、EGFP-K562及B/A-K562细胞,探讨K562细胞的bcr/abl基因表达被慢病毒介导的RNA干扰阻断后,Cur针对K562细胞的抗肿瘤作用及作用机制有何改变。
     研究方法:(1)MTT法、锥虫蓝染色法观察Cur对细胞增殖的影响;(2)集落形成法观察Cur对细胞集落形成的影响;(3)联苯胺染色法观察Cur对细胞分化的影响;(4)ELISA法观察Cur对酪氨酸激酶活性影响;(5)流式细胞仪分析Cur对细胞周期的影响;(6)AO-EB染色、DNA琼脂糖凝胶电泳检测Cur对细胞凋亡的影响;(7)分光光度法检测Cur对细胞Caspase-3和Caspase-9活性的影响;(8)Western blotting观察Cur对细胞增殖和凋亡有关信号分子及伴侣蛋白的影响。
     结果显示:(1)Cur抑制K562、EGFP-K562及B/A-K562细胞增殖,呈时间和剂量依赖关系,Cur作用48小时,IC50分别为6.94、4.93、12.67μg/ml;(2)Cur影响B/A-K562细胞的集落形成,呈量效关系;(3)Cur诱导细胞向成熟红系细胞分化,其促进分化作用被bcr/abl RNAi减弱;(4)Cur降低细胞PTK活性,bcr/abl RNAi可增强其效应;(5)Cur诱导B/A-K562细胞凋亡亚二倍体峰出现,作用呈时间和剂量依赖性;(6)Cur有效诱导B/A-K562细胞凋亡,呈剂量依赖关系;(7)Cur进一步下调B/A-K562细胞P210bcr/abl含量;( 7)Cur促进B/A-K562细胞线粒体细胞色素C释放,活化Caspase-3、Caspase-9,循线粒体途径诱导凋亡;( 8) Cur上调B/A-K562细胞C-fas、P53、P-P38、Bax蛋白含量,下调P-Src、Raf-1、NF-КB、C-myc、PKC、Bcl-2、Hsp 70、Hsp 90蛋白含量。
     从以上实验结果得出如下结论:
     1.慢病毒介导的bcr/abl干扰能够实现bcr/abl基因长期沉默,bcr/abl mRNA下调63.5 %,P210bcr/abl下调74.5 %;
     2. bcr/abl RNAi显著抑制K562细胞增殖,诱导其向成熟红系分化,显著降低PTK活性,循线粒体途径诱导K562细胞自发凋亡;
     3. bcr/abl RNAi抑制K562细胞增殖,诱导凋亡,作用机制可能与bcr/abl沉默,Src、P-Src、Raf-1、P-Erk1/2、P-Stat 1、P-Stat 5、P-P38、C-myc、Bcl-2、Hsp 90下调,P53、Bax上调有关;
     4.慢病毒介导的RNAi在裸鼠体内继续沉默bcr/abl基因,显著抑制肿瘤生长,诱导肿瘤组织凋亡和坏死,其抗肿瘤作用机制可能与bcr/abl RNAi及由之引起的Erk1/2、Src、P-Stat 1、Hsp 90、Bcl-2下调,Bax上调有关;
     5. Cur抑制B/A-K562细胞增殖,诱导分化,降低PTK活性,循线粒体途径诱导凋亡;
     6. Cur进一步降低B/A-K562细胞P210bcr/abl含量,上调C-fas、P53、P-P38、Bax,下调P-Src、Raf-1、NF-КB、C-myc、PKC、Bcl-2、Hsp 70、Hsp 90,可能与Cur在bcr/abl沉默的背景下,诱导B/A-K562细胞凋亡,抑制增殖有关。
     总之,慢病毒介导的bcr/abl RNAi能够实现bcr/abl基因的长期沉默,抑制CML细胞增殖,诱导凋亡,作为CML的分子靶向治疗具有潜在应用价值。Cur可在bcr/abl RNAi基础上进一步下调P210bcr/abl,抑制增殖,诱导凋亡,是配合bcr/abl基因靶向治疗理想选择。
Chronic Myelogenous Leukemia(CML) originates in a pluripotent hematopoetic stem cell of the bone marrow, which is characterized by the Philadelphia(Ph) chromosome and bcr/abl oncogene. The bcr/abl fusion gene encoded Bcr/Abl protein, which possesses high activity of tyrosine kinase was known to be a resistant factor for apoptosis, cell differentiation and chemotherapy drugs resistance in chronic myelogenous leukemia (CML).
     RNA interference is a kind of gene-blocking technology about post-transcriptional gene silence (PTGS), which has been extensively applied to the inhibition of gene expression in the mammal cells in recent years. Compt short interference RNA (21-23nt) is obtained by the incision enzyme RNaseⅢ(Dicer), which mediate specific degradation of its homologous and complimentary mRNA, to silence the expression of target genes.
     In this study, K562 cells were infected by lentivirus carrying bcr/abl RNAi fragment, and further bcr/abl stable-silencing CML cellular model was constructed. As a result of long-term absence of bcr/abl, changes of biological characters, correlated signaling molecules and anti-tumor effects of curcumine were detected.
     Construction of lentivirus-mediated bcr/abl stable-silencing cellular model on K562 cells
     In this part, we constructed bcr/abl RNAi stable-transfecting cellular model B/A-K562, and detected the efficiency and stability of lentivirus-mediated RNA interference.
     Methods: (1) Plasmids pNL-EGFP-U6-brcr/abl-I was constructed, which was combined with pVSVG and pHelper to constitute vector system of three plasmids. The lentiviral vector system was transfected into 293T cell to produce EGFP- B/A-I lentivirus. (2) K562 cells were infected with both EGFP and EGFP- B/A-I lentivirus. (3) Ultimate dilution and colony forming methods were used to pick clones stably expressing EGFP and EGFP-B/A-I fragment. (4) bcr/abl mRNA level was detected by Realtime RT-PCR; (5) Cello-immunofluorescence, western blotting were used to measure the contents of P210bcr/abl.
     The results showed: (1) EGFP and EGFP- B/A-I lentivirus with processing infection ability were successfully produced; (2) EGFP-K562, B/A-K562 cells stably expressing EGFP and EGFP-B/A-I fragment were successfully picked; (3) After cultured in vitro for six months, bcr/abl mRNA lever was down regulated by lentivirus-mediated RNAi for 63.5 %; (4) Compared with K562 cells, P210bcr/abl content was obviously decreased by 74.5 % in B/A-K562 cells.
     The effect of bcr/abl gene stable-silencing on the biological characters and relevant signaling molecules in K562 cell line
     Since bcr/abl plays an important role in the generation, development and turnover of human chronic myelogeous leukemia, many changes in biological characters and cell signaling molecules may be detected in human CML cell line K562 as a result of long-term absence of bcr/abl gene. This study focused on the variations of biological characters and cellular signals in bcr/abl stable-silencing cell model B/A-K562 compared with K562 and EGFP-K562 cells as normal control and vector control respectively.
     Methods: (1) Trypan blue exclusive staining was used to access the cell growth arrest; (2) Colony assay was used to observe the CFUs; (3) Benzidine staining was used to detect cell differentiation; (4) FCM was used to analyze cell cycle; (5) ELISA method was utilized to detect the activity of PTK; (6) AO-EB and Heochst 33342 fluorescent staining was used to observe apoptosis; (7) Chromometry was to used measure the activation of Caspase-3 and Caspase-9; (8) Western blot was used to observe the effects of RNAi on the signaling molecules which are relevant with cell growth and apoptosis.
     The results showed: (1) bcr/abl RNAi significantly inhibited K562 cell proliferation, doubling generation time was obviously prolonged; (2) Colony forming was arrested by RNAi; (3) Positive rate of benzdine staining was 24.83 %, low level of bcr/abl message leads to enhanced erythroid differentiation; (4) RNAi arrested cell cycle in S phase and induced apoptosis in hypodiploid peak; (5) PTK activity was descended by 41.88 % ; (6) Apoptosis was observed with 41.88 % of apoptosis rate; (7) bcr/abl RNAi triggered the release of mitochondrial Cyt-C, increases Caspase-3 and Caspase-9 activities, induces apoptosis in mitochondrial-depended pathway; (8) bcr/abl RNAi down-regulated Src, P-Src, Raf-1, P-Erk1/2, P-Stat 1, P-Stat 5, P-P38, C-myc, Bcl-2 and Hsp 90 level, and up-regulated P53, PKC and Bax level, but had no effect on the concentration of Erk1/2, P-Akt, NF-КB, Hsp 70 in K562 cells.
     The effect of lentivirus-mediated bcr/abl stable-silencing on the tumor formation on K562 cell xenograft in athymic mouse
     Lentivirus-mediated RNA interference could reduce the expression of bcr/abl gene in vitro, inhibit cell growth, induce differentiation and hasten apoptosis. In this part, we mainly studied RNAi efficiency in B/A-K562 cells athymic mouse transplantation tumor, tumor formation ability and relevant signaling molecules.
     Methods: (1) K562, EGFP-K562, B/A-K562 cells was injected subcutaneously in order to establish athymic mouse heterogeneity transplantation tumor models; (2) Volume of the tumors were measured per 5 days and the tumor formation rates were calculated; (3) At the end of time points, the mice were killed, the tumor xenografts were removed and measured; (4) Activation of Capspase 3, Caspase-9 were detected; (5) Green fluorescence was observed in frozen section of tumor tissue by fluorescence microscope; (6) H&E staining was used to study the pathological change of tumor tissue; (7) Immunohistochemistry was used to investigate the P210bcr/abl, Bcl-2, Bax level in tumor tissue; (8) The protein was extracted from the tumor tissues, western blotting was used to analyze Src, Erk1/2, P-Stat1 and Hsp 90 protein level.
     The results showed: (1) Growth velocity of B/A-K562 cell xenograft was obviously lower than that of K562 group and EGFP-K562 group; (2) Tumor formation rate of B/A-K562 group was 80 % lower than that of K562 and EGFP-K562 group, which was 100%; (3) The tumor inhibition rate in B/A-K562 group was 78.4 % (compared with K562 group, P<0.01); (4) The activation of Caspase-3, Caspase-9 was elevated in B/A-K562 cell xenograft; (5) Green fluorescence was confirmed in transplantation tumor of lentivirus infected EGFP-K562 and B/A-K562 cells; (6) The results of immunohistochemistry showed decreased P210bcr/abl, Bcl-2 expression and increased Bax expression in B/A-K562 group, compared with K562 and EGFP-K562 group; (7) The results of Western blotting showed Erk1/2、Src、P-Stat 1、Hsp 90 protein level of B/A-K562 group were lower than that of K562 and EGFP-K562 group.
     The effect of lentivirus-mediated bcr/abl stable-silencing on anti-tumor action of curcumin and relevat mechanisms in K562 cells
     bcr/abl gene and P210bcr/abl protein were important targets of Curcumin. In this part, K562, EGFP-K562 and B/A-K562 cells were treated with Curcumin in different concentration. We investigated anti-tumoral action and relevat mechanisms of curcumine when bcr/abl gene expression was blocked by lentivirus-mediated RNA interference.
     Methods: (1) MTT method and trypan blue exclusive staining were used to observe the cell growth arrest; (2) Colony assay was used to the cell colony forming units(CFUs); (3) Benzdine staining was utilized to investigate cell differentiation; (4) ELISA was used to measure the activity of PTK; (5) Flow cytometry (FCM) was used to analyze cell cycle; (6) AO-EB staining and DNA agarose gel electrophoresis were used to detect cell apoptosis; (7) Absorption spectrometry was used to detect activation of Caspase-3 and Caspase-9; (8) Western blotting was used to analyze the impact of Curcumine on Cell proliferation apoptosis-related signaling molecules and partner protein.
     The results showed: (1) Curcumin inhibited K562, EGFP-K562 and B/A-K562 cells proliferation in a time-and-dose-depended manner. IC50 values of K562, EGFP-K562 and B/A-K562 cells were 6.94, 4.93, 12.67μg/ml after 48 h of Cur exposure; (2) Cur inhibited B/A-K562 CFUs in an dose-depended manner; (3) Cur induced differentiation towards mature erythroid cells and its role in the promotion of differentiation could be weakened by bcr/abl RNAi; (4) Cur reduced PTK activity in B/A-K562 cells and bcr / abl RNAi may enhance such effect; (5) Cur induced apoptosis in hypodiploid peak in a time-and-dose-depended manner; (6) Cur effectively induced B/A-K562 cells apoptosis in a dose-depended manner; (7) Cur triggered the release of mitochondrial Cyt-C, increased Caspase-3 and Caspase-9 activities, inducesd apoptosis in mitochondrial-depended pathway in B/A-K562 cells; (8) Cur up-regulated C-fas, P53, P-P38 andBax level, and down-regulated P-Src, Raf-1, NF-КB, C-myc, PKC, Bcl-2, Hsp 70, and Hsp 90 level in B/A-K562 cells.
     CONCLUSIONS:
     1. Lentivirus-mediated RNA interference may stably silence bcr/abl gene, which brings down bcr/abl mRNA and P210bcr/abl by respectively 63.5 % and 74.5 %.
     2. Lentivirus-mediated stable-silencing of bcr/abl inhibits proliferation, induces differentiation towards mature erythroid cells, significantly decreases activity of PTK and hastens apoptosis in mitochondrial-depended pathway in K562 cells.
     3. Lentivirus-mediated stable-silencing of bcr/abl inhibits K562 cells growth and induces cell apoptosis which may be correlated with the down-regulation of P210bcr/abl, Src, P-Src, Raf-1, P-Erk1/2, P-Stat 1, P-Stat 5, P-P38, C-myc, Bcl-2, Hsp 90 and up-regulation of P 53 and Bax.
     4. Effect of bcr/abl RNAi retains in athymic mouse transplantation tumor,which significantly inhibits tumorous growth, induces apoptosis and necrosis in tumor tissue. Its anti-tumor effect may correlated with down-regulation of signaling molecules related with cell growth and apoptosis such as Erk1/2, Src, P-Stat 1, Hsp 90, Bcl-2 and up-regulation of Bax.
     5. Cur inhibits cell growth, induces differentiation, reduces PTK activity, and hastens apoptosis in mitochondrial-depended pathway in B/A-K562 cells.
     6. Cur decreases concentration of P210bcra/bl in B/A-K562 cells, up-regulates C-fas, P53, P-P38 and Bax, down-regulates P-Src, Raf-1, NF-КB, C-myc, PKC, Bcl-2, Hsp 70 and Hsp 90, which may contribute to growth inhibition and apoptosis in B/A-K562 cells in the background of stably bcr/abl RNAi mediated by letivirus.
     In conclusion, lentivirus-mediated RNAi may lead to long-term silencing of bcr/abl, inhibits cell growth, and induces apoptosis in CML cell line, so it might prove to be a promising alternative approach in CML therapy targeting bcr/abl. Curcumin synergized with lentivirus-mediated bcr/abl RNAi may further inhibits cell growth amd hastens apoptosis in K562 cells. Therefore, Curcumin may be an ideal choice to synergize with bcr/abl targeting therapy
引文
1. Rowley JD. The Philadelphia chromosome translocation. A paradigm for understanding leukemia. Cancer, 1990(65): 2178-84
    2. Guo JQ, Lian JY, Xian YM, et al. BCR-ABL protein expression in peripheral blood cells of chronic myelogenous leukemia patients undergoing therapy. Blood, 1994(83): 3629-37.
    3. Pasternak G, Hochhaus A, Schultheis B, et al. Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res Clin Oncol, 1998(124):643-60
    4. Groffen J, Morris C, Heisterkamp N. Philadelphia chromosome translocation. In: Deisseroth AB, Arlinghaus RB (eds) Chronic myelogenous leukemia. Dekker, New York, pp 181-209
    5. Witte On. Role of the BCR/ABL oncogene in human leukemia: Fifteenth Richard and Hilda Rosenthal Foundation award lecture. Cancer Res,1993(53):485
    6. Melo J.V. The diversity of BCR/ABL fusion proteins and their relationship to leukemia phenotype. Blood,1996; 88:2375-84.
    7. Faderl S, Talpaz M, Estrov Z, et al. Chronic myelogenous leukemia. Biology and therapy. Ann.Intern.Med., 1999;131:207-219.
    8. Ray S, Bullock G, Nunez G, Tang C, et al. Enforced expression of Bcl-xS induces differentiation and sensitizes CML-blast crisis K562 cells to ara-C mediated differentiation and apoptosis. Cell Growth Differ,1996;7:1617-23.
    9. Amarante-Mendes G, Kim C, Liu L, et al. Bcr/abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3.Blood,1998;91:1700-05.
    10. Reuther JY, Reuther GW, Cortez D, et al. A requirement for NF-КB activation in Bcr/abl-mediated transformation. GenesDev.1998;12: 968–981.
    11. Lee SJ, Kukreja M, Wang T, et al. Impact of prior imatinib mesylate on the outcome of hematopoietic cell transplantation for chronic myeloid leukemia.Blood,2008,112: 3500-7.
    12. Padmanabhan S, Ravella S, Curiel T, et al. Current status of therapy for chronic myeloid leukemia: a review of drug development. Future Oncol, 2008,4:359-77.
    13. Daley GQ. Gleevec resistance: lessons for target-directed drug development. Cell Cycle, 2003,2:190-1.
    14. Sawyers CL. Research on resistance to cancer drug Gleevec. Science, 2001,294:1834.
    15. Wilda M,Fuchs U,W ossmann W, et al.Kiling of leukemic cells with a BCR/ABL fusion gone by RNA interference(RNAi).Oncogene,2002, 21(37):5716-24
    16. Scherr M , Battmer K, Winkler T, et al. Specific inhibition of bcr/abl gene expression by small interfering RNA. Blood,2003 , 101 (4) : 1556-9
    17. Ptasznik A, Nakata Y, Kalota A, et al. Short interfering RNA ( siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug- resistant, BCR-ABL1 ( + ) leukemia cells. NatMed, 2004, 10 (11) : 1187-9
    18. Scherr M, Battmer K, Schultheis B, et al. Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Ther, 2005, 12 (1) : 12-21
    19. Withey JM, Harvey AJ, Crompton MR. RNA interference targeting of Bcr-Abl increases chronic myeloid leukemia cell killing by 17-allylamino-17-demethoxygeldan- amycin. Leuk Res, 2006, 30:553-60.
    20. Wohlbold L, van der Kuip H, Miething C, et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood, 2003,102: 2236-9.
    21. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol. 2007 Jul;36(3):184-204.
    22. Brummelkamp TR, Bernards R, Afami R. Stable suppression of tumor origenicity by virus-mediated RNA interference. Cancer Cell, 2002 , 2 (3) : 243-7.
    23.褚波,黄雪峰.慢病毒载体及其应用进展.生物医学工程学杂志. 2008; 25(1):224-6
    24. Bakalova R. RNA interference--about the reality to be exploited in cancer therapy. Methods Find Exp Clin Pharmacol. 2007 Jul-Aug;29(6):417-21.
    25. Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independentmechanism. Carcinogenesis, 2007,28:1765-73.
    26. Pillai GR, Srivastava A, Hassanein T, et a1. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett, 2004, 208(2): 163-70.
    27. Banerji A, Chakrabarti J, Mitra A, et a1. Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells . Cancer Lett, 2004, 211(2): 235-42
    28. Duvoix A, Morceau F, Schnekenburger M, et a1. Curcumin-induced cell death in two leukemia cell lines: K562 and Jurkat. Ann. NY Acad. Sci., 2003, 1010: 389-92
    29. Mukhopadhyay A, Banerjee S, Stafford LJ, et a1. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 2002, 21(57): 8852-61
    30. Collett GP, Campbell FC. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis, 2004, 25(11): 2183-9
    31. Yoysungnoen P, Wirachwong P, Bhattarakosol P, et al. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc, 2006,34:109-15.
    32.许建华,陈元仲,赵蓉,柯丹如.姜黄素对人白血病K562细胞凋亡的影响.中药药理与临床1998;14:19-22.
    33.许建华,赵蓉,柯丹如,黄自强.姜黄素对人肝癌Bel7402细胞杀伤动力学及周期时相的影响.福建医科大学学报1998;32:236-9
    34. Xu JH,Chen YZ. Curcumin Inducing Apoptosis and Inhibiting Expression of P210bcr-abl Protein in Human Chronic Myelogenous Leukemia K562 Cells. FASEB J, 2000;14(8):1169(abstract).
    35. Li-xian WU, Jian-hua XU, Xiu-wang HUANG, et al. Down-regulation of P210bcr/abl by curcumin involves disrupting the molecular chaperone functions of Hsp90. Acta Pharmacol Sin 2006;27:694-9.
    36.周小玉,费小明,汪承亚,等.应用逆转录病毒载体构建荧光标记的K562细胞模型.南京医科大学学报,2007,27:656-60.
    37. Emig M, Saussele S, Wittor H, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real timequantitative RT-PCR. Leukemia. 1999, 13:1825–32.
    38. Chaturvedi A, Battmer K, Schaefer D, et al. Comparison between molecularly defined and conventional therapeutics in a conditional BCR-ABL cell culture model. Oligonucleotides. 2007 Spring;17(1):22-34.
    39. Jakubowska J, Stasiak M, Szulawska A, et al. Combined effects of doxorubicin and STI571 on growth, differentiation and apoptosis of CML cell line K562. Acta Biochim Pol, 2007,54:839-46.
    40. He Q, Yuan LB. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells. Chin Med J (Engl), 2007,120:970-4.
    41. Hu JH, Navas P, Cao H, et al. Systematic RNAi studies on the role of Sp/KLF factors in globin gene expression and erythroid differentiation. J Mol Biol, 2007, 366:1064-73.
    42. Egger L, Madden DT, Rheme C, et al. Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death Differ, 2007, 14(6): 1172-80.
    43. Racz B, Reglodi D, Fodor B, et al. Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone, 2007, 40(6): 1536-43
    44.王建祥,白血病分子生物学。选自《白血病》,卞寿庚主编,中国医药科技出版社, 2003:80-84.
    45. Brozik A, Casey NP, Hegedus C, et al. Reduction of Bcr-Abl function leads to erythroid differentiation of K562 cells via downregulation of ERK. Ann N Y Acad Sci, 2006,1090:344-54.
    46. Baum KJ, Ren R. Effect of Ras Inhibition in Hematopoiesis and BCR/ABL Leukemogenesis. J Hematol Oncol, 2008,1:5.
    47. Sonoyama J, Matsumura I, Ezoe S, et al. Functional cooperation among Ras, STAT5, and phosphatidylinositol 3-kinase is required for full oncogenic activities of BCR/ABL in K562 cells. J Biol Chem, 2002,277:8076-82.
    48. Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004,18:189-218.
    49. Nawata R, Yujiri T, Nakamura Y, et al. MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappaB activation. Oncogene, 2003,22:7774-80.
    50. Chang JS, Santhanam R, Trotta R, et al. High level of the BCR/ABL oncoprotein arerequired for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood, 2007,110:994-1003.
    51. Era T. Bcr-Abl is a "molecular switch" for the decision for growth and differentiation in hematopoietic stem cells. Int J Hematol, 2002,76:35-43.
    52. Brozik A, Casey NP, Hegedus C, et al. Reduction of Bcr-Abl function leads to erythroid differentiation of K562 cells via downregulation of ERK. Ann N Y Acad Sci, 2006,1090:344-54.
    53. Rangatia J, Bonnet D. Transient or long-term silencing of BCR-ABL alone induces cell cycle and proliferation arrest, apoptosis and differentiation. Leukemia, 2006,20:68-76.
    54. Pierce A, Spooncer E, Wooley S, et al. Bcr-Abl protein tyrosine kinase activity induces a loss of p53 protein that mediates a delay in myeloid differentiation. Oncogene, 2000,19:5487-97.
    55. Williams GT. Programmed cell death: apoptosis and oncogenesis.Cell,1991,65(7): 1097-8.
    56. Amarante-Mendes GP, Naekyung Kim C, Liu L, et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood, 1998,91:1700-5.
    57. Okada M, Adachi S, Imai T, et al. A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL+ human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity.Blood,2004,103: 2299–307.
    58. Hamai A, Richon C, Meslin F, et al. Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: Relationship to Bcl-2 family and caspase activation. Oncogene, 2006,25:7618-34.
    59. Bonhoure E, Lauret A, Barnes DJ, et al. Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia, 2008,22:971-9.
    60. Choi YJ, Park JW, Woo JH, et al. Failure to activate caspase 3 in phorbol ester-resistant leukemia cells is associated with resistance to apoptotic cell death. Cancer Lett, 2002,182:183-91.
    61. Di Bacco AM, Cotter TG. p53 expression in K562 cells is associated withcaspase-mediated cleavage of c-ABL and BCR-ABL protein kinases. Br J Haematol, 2002,117:588-97.
    62. Wendel HG, de Stanchina E, Cepero E, et al. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A, 2006,103:7444-9.
    63. Stoklosa T, Slupianek A, Datta M, et al. BCR/ABL recruits p53 tumor suppressor protein to induce drug resistance. Cell Cycle, 2004,3:1463-72.
    64. Ferrarini M, Heltai S, Zochi MR, et al. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer, 1992, 51(4):613-619.
    65. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst, 2000, 92:1564-1572.
    66. Maloney A, Workman P. Hsp90 as a new therapeutic target for cancer therapy: The story unfolds. Expert Opin Biol Ther, 2002, 2:3-24.
    67. Flandrin P, Guyotat D, Duval A, et al. Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones, 2008,13:357-64.
    68. Chiosis G, Vilenchik M, Kim J, et al. Hsp90: the vulnerable chaperone. Drug Discov Today, 2004, 9:881-8.
    69.陈奕,丁健.热休克蛋白90-癌症治疗的新靶点.癌症,2004,23(8):968-974.
    70. An WG, Schulte TW, Neekers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210Bcr-Abl and v-src proteins before their degradation by the proteasome. J. Cell Growth Differ, 2000, 11:355-360
    71. Guo F, Sigua C, Bali P, et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood, 2005,105:1246-55.
    72. Naito S, von Eschenbach AC, Giavazzi R, et al. Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 1986;46:4109-15.
    73. Giovane BC, Stehlin JS, Shepand RC, et al. Correlation between response to chemotherapy of human tumor in patients and in nude mice. Cancer, 1983,52(7):1146-52.
    74. Patterson J, Palombella VJ, Fritz C, et al. IPI-504, a novel and soluble HSP-90 inhibitor,blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother Pharmacol, 2008,61:923-32.
    75. Vastag B. HSP-90 inhibitors promise to complement cancer therapies. Nat Biotechnol, 2006,24:1307.
    76. Keeshan K, Cotter TG, McKenna SL. High Bcr-Abl expression prevents the translocation of Bax and Bad to the mitochondrion. Leukemia, 2002,16:1725-34.
    77. Scheltema JM, Romijn JC, van Steenbrugge GJ, et al. Inhibition of apoptotic proteins causes multidrug resistance in renal carcinoma cells. Anticancer Res, 2001,21:3161-6.
    78. van Stijn A, van der Pol MA, Kok A, et al. Differences between the CD34+ and CD34- blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica, 2003,88:497-508.
    79. Godlewski MM, Gorka M, Lamparska-Przybysz M, et al. Minute kinetics of proapoptotic proteins: BAX and Smac/DIABLO in living tumor cells revealed by homeostatic confocal microscopy. Cytotechnology, 2004,45:141-53.
    80. William BM, Goodrich A, Peng C, et al. Curcumin inhibits proliferation and induces apoptosis of leukemic cells expressing wild-type or T315I-BCR-ABL and prolongs survival of mice with acute lymphoblastic leukemia. Hematology, 2008,13:333-43.
    81. Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it?. Mol Nutr Food Res, 2008,52:1010-30.
    82. Zhang KZ, Xu JH, Huang XW, et al. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells. Acta Pharmacol Sin, 2007,28:105-10.
    83. Wolanin K, Magalska A, Mosieniak G, et al. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res, 2006,4:457-69.
    84. Dhut S, Chaplin T, Young BD. BCR-ABL and BCR proteins: biochemical characterization and localization. Leukemia, 1990, 4: 745-50.
    85. Utama B, Shen YH, Mitchell BM, et al. Mechanisms for human cytomegalovirus-induced cytoplasmic p53 sequestration in endothelial cells. J Cell Sci, 2006,119:2457-67.
    86. Chen HW, Huang HC. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol, 1998,124:1029-40.
    87. Tsiftsoglou AS, Wong W. Molecular and cellular mechanisms of leukemic hemopoietic cell differentiation: an analysis of the Friend system. Anticancer Res, 1985,5:81-99.
    88. Czyz M, Szulawska A. Induced differentiation of the K562 leukemic cell line. Postepy Hig Med Dosw (Online), 2005,59:82-97.
    89. Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 2003,100:257-90.
    90. Reddy S, Aggarwal BB. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett, 1994,341:19-22.
    91. Narasimhan M, Ammanamanchi S. Curcumin blocks RON tyrosine kinase-mediated invasion of breast carcinoma cells. Cancer Res, 2008,68:5185-92.
    92. Rao CV, Simi B, Reddy BS. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis, 1993,14:2219-25.
    93. Kasi VS, Kuppuswamy D. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart. Mol Cell Biol, 1999,19:6858-71.
    94. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp 90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res, 2002,62:1559-66.
    95. Bonvini P, Dalla Rosa H, Vignes N, et al. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxyge- ldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res, 2004,64:3256-64.
    96. Press RD, Galderisi C, Yang R, et al. A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res, 2007,13:6136-43.
    97. Asnafi V, Rubio MT, Delabesse E, et al. Prediction of relapse by day 100 BCR-ABL quantification after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia, 2006,20:793-9.
    98. Anguita E, Ataulfo Gonzalez F, del Potro E, et al. Late relapse in BCR/ABL-positive patients after non-intensive chemotherapy. Leukemia, 1998,12:1006-7.
    99. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001,344: 1031-1037.
    100.刘晓力,周淑芸,杜庆锋,等. STI571治疗慢性隋系白血病的临床疗效与毒副作用观察.癌症2004,23(4):421-425.
    101.张昆仲,许建华等.姜黄素与STI571联合及序贯给药对K562细胞增殖的影响.福建医科大学学报,2007,41(3):193-196.
    102.张昆仲,许建华等.姜黄素和STI571联合应用对慢粒白血病K562细胞的体外研究.福建医科大学学报,2006,40(5):427-430.
    103. Ahn JH, Lee M. Tyrosine phosphorylation and Ras activation is required for hydrogen peroxide-mediated Raf-1 kinase activation. Mol Cell Biochem, 2008,317:121-9.
    104. Lee M. Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochem Biophys Res Commun, 2006,350:450-6.
    105. Yu C, Rahmani M, Almenara J, et al. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process. Oncogene, 2004,23:1364-76.
    106. Tian W, Zhang Z, Cohen DM. MAPK signaling and the kidney. Am J Physiol Renal Physiol, 2000,279(4):F593-F604.
    107. Sanchez-Arevalo Lobo VJ, Aceves Luquero CI, Alvarez-Vallina L, et al. Modulation of the p38 MAPK (mitogen-activated protein kinase) pathway through Bcr/Abl: implications in the cellular response to Ara-C. Biochem J, 2005,387:231-8.
    108.郭晓,潘崚,侯兰芬,等. ERK和P38信号转导途径对慢性髓系白血病细胞周期的调控作用.中国实验血液学杂志, 2007, 15(02): 242-7.
    109. Teiten MH, Reuter S, Schmucker S, et al. Induction of heat shock response bycurcumin in human leukemia cells. Cancer Lett, 2009.
    110. Martin DS, Lonergan PE, Boland B, et al. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem, 2002, 277(37):34239-46.
    111. Hallahan AR, Pritchard JI, Chandraratna RA. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med, 2003,9(8):1033-38.
    112. Deacon K, Mistry P, Chemoff J. p38-mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell, 2003,14(15):2071-87.
    113. Hsu WH, Hsieh YS, Kuo HC, et al. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol, 2007,81(10):719-28.
    114. Thoms HC, Dunlop MG, Stark LA. P38-mediated inactivation of cyclin D1/cyclin-dependent kinase4 stimulates nucleolar translocation of RelA and apoptosis in colorectal cancer cells. Cancer Res, 2007,67(4):1660-9.
    115. Wu LX, Xu JH, Zhang KZ, et al. Down-regulation of p210bcr/abl by curcumin involves disrupting molecular chaperone functions of Hsp90. Acta Pharmacologica Sinica, 2006, 27(6):694-99.
    116. Kwak HJ, Jun CD, Pae HO, et al. The role of inducible 70-kDa heat shock protein in cell cycle control, differentiation, and apoptotic cell death of the human myeloid leukemic HL-60 cells. Cell Immunol, 1998,187(1):1-12.
    117. Yeh CH, Tseng R, Zhang Z, et al. Circulating heat shock protein 70 and progression in patients with chronic myeloid leukemia. Leuk Res, 2009,33:212-7.
    118. Pocaly M, Lagarde V, Etienne G, et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia, 2007,21:93-101.
    119. Ray S, Lu Y, Kaufmann SH, et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem, 2004,279:35604-15.
    120.王涛.肿瘤多药耐药性与信号转导.国外医学呼吸系统分册, 2003,23(3):154-6.
    121. Guo F, Rocha K, Bali P, et al. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res, 2005,65:10536-44.
    1. Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. PLANT CELL, 1990, 2: 279.
    2. Guo S, Kemphuesk KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-20.
    3. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-11.
    4. Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-51.
    5. Chatterjee-Kishore M, Miller CP. Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Durg Discov Today,2005,10(22): 1559-65.
    6. Tuschl T, ZAMORE P D, LEHMANN R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev, 1999, 13 (24): 3191-97.
    7. Zamorea PD. RNA interference: listening to the sound of silence. Nat Struct Biol, 2001, 8(9): 746-50.
    8. Brummel Kamp TR, Bernads R, AGAMI R. A system for stable expression of short interfering RNAs in Mammalian cells. Science, 2002, 296: 550-3.
    9. Bass BL. RNA interference. The short answer. Nature, 2001,411(6836): 428-9.
    10. Mcmaanusm MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002, 3 (10) : 737-47.
    11. Yu JY, Deruiter SL, Turner DL. RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA,2002,99 (9):6047-52.
    12. Elabashir SM, Harborth J, Lendeckel W, et al. Duplexs of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836):494-8.
    13. Baulcombe D. RNA silencing. Diced defence. Nature,2001,409 (6818): 295-6.
    14. Druker BJ,Tamura S,Buohdunger E,et al.Efects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr/abl positive cells. Nail Med,1996,2(5) :561-6.
    15. De Klein A, Van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature,1982,300 (5894):765-67.
    16. Wilda M,Fuchs U,W ossmann W,et al.Kiling of leukemic cells with a BCR/ABL fusion gone by RNA interference(RNAi) .Oncogene,2002, 21(37):5716-24.
    17. Koldehoff M, Elmaagacli AH. Therapeutic targeting of gene expression by siRNAs directed against BCR-ABL transcripts in a patient with imatinib-resistant chronic myeloid leukemia. Methods Mol Biol, 2009,487:451-66.
    18. Diakos C, Krapf G, Gerner C, et al. RNAi-mediated silencing of TEL/AML1 reveals a heat-shock protein- and survivin-dependent mechanism for survival. Blood, 2007,109:2607-10.
    19. Scherr M , Battmer K, Winkler T, et al. Specific inhibition of bcr/abl gene expression by small interfering RNA. Blood , 2003,101 (4):1556-9.
    20. Ptasznik A, Nakata Y, Kalota A, et al. Short interfering RNA ( siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug - resistant, BCR-BL1 ( + ) leukemia cells. NatMed,2004,10 (11):1187-9.
    21. Scherr M, Battmer K, Schultheis B, et al. Stable RNA interference (RNAi) as an option for anti - bcr– abl therapy. Gene Ther,2005,12(1):12-21.
    22. Brumme lkamp TR, Bernards R, Afami R. Stable suppression of tumor origenicity by virus-mediated RNA interference. Cancer Cell, 2002, 2(3):243-7.
    23. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet, 2003,33:396-400.
    24. Heidenreich O, Krauter J. Riehle HAML/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8:21)-positive leukemic cells. Blood, 2003, 101(8): 3157-63.
    25. Liu H, Wang M, Diao S, et al. siRNA-mediated down-regulation of iASPP promotes apoptosis induced by etoposide and daunorubicin in leukemia cells expressing wild-type p53. Leuk Res, 2009.
    26. Shao SL, Sun YY, Li XY, et al. The reversion effect of the RNAi-silencing mdr1 gene on multidrug resistance of the leukemia cell HT9. Cell Biol Int, 2008,32:893-8.
    27. Rumpold H, Wolf AM, Gruenewald K, et al. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp Hematol, 2005,33:767-75.
    28. Wu H, Hait W H, Yang J M. Small inetfering RNApinduced suppression of mdr1(P-glycoprotein) restores sensitivity to multidrug resistance cancer cells. Cancer Research, 2003, 63(7): 1515-9.
    29. Yague E,Hig ns CF,Raguz S.Complete reversal of multidrug resistan ce by stable expression of small interfering RNAs targeting MDR1. Gene Ther,2004,11(14): 1170-74.
    30. Zhong X, Safa AR. Phosphorylation of RNA helicase A by DNA-dependent protein kinase is indispensable for expression of the MDR1 gene product P-glycoprotein in multidrug-resistant human leukemia cells. Biochemistry, 2007,46:5766-75.
    31. Li BZ, Zhuang WZ, Chen P, et al. Effects of RNA interference targeting hypoxia-inducible factor-1alpha (HIF-1alpha) on chemosensitivity of leukemia K562 cells towards homoharringtonin. Ai Zheng, 2008,27:723-8.
    32. Shen H, Xu W, Wu Z, et al. Down-regulation of WT1/+17AA gene expression using RNAi and modulating leukemia cell chemotherapy resistance. Haematologica, 2007,92:1270-2.
    33. Tyner JW, Walters DK, Willis SG, et al. RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood, 2008,111:2238-45.
    34. Cheng JC, Kinjo K, Judelson DR, et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood, 2008,111:1182-92.
    35. Schepers H, van Gosliga D, Wierenga AT, et al. STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood, 2007,110:2880-8.
    36. Scherr M, Chaturvedi A, Battmer K, et al. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood, 2006,107:3279-87.
    37. Guo D, Ye J, Dai J, et al. Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res, 2009,33:678-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700