超超临界机组用T/P92异种钢焊接接头结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型T/P92马氏体耐热钢以其优异的抗蠕变性能、良好的抗腐蚀和高温抗氧化能力已成为超超临界机组过热器、再热器以及主蒸汽管道的常用钢种之一。由于和奥氏体钢结构上有明显差异,它与新型奥氏体耐热钢之间的异种钢焊接问题是当前锅炉制造的一大难点。本文分别对T92马氏体钢与Super304H,HR3C奥氏体钢异种钢焊接接头的结构与性能进行了研究,并对T92/HR3C焊接接头高温蠕变性能进行了深入探讨。同时借助于有限元分析软件从理论上分析了焊接过程温度场变化对焊接接头力学性能的影响以及焊后残余应力的分布对焊接接头蠕变性能的影响。本文具体研究工作及结果如下:
     1.采用钨极氩弧焊(GTAW)焊接工艺对T92与奥氏体钢HR3C, Super304H分别进行焊接,获得T92/HR3C, T92/Super304H异种钢焊接接头。分别对这两组焊接接头的微观组织进行了观察,对于T92/HR3C焊接接头,研究结果表明T92母材、T92细晶区、T92粗晶区均为回火马氏体结构,T92母材过分回火,析出物数量较其热影响区要多。并且细晶区晶粒尺寸比母材晶粒尺寸小,粗晶区晶粒尺寸比母材晶粒尺寸大;HR3C母材、HR3C热影响区均为奥氏体结构,晶粒呈圆形状,且热影响区晶粒尺寸比母材晶粒尺寸大;焊缝为奥氏体结构,晶粒呈柱状。对于T92/Super304H焊接接头,研究结果表明T92母材、T92细晶区、T92粗晶区均为回火马氏体结构,并且细晶区晶粒尺寸比母材晶粒尺寸小,粗晶区晶粒尺寸比母材晶粒尺寸大;Super304H母材、Super304H热影响区均为奥氏体结构,晶粒呈圆形状,热影响区晶粒尺寸比母材晶粒尺寸大;焊缝为奥氏体结构,晶粒呈柱状。
     2.对以上两组焊接接头采用电子背散射衍射方法(EBSD)进行了取向特征分析。结果显示焊缝部位的晶粒在焊接过程中形成了沿焊接接头轴向方向的取向。而焊缝两侧的热影响区虽然受到焊接热循环的作用发生了相转变,但由于热影响区非常狭窄,温度梯度不明显,所以没有形成取向。
     3.对以上两组焊接接头的力学性能进行了测试,测试结果均满足ASME标准。硬度试验表明焊后热处理能够有效改善焊接接头T92粗晶区的韧性。弯曲试验表明焊缝具有良好的塑性。拉伸试验表明T92母材为焊接接头拉伸强度最薄弱的区域。这主要是由两个原因所导致:一方面焊缝产生了轴向取向,轴向拉伸强度得到提高;另一方面T92母材晶粒二次回火,强度降低。T92/Super304H焊接接头冲击试验表明焊缝的韧性相对整个焊接接头是最弱的。焊缝粗大的柱状晶使得晶界的强化被削弱,从而导致其韧性下降。
     4.使用蠕变试样机在625℃对T92/HR3C焊接接头进行了高温蠕变加速试验。结果发现高应力下蠕变断裂发生在T92母材,低应力下蠕变断裂发生在邻近焊缝的T92粗晶区。应力较大时,位错发生攀岩和滑移,当遇到基体内的MX析出物时,MX析出物就会阻碍位错的运动,这样两者之间就会发生作用产生应力集中。随着时间的推移,这些应力集中的点就会逐渐发展成为裂纹源,最终导致穿晶断裂的发生。断口的形貌分析表明此种断裂为韧性断裂。应力较小时,由于长时间高温作用,导致基体内部的C, Cr, Fe, W等元素往晶界发生迁移,从而造成M23C6碳化物粒子的粗大以及Laves相的出现。长大的M23C6以及Laves相在应力的缓慢作用下与晶界发生作用,引发材料内部的空穴在晶界处形核,生成蠕变孔洞,蠕变孔洞不断扩大相连最终导致焊接接头沿晶断裂。断口的形貌分析表明此种断裂是脆性断裂。
     5.根据焊接接头6250C获得的蠕变试验数据对T92/HR3C焊接接头高温持久强度进行了评估。分别采用了最小二乘法、Larson-Miller方程、Manson-Haferd方程进行评估,三种方法推测的625℃,105h接头的蠕变断裂强度均高于当前USC机组的蒸汽压力参数,这说明T92/HR3C焊接接头在6250C条件下能够安全可靠的服役十万小时。
     6.使用有限元软件ANSYS对T92/HR3C焊接接头焊接过程进行了数值模拟分析。焊接温度场计算结果表明焊缝金属在凝固结晶的过程中最大温度梯度方向是沿焊接接头轴向方向,并且从焊缝中间往两侧界面温度值是逐渐降低的。应力场计算结果表明T92/HR3C焊接接头应力的分布是不均匀的,在T92粗晶区和焊缝界面侧存在最大应力值。由于此应力的存在,长期处于高温下的T92/HR3C焊接接头往往会在T92粗晶区发生断裂。
The new type T/P92 martensitic steels with excellent resistance of creep, high-temperature corrosion and steam oxidation are being wildly used for superheaters, reheaters and steam pipes. However, due to significant difference between T/P92 and austenitic steels, the applications of T/P92 and austenitic steels such as HR3C, Super304H are currently a bit constrained. In this paper, the in-depth researches on the structure-property relationships of T92/HR3C and T92/Super304H dissimilar materials joints are done. In addition, the affection on mechanical and creep properties of the joint caused by variation of the temperature and stress field across the joint during welding process was also carried out by means of finite element method. The detailed research contents and results are summarized as follows:
     1. T92/HR3C, T92/Super304H dissimilar materials joints are obtained by gas tungsten arc welding (GTAW) process. For T92/HR3C dissimilar materials joints, Microstructures of T92 base material and its HAZ are both tempered martensite. Average grain size of fine-grained HAZ (FGHAZ) is less than that of T92 base material, and that of coarse-grained HAZ (CGHAZ) is bigger than that of T92 base material. Microstructure of weld metal is coarse dendritic austenite. Microstructures of HR3C base material and it's HAZ are austenite, and average grain size of HR3C HAZ is bigger than that of HR3C base material. For T92/Super304H dissimilar materials joints, Microstructures of T92 base material and its HAZ are both tempered martensite. Average grain size of fine-grained HAZ (FGHAZ) is less than that of T92 base material, and that of coarse-grained HAZ (CGHAZ) is bigger than that of T92 base material. Microstructure of weld metal is coarse dendritic austenite. Microstructures of Super304H base material and it's HAZ are austenite, and average grain size of Super304H HAZ is bigger than that of Super304H base material.
     2. Electron backscatter diffraction (EBSD) results show that grains in weld metal zone present the oriented feature during the welding process. Grains in weld metal zone grow up respectively from the two interface sides towards the middle of weld metal. However, as for the HAZs of Super304H and T92, the temperature at any time is well distributed and there is no obvious temperature gradient change. This suggests that the orientation distributions of grains in the two HAZs are both random.
     3. Mechanical properties test results show that both T92/HR3C and T92/Super304H dissimilar materials joints obtained by GTAW process can meet the ASTM standards. Hardness test results suggest that post welding heat treatment (PWHT) can improve the toughness of T92 coarse-grained heat affected zone (CGHAZ). Bending test results show that weld metal has excellent plasticity. The results show that the part of the joints with relatively weak tensile strength is T92 base material, and the decrease of tensile strength in T92 base material is due to PWHT. In addition, impact test results also show that the part of T92/Super304H joint which reveal relatively weak toughness is weld metal, and the weak toughness of weld metal is attributed to its coarse dendritic austenitic structure.
     4. Creep test results show that with the increase of load stress, the creep rupture time decreases. For stresses(?)140MPa, rupture location is at the T92 base material part. For stresses<140MPa, rupture location is at the T92 coarse-grained HAZ (CGHAZ). When the stress is high ((?)140MPa), the dislocation movement towards the grain boundary is hindered by the precipitates (M23C6, MX) in the grains during the creep process, which results in forming dimples at the interface of precipitate and matrix in these areas. The rupture mode belongs to transcrystalline fracture. When the stress is low (<140MPa), After a long time at 625℃, the high energy of grain boundary drives the elements such as Fe, Cr, W, Mo in the grains towards grain boundaries and promotes the growing up of M23C6 particles on the grain boundaries. Furthermore, duo to large size of W and Mo atoms, they are apt to combine with Fe and Cr atoms to form Laves phase on the grain boundaries. Thus, under the effect of long-term low stress, stress concentration is formed at the interface of grown-up precipitates and matrix, which leads to appearance of creep cavities along the grain boundaries. With the time goes on, creep cavities join each other along the grain boundary and lead to intergranular fracture.
     5. Creep rupture strength is evaluated using double logarithmic plot method, Larson-Miller parameter as well as Manson-Haferd parameter. Service life prediction curves indicate that T92/HR3C dissimilar weld joint could ensure safe service for duration of 105 hours under 30MPa to 40MPa at 625℃, Which is in according with the USC steam conditions.
     6. Variation of the temperature and stress field across the weld joint during the welding process is carried out by means of finite element analysis software ANSYS. Finite element method (FEM) analysis results reveal that the average temperature value in weld metal zone gradually reduced along the direction where temperature gradient declined and resulted in orientation distribution of weld metal. Stress distribution across the T92/HR3C joint is non-uniform and the largest residual stress is at interface between T92 CGHAZ and weld metal, which results in the failure of T92/HR3C joint under high temperature.
引文
[1]黄晞.电力技术发展史简编[M].北京:水利电力出版社,1986:1-2.
    [2]陆燕荪.从超临界机组的发展透视研发新材料的紧迫性[J].发电设备,2006,3:1-2.
    [3]杨富.1000MW级超超临界火电机组锅炉用新型耐热钢的焊接[J].中国电力,2005,38(8):48-53.
    [4]黄莺,华洪渊,李涛,张振兴.超超临界锅炉的发展与关键问题[J].发电设备,2006,1:46-51.
    [5]杨冬,徐鸿.浅议超超临界锅炉用耐热钢[J].锅炉制造,2006,2:6-10.
    [6]宁保群,刘永长,殷红旗,韩雅静,杨留栓.超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J].材料导报,2006,20(12):83-86.
    [7]Tamur M, Iida A H, Esaka H, et al. Solubility product of VN in austenite of high Cr heat resistant steel [J]. Iron and Steel Institute of Japan International,2003, 43(11):1807-1808.
    [8]杨华春,屠勇.国外超临界锅炉用高温高压钢管材料特性及应用介[J].东方锅炉,2004,1:14.
    [9]杨富,李为民,任永宁,柴小岩. 超超临界锅炉用新型铁素体耐热钢的现状与发展[C].超临界锅炉用钢及焊接技术论文集,2004:31-36.
    [10]赵旺初.国外超临界机组用钢[J].大型铸锻件,2006,111:41-50.
    [11]杨富,章应霖,任用宁,李为民.新型耐热钢焊接[M].北京:中国电力出版社,2007:6-8.
    [12]王为民,王建录.高效超临界汽轮机的研究与开发[J].动力工程,2004,24(5):609-613.
    [13]中国电力建设企业协会.中国电力建设史[M].北京:中国科学技术文献出版社,2004:1-2.
    [14]杨建平,郭军.超超临界机组用P92钢焊接技术的研究[J].中国电机工程学报,2007,27(23):55-56.
    [15]Berger C, Mayer K H, Scarlin R B. Neue Turbinenstahle zur Verbesserung der Wirtschaftlichkeit yon Kraftwerken Book7[C]. Essen:VGB Kraftwerkstechnik Gm. bH,1991:686-699.
    [16]Coutsouradis D. Materials for Advanced Power Engineering [M]. Dordrecht: Kluwer Academic Publication,1994:152-158.
    [17]杨富,章应霖,任用宁,李为民.新型耐热钢焊接[M].北京:中国电力出版 社,2007:17.
    [18]胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003,15(3): 60.
    [19]太田定雄著.张善元,张绍林译.铁索体系耐热钢[M].北京:冶金工业出版社,2003:25-78.
    [20]Takashi Watanabe, Masaaki Tabuchi, Masayoshi Yamaki, etal. Creep evaluation of 9Cr-IMo-V-Nb steel welded joints showing type IV fracture [J]. Interational Journal of Pressure Vessels and Piping,2006,83(1):63.
    [21]Klueh L, Hashimoto N, Maziasz P J. Development of new Nanoparticle strengthened martensitic steels [J]. Scripta Materials,2005,53:275-283.
    [22]Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbon nitribe dispersions [J]. Nature,2003,424:294.
    [23]Gupta G, Wasg S. The role of grain boundary engineering on the high temperature of ferritic-martensitic alloy T91 [J]. ASTM International,2005,2:1-3.
    [24]Agamennone R, Blum W, Gupta C. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9-12 Cr2%W5% Co steels [J]. Acta Materialia,2006,54(11):3003.
    [25]Abe F, Horiuchi T, Taneike M. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature [J]. Materials Science and Engineering A,2004,378:299.
    [26]Sawada K, Ohba T, Kushima H. Effect of microstructure on elastic Property at high temperatures in ferritic heat re sistant steels [J]. Materials Science and Engineering A,2005,394(1-2):36.
    [27]Laverde D, Tomas Gomez-Acebo, Castro F. Co ntinuous and cyclic oxidation of T91 ferritie steel under steam [J]. Corrosion Science,2004,46:613.
    [28]Gupta G, Jiao Z, Ham A N. Microstructural evolution of proton irradiated T91. Journal of Nuclear Materials,2006,351(1-3):162.
    [29]Mackenzie M, Craven A J, Collins C L. Nanoanalysis of very fine VN precipitates in steel [J]. Scripta Materials,2006,54:1.
    [30]Tamur M, Iida A H, Esaka H, et al. Solubility product of VN in austenite of high Cr heat resistant steel [J]. International Iron and Steel Institute of Japan, 2003,43(11):1807.
    [31]王同芬. T91的焊接性及焊接工艺研究[J].锅炉制造,1994,(1):21-24.
    [32]束国刚,刘江南.超临界锅炉用T/P91钢的组织性能与工程应用[M].西安: 陕西科学技术出版社,2006:3.
    [33]黄颖,T91/P91钢管在电站锅炉上的应用[J].发电设备,1998,(3):2427.
    [34]黄小莲.T91小径钢管的焊接[J].广西电力技术,1999,(1):2729.
    [35]Mythili R, Thomas paul V, Saroja S, Vijayalakshmi M, Raghunathan V S. Microstructural modfication due to reheating in multipass manual arc welds of 9Cr-1Mo steel [J]. Joural of Nuclear Materials,2003,321:1999-206.
    [36]Foret R, Million B, Svoboda M, Stransky K. Structural stability of dissimilar weld joints of steel P91 [J]. Science and Technology of Weld Joinning,2001,6(6): 405-411.
    [37]Stefan H, Pertti A. Predicting weld creep strength reduction for 9% Cr steels [J]. International Journal of Pressure Vessels and Piping,2006,83:803-808.
    [38]Abe F, Tabuchi M, Kondo M, Tsukamoto S. Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition [J]. International Journal of Pressure Vessels and Piping,2007,84:44-52.
    [39]Abe F, Tabuchi M. Microstructural and creep strength of welds in advanced ferritic power plant steels [J]. Science and Technology of Weld Joining,2004,9:22-30.
    [40]Tabuchi M, Watanabe T, Kubo K, Matsui M, Kinugawa J, Abe F. Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel [J]. Int J Pressure Vessels Piping,2001,78:779-84.
    [41]Matsui M, Tabuchi M, Watanabe T, Kubo K, Kinugawa J, Abe F. Degradation of creep strength in welded joints of 9-12%Cr steels [J]. Iron and Steel Institute of Japan International,2001,41:126-30.
    [42]Tabuchi M, Matsui M, Watanabe T, Hongo H, Kubo K, Abe F. Creep fracture analysis of W strengthened high Cr steel weldment [J]. Materials Science Research International,2003,9:23-28.
    [43]Watanabe T. Relationship between Type IV fracture and microstructure on 9Cr-1Mo-V-Nb steel welded Joint creep-ruptured after long term [J]. Tetsu-to-Hagane 2004,90:206-212 [in Japanese].
    [44]Shiue RK, Lan KC, Chen C. Toughness and austenite stability of modified 9Cr-1Mo welds after tempering [J]. Materials Science and Engineering A,2000, 287:10-16.
    [45]Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W [J]. Iron and Steel Institute of Japan International,2002,42:67-71.
    [46]Abe F, Horiuchi T, Sawada K. High-temperature annealing for maximization of dissolved boron in creep-resistant martensitic 9Cr steel [J]. Materials and Science Forum,2003,426:1393-8.
    [47]章应霖,王学,张建强.P91钢焊接接头性能及其存在问题的讨论[J].水利电力机械,2001,23(1):22-26.
    [48]李新梅,张忠文.高温过热器联箱与T91管焊接工艺[J]. 焊接,2006,(7):30-33.
    [49]Brozda J, Zeman M. Wrong heat treatment of martensitic steel welded tubes caused major cracking during assembly of resuperheaters in a fossil fuel power plant [J]. Engineering Failure Analysis,2003,10:569-579.
    [50]Brozda J, Lomozik M, Zeman M. Welding of P91 steel to other grades of steels for elevated temperature service. Welding International,1998,12(7):182-189.
    [51]Brozda J, Lomozik M, Zeman M. Welding of P91 steel to other grades of steel for elevated temperature service. Welding Research Abroad,1998,44(8-9):10.
    [52]Ptrick C, Ferguson T, Maitlen J. Welding root beads in P91 [J]. Welding Journal, 2004,83:38.
    [53]Mitchell DR G, Sulaiman S. Advanced TEM specimen preparation methods for replication of P91 steel [J]. Materials Characterization,2006,56(1):49-58.
    [54]Dasa C R, Albert S K, Bhaduri A K, Srinivasan G, Murty B S. Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr-1Mo steel weld joints [J]. Materials Science and Engineering A,2008, (477): 185-192.
    [55]张路,王正品,刘江南. 回火对国产P91钢组织和性能的影响[J].铸造技术,2003,24(6):537-541.
    [56]Haarmann K, Vaillant J C, Vandenberghe B, Bendick W, Arbab A. The T91/P91 book.1st ed. Boulogne:Vallourec-Mannesmann tubes;1999.
    [57]王伟东.600MW机组管道焊接热处理及无损检验施工[J].吉林电力,2001,152(1):40-44.
    [58]徐文杰,楼宏军.T/P91钢现场焊接质量控制[J].贵州水力发电,2006,20(6):59-62.
    [59]Tsuchida Y. Study of creep rupture in heat affected zone of 9Cr-1Mo-VNb steel by welding thermal cycle simulation [J]. Welding Research Abroad,1997, (8): 120-124.
    [60]Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel [J]. Materials Science and Engineering A,2006, (428):270-275.
    [61]Richardot D, Vaillant JC, Arbab A, Bendick W. The T92/P92 book [M].1st ed. Boulogne:Vallourec-Mannesmann tubes; 2000.
    [62]Carl D. A literature review on characteristics of high temperature [J]. Ferritic Cr-Mo steels and weldments,1998,454:35.
    [63]Fujimitsu M. History of power plants and progress in heat resistant steels [J]. International Iron and Steel Institute of Japan,2001,41(6):612-625.
    [64]Knezevic V. Martensitic/Ferritic super heat-resistant 650℃ steel-design and testing of model alloys [J]. Iron and Steel Institute of Japan International,2002, 42(12):1505-1514.
    [65]Seliger P. Creep-rupture strength of welded joints made of X10CrMoVNb91 [J]. Welding Reseach Abroad,2003,3:11-17.
    [66]Masuyama F, Matsui M, Komai N. Creep rupture behavior of advanced 9-12%Cr steel weldment [J]. Key Engineer and Materials,2000, (171-174):99-107.
    [67]Matsui M, Tabuchi M, Watanabe T, Kubo K, Kinugawa J, Abe F. Degradation of creep strength in welded joint of 9%Cr steel [J]. Iron and Steel Institute of Japan International,2001,41:126-130.
    [68]Albert S K, Matsui M, Watanable T, Hongo H, Kubo K, Tabuchi M. Microstructural investigationd on type IV cravking in a high Cr steel [J]. Iron and Steel Institute of Japan International,2002,42:1497-1504.
    [69]Sawada K, Kushima H, Kinura K. Z-phase formation during creep and aging in 9-12%Cr heat resistant steels [J]. Iron and Steel Institute of Japan International, 2006,46:769-775.
    [70]Danielsen H K, Hald J. Behaviour of Z phase in 9-12%Cr steels [J]. Energy Materials,2006,1:49-57.
    [71]Vaillant J C, Vandenberghe B, Hahn B, Heuser H, Jochum C. T/P23,24,911 and 92:New grades for advanced coal-fired power plants-properties and experience [J]. International Journal of Pressure Vessels and Piping,2008,85(1-2):38-46.
    [72]沈琦,刘鸿国.新型耐热钢T/P92、T/P122在超超临界机组中的应用及监督[J].电力建设,2010,31(10):71-75.
    [73]瓦卢瑞克·曼内斯曼钢管公司.T92/P92钢手册[C].超(超)临界锅炉用钢及焊接技术论文集,2004,285-304.
    [74]李以善,王勇,韩彬,郭怀力,赵昆.T92钢的焊接工艺和组织性能研究[J]. 工艺与新技术,焊接技术,2007,36(3):31-33.
    [75]吴军,邹增大,王新洪,李清明. 控轧控冷T92耐热钢的纤维组织结构研究[J].金属热处理,2007,32(9):71-74.
    [76]严正,冯建辉,肖德铭. 超超临界机组SA335-P92钢焊接工艺方案和焊接工艺评定实践[J].焊接技术,2008,37(1):21-26.
    [77]王双宝,伍翠兰,袁敏,杨浩,陈江华.T92锅炉钢649℃长期失效的微观组织研究[J].南京大学学报(自然科学),2009,45(2):269-274.
    [78]王亮,刘宗德,陈鹏,李洪川.T92钢时效硬度变化实验研究及蠕变寿命预测[J].电力建设,2008,29(5):61-64.
    [79]赵建仓.P92新型耐热钢焊接接头力学性能研究及其工程应用[C].USC机组锅炉用钢及焊接技术协作网第二次论坛大会论文集,西安,2007,1:29-35.
    [80]Naoi H, Ohgami M, Liu X, Fujita T. Effects of aluminum content on the mechanical properties of 9Cr-0.5Mo-1.8W steel [J]. Metallurgical and Materials Transactions A, 1997,28(5):1195-1203.
    [81]Manimozhi S, Suresh S, Muthupandi V. HAZ hydrogen cracking of 9Cr-0.5Mo-1.7W steels [J]. The International Journal of Advanced Manufacturing Technology. 2010,51(1-4):217-223.
    [82]Kimura K, Sawada K, Kushima H. Creep deformation properties of creep strength enhanced ferritic steels [J]. Transations of Indian Institute of Metals,2010,63(2-3): 123-129.
    [83]Gong Y, Cao J, Ji L N, Yang C, Yao C, Yang Z G, Wang J, Luo X M, Gu F M, Qi A F,Ye S Y, Hu Z F. Assessment of creep rupture of disimilar steels welded joint between T92 and HR 3C [J]. Fatigue and Fracture of Engineering Materials and Structures,2011,34(2):83-96.
    [84]Cao J, Gong Y, Zhu K, Yang Z G, Luo X M, Gu F M. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels [J]. Materials and Design,2011,32(5):2763-2770.
    [85]Cao J, Gong Y, Yang Z G, Luo X M, Gu F M, Hu Z F. Creep fracture behavior of dissimilar weld joint between T92 martensitic and HR3C austenitic steels [J]. International Journal of Pressure Vessel and Piping,2011,88:94-98.
    [86]Lim R, Sauzay M, Dalle F, Tournie I, Bonnaillie P etal. Modelling and experimental study of the fertiary creep stage of grade 91 steel [J]. International Journal of Fracture,2011, DOI:10.1007/s10704-011-9585-y.
    [87]Savage W F. A study of weld interface phenomena in a low allow steel [J]. Welding Journal,1976,55(9):260-265.
    [88]Savage W F. Mircosegregation in partially metal regions of 70C-30Ni weldments [J]. Welding journal,1976,55(7):181-185.
    [89]Nelson T. Nature and elolution of the fusion boundary in ferritic-austenitie dissimilar metal welds-Partl-nueleation and growth [J]. Welding Journal,1999, 78(10):3295-3375.
    [90]Nelson T. Nature and evolution of the fusion boundary in ferritic-austenitie dissimilar metal welds-Part2:on-cooling transformation [J]. Welding Journal, 2000,79(8):266-277.
    [91]张汉谦,吴宇. 熔化焊接头特征区域研究[J].材料科学与工艺,1995,3(1):28-32.
    [92]涂善东,巩建鸣. 高温下焊接试样的力学行为及其与实际焊接构件之间的关系[J].焊接学报,1999,20(1):1-10.
    [93]赵异萍,赵宇,陈清阳,郭李胜.异种钢焊接工艺的研究[J].铸造设备研究,1997,(1):25-28.
    [94]潘春旭,孙国正. 异种钢焊接性的研究现状及进展[J].水利电力机械,1 996,(3):42-46.
    [95]王少刚,王蕾.异种金属焊接接头金相试样的制备[J].实验室研究与探索,1998,(2):38-39.
    [96]Issl S, Klenk A, Shibli A A, Willimas J A. Weld repair of ferritic welded materials for high temoerature application [J]. Intemational Maetrials Reviews,2004,49(5):229-324.
    [97]Fabe G., Gooch T. Welded joints between stainless and low alloy steels: Currcnt Position [J]. Welding in the World,1982,20(5):87-89.
    [98]Viswanathan R. Damage mechanism and life assessment of high temperature components [J]. ASM Intemational,1989,289-308.
    [99]王宽福.异种钢焊接结构的失效分析[J].石油工程建设,1998,(1):9-12.
    [100]李卫东,余丽杰. 用于珠光体不锈钢与奥氏体不锈钢异质接头的新型焊接材料的研究[J].焊接技术,1998,(5):28-29.
    [101]郝兴明. 异种耐热钢管焊接接头早期失效的调查和分析[J].山西矿业学院学报,1996,14(4):299-305.
    [102]杜兵,李彦.异种钢熔合区的脆化与断裂行为[J].焊接学报,1998,19(1):24-28.
    [103]潘春旭,陈方.12CrlMOv钢异类接头焊接熔合区的显微组织和断口特征 [J].水利电力机械,1998,(3):50-53.
    [104]潘春旭,沈棣华.异种钢焊接接头显微组织在高温服役中的转变[J].电子显微学报,1994,13(2):121-124.
    [105]杨世伯,潘春旭.焊后热处理对奥氏体/珠光体钢接头熔合区断裂形态的影响[J].材料科学与工艺,1996,4(3):71-75.
    [106]章应霖,杨厚君.电站FIA异种钢接头早期失效及其防治措施[J].武汉水利电力大学学报,1998,31(1):83-87.
    [107]杨厚君,章应霖.电站用奥氏体钢管异种钢焊接性研究现状[J].电力建设,1998,(3):8-14.
    [108]杨厚君,曹晨.焊后热处理对A/F异种钢焊接接头影响的试验研究[J].武汉水利电力大学学报,1998,31(2):56-60.
    [109]郑阳,沈士明Cr-Mo钢焊接接头中碳迁移现象研究的现状与进展[J].机械设计与制造工程,2001,31(1):55-57.
    [110]史春元,薛继仁.高温下碳在a-Y型异种钢焊接接头中的扩散[J].焊接学报,1999,20(4):255-263.
    [111]周宣,张志高.Cr5Mo钢管异种接头中的碳迁移的研究[J].华中理工大学学报,1995,23(1):30-34.
    [112]郑阳,沈士明.不同Cr-Mo钢焊接接头中碳迁移宽度计算[J].石油化工设备,2003,32(2):25-27.
    [113]廖红卫,潘春旭.珠光体-奥氏体异种钢焊接中碳迁移的计算[JJ.武汉交通科技大学学报,1997,21(1):11-15.
    [114]李萌盛.异质焊接接头加热过程中的碳迁移现象研究[J].材料科学与工艺,1997,5(3):17-21.
    [115]刘伟平,庄鸿寿.Ni-Cr-Co-B高温镍基钎料的研究[J].金属学报,1995,31(12):539-543.
    [116]蕲红梅,任世宏,李永红,张建晓.镍基合金在异种钢焊接中的应用[J].电焊机,2009,39(4):148-150.
    [117]陈江辉,李晓红,邹有为.电站异种钢镍基接头性能分析[J].浙江电力,2001,(6):37-42.
    [118]姜勇,巩建明,涂善东.A302和Inconel 182焊接的Cr5Mo异质焊接接头的碳迁移和蠕变破断寿命[J].2005,(2):10-15.
    [119]巩建明,姜勇,涂善东.碳迁移对镍基和奥氏体焊条焊接的Cr5Mo异种钢焊接接头蠕变破断寿命的影响[J].材料工程,2003,(10):19-23.
    [120]顾望平.浅谈炼油厂Cr5Mo耐热钢异种钢焊接接头的性能[J].石油化工设 备技术,1989,10(6):49-54.
    [121]李萌盛.电站锅炉异种钢接头的蠕变断裂分析[J].合肥工业大学学报(自然科学版),1997,20(5):137-142.
    [122]Omar A A. Effect of welding Parameters on hard zone formation at dissimilar metal welds [J]. Welding Joumal,1998,77(2):86-935.
    [123]于启湛.高温长期加热后异种钢焊接接头组织和性能的变化[J].金属科学与工艺,1990(1):95-107.
    [124]蔡文河,赵卫东,杨富,郭兴贵,王勇.TP347H与12Cr1MoV异种钢焊接接头早期失效研究[J].中国电力,2009,42(4):22-26.
    [125]伍光凤,罗怡. 高强匹配Cr91/12Cr1MoV异种钢焊接接头组织及性能[J].焊接技术,2010,39(7):8-13.
    [126]刘晓波. 奥氏体钢和珠光体钢焊接的裂纹研究[J].材料科学与工艺,2000,27:14-16.
    [127]丛欣滋.铁素体-奥氏体异种钢接头高温失效原因的分析[J].焊接学报,1989,10(1):19-28.
    [128]张建强,吴苏,赵海燕.马氏体/贝氏体异种钢耐热钢焊接接头的力学性能及界面失效[J].机械工程学报,2003,(2):58-61.
    [129]肖强,张建强,章应霖9Cr1MoVNbN/12Cr2MoWVTiB异种钢焊接接头的力学性能及界面失效行为研究[J].焊接技术,2002,(4):16-18.
    [130]Albert S K. Soft zone formation in dissimilar welds between two Cr-Mo steels [J]. Welding Journal,1997,76(3):135-142.
    [131]廖红卫.异种耐热钢焊接接头热腐蚀研究.水利电力机械[J].1998,(3):59-62.
    [132]张根伟,商宏学.200MW机组高温过热器弯管爆裂原因探讨[J].理化检验-物理分册,2000,36(2):58-61.
    [133]Nath B. Change in the mechanism of creep crack growth in a dissimilar metal weld at 540℃[J]. Key Engineering Metals,1999,(11):171-174.
    [134]杨富,章应霖,任用宁,李为民.新型耐热钢焊接[M].北京:中国电力出版社,2007:179-191.
    [135]张东文,胡彦平,冯砚厅.经长时运行的异种钢焊接接头安全寿命分析[J].焊接技术,2004,(1):59-61.
    [136]于在松,刘江南,王正品.T91钢服役过程中碳化物的熟化分析fJ].铸造技术,2007,28(5):636-638.
    [137]胡正飞,杨振国.长期高温时效F12耐热合金钢中碳化物形态和组分变化[J].金属学报,2003,39(2):131-135.
    [138]史春元,田锡唐,陈子刚.异种钢接头沿界面蠕变脆断的力学控制参量[J].焊接学报,1995,16(4):185-189.
    [139]梁军,徐顺伟.母材蠕变强度差对T91异种钢接头高温性能的影响[J].山西电力,2004,(5):5-6.
    [140]Sopousek J, Foret R, Jan V. Simulation of dissimilar weld joints of steel P91. Science and Technology of Weld Joining,2004,9(1):59-64.
    [141]孟庆森,韩培德,梁军.异种钢焊接接头界面组织及力学性能的研究[J].焊接学报,1997,(2):24-27.
    [142]Hu Z F, Yang Z G, He G Q, Chen C S. Damage and Residual Life Assessment of Bends for X20CrMoV12.1 Main Steam Pipe after Long-Term Service [J]. Journal of Failure Analysis and Prevention.2008, (8):41-47.
    [143]Shibli A, Starr F. Some aspects of plant and research experience in the use of new high strength martensitic steel P91 [J]. International Journal of Pressure Vessels and Piping,2007, (84):114-122.
    [144]李景湧.有限元法[M].北京:北京邮电大学出版社,1999,1-2.
    [145]拉达尹,熊第京.接热效应温度场残余应力变形[M].北京:机械上业出版社,1997,3.
    [146]雷卡林.焊接热过程计算[M].北京:中国工业出版杜,1958,2.
    [147]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,3:139-148.
    [148]陈楚,汗建华,杨洪庆.水下焊接冷却特性的有限元分析[J].海洋工程,1993,4:34-38.
    [149]Wang J, Ueda Y, Murakawa H. Improvement in numerical accuracy and stability of 3D FEM analysis in welding. Welding Journal,1996,75(4):129-134.
    [150]Ueda Y. Analysis of thermal elastic plastic stress and strain during welding. Transaction of Japan Welding Society,1971,2(2):90-100.
    [151]Zhang G D, Zhang F J. Welding temperature field analysis for featheredged cylinder based upon conformal transformation. China Welding,2006,15(4): 34-38.
    [152]Tsai C L, Feng Z L. A computational analysis of thermal and mechanical conditions for weld metal Solidificatjon cracking. Welding Research Abroad, 1996,42(1):34-41.
    [153]Kasuya T, Yorioka. Prediction of welding thermal history by a comprehensive solution. Welding Journal,1993,72:107-115.
    [154]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65.
    [155]汪建华,钟小敏,戚新海.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16(3):140-145.
    [156]魏良武,汪建华,陆皓.液力变矩器焊接丁艺参数的计算机优化[J].焊接学报,2001,22(5):76-78.
    [157]蔡志鹏,鹿安理,史清宇.相似理论在焊接温度场和应力场及应变场中的麻用[J].焊接学报,2000,21(3):79-82.
    [158]赵海燕,鹿安理,史清宇.焊接结构CAE中数值模拟技术的实现[J].中国机械工程,2000,11(7):732-734.
    [159]鹿安理,史清宇,赵海燕.焊接过程仿真领域的若干关键技术问题及其初步研究[J].中国机械工程,2000,11(2):201-205.
    [160]张华,潘际銮. 基于二维焊接温度场检测的三维温度场计算机模拟[J].焊接学报,1999,20(4):226-232.
    [161]韩肇俊ASME批准认可的第三代新型铁素体耐热钢的性能及应用[J].ASME在中国,2004,(2):30-41.
    [162]王军,潘乾钢,陈方玉,陶永顺,彭芳芳.P92钢高温蠕变损伤分析[C].超超临界锅炉用钢及焊接技术第三次论坛大会,2009,99-103.
    [163]Falat L, Vyrostkova A, Homolova V, Svoboda M. Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints [J]. Engineering Failure Analysis, 2009,16:2114-2120.
    [164]严正,龙华明,李振山. 超声波检测P92钢焊接接头的几个特殊问题[C].超超临界锅炉用钢焊接技术协作网第二次论坛大会论文集.2007,12:158-162.
    [165]柯文石,刘鸿国,洪道文.超超临界机组P92钢薄壁主蒸汽管道运行寿命研究[J].中国电力,2009,42(12):49-52.
    [166]Takahashietal T. Elevated temperature strength and hot corrosion resistance of 20Cr-25Ni steel for ultra-supercritical power boiler [J]. Iron and Steel,1990, (7):1131-113
    [167]Magd E E, Gebhard J, Stuhrmann J. Simulation of the creep behavior of P92 sandwich structures at 650℃ with loading transverse to the intermediate layer [J]. Computational Materials Science,2007,39:446-452.
    [168]Kim B J, Lim B S. Microstructure and fatigue crack growth behavior of heat affected zone in P92 steel weldment [J]. Key Engineering Materials,2004,263: 1185-1190.
    [169]Ryu S H, Lee Y S, Kong B Q. The fracture behavior of weld joints in P92, P122 and P23 pipe for power plant [C]. Proceedings of the 4th international conference on advances in materials technology for fossil plants. USA, ASM Intenratioanl,2005,930-934.
    [170]陈跃胜. 热处理对9%Cr系耐热钢热影响区组织和蠕变特性的影响[J].国外金属热处理,2004,25(2):27-31.
    [171]武英利.T91/TP347H异种耐热钢焊接接头组织及性能研究[C].硕士论文集,2003.
    [172]Coelho R S, Kostka A, Santos J F, Pyzalla A R. EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding [J]. Advanced Engineering Materials,2008,10:1127-1132.
    [173]Wu S H, Huang J C, Wang J Y. Evolution of Microstructure and Texture in Mg-Al-Zn Alloys during Electron-Beam and Gas Tungsten Arc Welding [J]. Metallurgical and Materials Transactions A,2004,35:2455-2469.
    [174]Suhuddin UFH R, Mironov S, Sato Y S, Kokawa H, Lee C W. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy [J]. Acta Materialia,2009,57:5406-5418.
    [175]Gaffard V, Lorenzon AF G, Besson J. High temperature creep flow and damage properties of 9Cr1MoNbV steels:Base metal and weldment [J]. Nuclear Engineering and Design,2005,235:2547-2562.
    [176]Lim Y S, Kim H P, Cho H D, Lee H H. Microscopic examination of an Alloy 600/182 weld[J]. Materials Characterization,2009,8:1044-1055.
    [177]Fonda R W, Bingert J F. Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld [J]. Metallurgical and Materials Transactions A,2004,35: 1487-1499.
    [178]刘贤德.CCD原理及其应用原理[M].武汉:华中理工大学出版社,1990,230-253.
    [179]Ennis P J, Zielinska-lipiec A, Wachter O, Czyrska-filemonowicz A. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J]. Acta Materialia,1997,45(12):4901-4907.
    [180]Iseda A, Okada H, Semba H. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers [J]. Energy Materials. 2007,2(4):199-206.
    [181]Rodak K, Hernas A, Kielbus A. Substructure stability of highly alloyed martensitic steels for power industry [J]. Materials Chemistry and Physics,2003, 81(2-3):483-485.
    [182]Kim B, Jeong C, Lim B. Creep behavior and microstructural damage of martensitic P92 steel weldment [J]. Materials Science and Engineering A,2008, 483-484:544-546.
    [183]Lu Z, Faulkner RG, Riddle N, Yang K. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels [J]. Journal of Nuclear Materials,2009,366-388:445-448.
    [184]Kimura K, Sawada K. Effect of stress on the creep deformation of ASME Grade P92/T92 steels [J]. International Journal of Materials Research,2008,99(4): 395-401.
    [185]Abe F, Horiuchi T, Taneike M, Sawada K. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature [J]. M Materials Science and Engineering A,2004,378:299-303.
    [186]Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel [J]. Materials Science and Engineering A,2001,319-321:784-787.
    [187]Korcakova L, Hald J, Somers MA J. Quantification of Laves phase particle size in 9CrW steel [J]. Materials Characterization,2001;47(8):111-117.
    [188]Hu Z F, Yang Z G. An investigation of the embitterment inX20CrMoV12.1 power plant steel after long-term service exposure at elevated temperature [J]. Materials Science and Engineering A,2004,383:224-228.
    [189]Laha K, Chandravathi K S, Rao KB S, Mannan S L, Sastry D H. An assessment of creep deformation and fracture behavior of 2.25Cr-1 Mo similar and dissimilar weld joints [J]. Metallurgical and Materials Transactions A,2001,32(12): 115-124.
    [190]Sireesha M, Albert S K, Sundaresan S. Influence of high-temperature exposure on the microstructure and mechanical properties of dissimilar metal welds between modified 9Cr-1Mo steel and alloy 800 [J]. Metallurgical and Materials Transactions A,2005,36(6):1495-1505.
    [191]Lee H Y, Lee S H, Kim J B, Lee J H. Creep-fatigue damage for a structure with dissimilar metal welds of modified 9Cr-1Mo steel and 316L stainless steel [J]. International Journal of Fatigue,2007,29(9-11):1868-1879.
    [192]Sun W, Hyde T H, Williams J A, Becker A A. Effects of prior damage on the creep failure behaviour of similar and dissimilar welded CrMoV main steam pipes incorporating a partial repair [J]. International Journal of Pressure Vessel and Piping,2009,86(10):699-710.
    [193]Naffakh H, Shamanian M, Ashrafizadeh F. Microstructural evolutions in dissimilar welds between AISI 310 austenitic stainless steel and Inconel 657 [J]. Metallurgical and Materials Transactions A,2008,39(10):2403-2415.
    [194]Sawada K, Tabuchi M, Hongo H, Watanabe T, Kimura K. Z-Phase formation in welded joints of high chromium ferritic steels after long-term creep [J]. Mater Characterization,2008,59(9):1161-1167.
    [195]Auerkari P, Holmstrom S, Veivo J, Salonen J. Creep Damage and Expected Creep Life for Welded 9-11%Cr Steels [J]. International Journal of Pressure Vessel and Piping,2007,84(1-2):69-74.
    [196]Larson F R, Miller J. A time-temperature relationship for rupture and creep stresses [J]. Transaction ASME 1952;74(5):765-771.
    [197]Manson S S, Haferd A M. A linear time-temperature relation for extrapolation of creep and stress rupture data [J], NACA,1953:1-11.
    [198]NRIM Creep Date Sheet (No.48). National research institute for metals. Japan: NRIM;2002.Vyrostkova A, Homolova V, Pecha J, Svoboda M. Phase evolution in P92 and E911 weld metals during ageing [J]. Materials Science and Engineering A,2008,480:289-298.
    [199]Allen D J, Harvey B, Brett S J. "FOURCRACK"-An investigation of the creep performance of advanced high alloy steel welds [J]. International Journal of Pressure Vessel and Piping,2007,84:104-113.
    [200]Nakashima H, Terada D, Yoshida F, Hayakawa H, Abe H. EBSP analysis of modified 9Cr-1Mo martensitic steel [J]. Iron and Steel Institute of Japan International,2001,41:922.
    [201]Maruyama K, Sawada K, Koile J. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. Iron and Steel Institute of Japan International, 2001,41(6):641-653.
    [202]Kassnera M E, Hayes T A. Creep cavitation in metals [J]. International Journal of Plasticity,2003,19(10):1715-1748.
    [203]Suri S, Viswanathan G B, Neeraj T, Hou D H, Mills M J. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Materialia,1999,47(3):1019-1034.
    [204]ASME SFA-5.14M-2007, Specification for nickel and nickel-alloy bare welding electrodes and rods, USA,2007.
    [205]Djavanroodi F. Creep-fatigue crack growth interaction in nickel base supper alloy [J]. American Journal of Applied Sciences,2008,5 (5):454-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700