饲料脂肪水平对吉富罗非鱼生长及脂肪代谢调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉富罗非鱼是遗传性状改良后的尼罗罗非鱼(Genetic Improvement of Farmed Tilapia Strain of Nile tilapia, Oreochromis niloticus),现已成为我国一个新的重要养殖品种。由于饲料营养失衡,如长期投喂低蛋白、高脂肪、高糖类和缺乏维生素的饵料,造成罗非鱼肝损害,生产存在规格小、品质差等问题。脂肪是鱼类重要的营养素,它的性质决定了其独特的生物学功能及其他营养素难以替代的作用。为探讨吉富罗非鱼对饲料脂肪适宜需求量及饲料脂肪水平对脂肪代谢及其关键酶的调节机制,本文开展了饲料中不同脂肪水平对吉富罗非鱼生长、体脂沉积及脂肪酸组成的影响研究,首次克隆了吉富罗非鱼脂肪酸合成酶(fatty acid synthetase, FAS)、脂蛋白脂酶(lipoprotein lipase, LPL) cDNA序列,并开展了饲料脂肪水平及再投喂对吉富罗非鱼脂肪酸合成酶、脂蛋白脂酶活性及其基因表达水平、血液脂肪代谢生化指标的调节研究。
     1饲料脂肪水平对吉富罗非鱼生长、营养物质消化、肌肉成分及血液生化指标的影响
     为探讨吉富罗非鱼对脂肪的适宜需求,将630尾(2.63±0.16 g)吉富罗非鱼随机分成6组,每组设置3个重复,每个重复35尾,其中第1组为对照组,投喂基础日粮(未添加鱼油,含脂肪1.73%),另外5组为试验组,饲喂在基础日粮中分别添加2%、4%、6%、8%、15%的鱼油含不同脂肪水平(3.71%、5.69%、7.67%、9.64%和16.55%)的等氮饲料,饲养90 d,试验结束时,测定增重率、饲料系数、营养物质表观消化率,禁食48 h,每个水族箱随机取3尾鱼,测定肌肉常规营养成分、肠道消化酶活性及血液常规生化指标。结果显示,随着饲料脂肪水平的提高,增重率和特定生长率呈现先升后降的趋势,蛋白质效率显著提高(P<0.05),而饲料系数显著下降(P<0.05);增重率与饲料脂肪水平的二次多项式回归分析显示,吉富罗非鱼获得最高增长所需饲料的最佳脂肪水平为9.34%;饲料脂肪水平对粗蛋白表观消化率和饲料干物质表观消化率无显著影响(P>0.05),增加饲料脂肪水平显著提高了粗脂肪和磷的表观消化率(P<0.05);随着饲料脂肪水平的升高,罗非鱼肌肉脂肪含量上升,变化范围为9.96%~17.27%,水分、粗蛋白、粗灰分及磷含量均呈下降趋势;吉富罗非鱼胃和肠道中蛋白酶活性没有显著变化(P>0.05),前肠和中肠的脂肪酶活性显著下降(P<0.05),前肠中的淀粉酶活性显著下降(P<0.05);未添加鱼油的1.73%组血液中白蛋白和白球比均显著高于其他组(P<0.05),随着饲料脂肪水平的提高,胆固醇及碱性磷酸酶显著上升(P<0.05);饲料脂肪水平对血糖有显著影响(P<0.05),对甘油三酯浓度、谷丙转氨酶和谷草转氨酶的活性无显著影响(P>0.05)。结果表明,饲料中一定含量的脂肪水平可以促进吉富罗非鱼生长,提高吉富罗非鱼对脂肪和磷的表观消化率,但脂肪水平过高会对鱼体增重及血液生化指标产生负作用,因此,在生产上吉富罗非鱼幼鱼对饲料中脂肪的适宜需求量为7.67%-9.34%。
     2饲料脂肪水平对吉富罗非鱼体脂沉积及脂肪酸组成影响
     饲养方案同1,饲养90 d,试验结束时,禁食48 h后,每一水族箱随机取3尾鱼的进行解剖,测定吉富罗非鱼的部分形体指标、肌肉肝脏及腹腔脂肪组织的脂肪沉积及脂肪酸组成。试验结果显示:5.69%、7.67%及9.64%脂肪组吉富罗非鱼肥满度较高;1.73%和16.55%脂肪组的肝体指数显著高于其他试验组(P<0.05);除了1.73%脂肪组,其他各组中饲料脂肪水平越高,鱼体的脏体指数越高。7.67%脂肪组吉富罗非鱼肌肉脂肪含量显著高于3.71%组(P<0.05),同时显著低于16.55%组(P<0.05),但是其肝脏中脂肪含量与其他各组差异均不显著(P>0.05);饲料脂肪水平越高,鱼体的脂肪含量越高,同时不饱和脂肪酸占总脂肪酸中的比例越高。结果表明,饲料脂肪水平影响吉富罗非鱼的部分形体指标,尤其对肝脏形态的影响较为明显。饲料中过多的脂肪容易在肌肉和肝脏组织中沉积,同时鱼体的脂肪含量和脂肪酸组成能够反映饲料的脂肪水平和脂肪酸组成。
     3吉富罗非鱼FAS、LPL基因的克隆及序列分析
     采用RT-PCR和cDNA末端快速扩增法(rapid amplification of cDNA ends, RACE)克隆了吉富罗非鱼FAS基因部分序列(GenBank:GU433188)及LPL基因的cDNA全长序列(GenBank: GU433189).克隆得到的吉富罗非鱼FAS基因的部分cDNA序列长557 bp,编码185个氨基酸,序列分析表明吉富罗非鱼脂肪酸合成酶与其他物种的同源性为62%~82%。吉富罗非鱼LPL基因的cDNA全长2298 bp,编码515个氨基酸,序列分析表明吉富罗非鱼脂蛋白脂酶与其他物种的同源性为57.3%~87.9%。一些重要的功能位点如脂肪结合域(lipid binding domain, LID)等在进化的过程中较为保守。同源建模分析显示LPL具有典型的脂肪酶家族结构。
     4饲料脂肪水平和再投喂对吉富罗非鱼脂肪酸合成酶活性及表达的影响
     为研究饲料脂肪水平对吉富罗非鱼FAS活性和表达的影响,选择平均体重为(2.63±0.16)g的健康的315尾吉富罗非鱼幼鱼,随机分成3组,每组3个重复,投喂3组不同脂肪水平(饲料中脂肪含量分别为3.71%、7.67%和16.55%)的等氮低脂肪组、中脂肪组、高脂肪组饲料,以低脂肪组为对照组,饲养90 d,试验结束时,禁食48 h,从每一水族箱随机取3尾鱼取其肝脏及肌肉,再投喂后6、12、24、48 h时再从每个水族箱(每个平行组)取3尾鱼取肝脏样品,测定吉富罗非鱼肝脏中FAS的生物活性,使用荧光实时定量PCR分别测定饲喂3.71%组、7.67%组和16.55%组饲料的吉富罗非鱼肝脏和肌肉中FAS mRNA的表达丰度以及再投喂后6、12、24、48 h肝脏中FAS mRNA的表达丰度。结果显示:饲料脂肪水平对肝脏中FAS活性无显著影响(P>0.05):肝脏中FAS mRNA的表达丰度显著高于肌肉(P<0.05);肝脏和肌肉中FAS mRNA的表达丰度随着饲料中脂肪水平增加而显著下降(P<0.05);再次投喂后6~48 h,各个组的肝脏中FAS mRNA表达丰度显著下降(P<0.05)。结果说明,高脂肪饲料对肝脏中FAS活性分泌无诱导作用,吉富罗非鱼肝脏中FAS mRNA的表达丰度高于肌肉,高脂肪饲料能够抑制FAS mRNA表达,脂肪水平越高抑制作用越显著,再投饲后6~48 h,FAS基因表达受到抑制。
     5饲料脂肪水平和再投喂对吉富罗非鱼脂蛋白脂酶活性及表达的影响
     饲养方案同4,饲养90 d,试验结束时,禁食48 h,每一水族箱随机取3尾鱼的肝脏及肌肉,再投喂后6、12、24、48 h分别从每个水族箱(每个平行组)取3尾鱼取肝脏样品,使用实时荧光定量PCR分别测定了饲喂3.71%组、7.67%组和16.55%组饲料的吉富罗非鱼肝脏和肌肉中LPL mRNA的表达丰度以及禁食48小时再投喂后6、12、24、48 h肝脏中LPL mRNA的表达丰度。结果显示:LPL mRNA在吉富罗非鱼肝脏和肌肉中均有表达,但肝脏中LPL mRNA表达丰度显著高于肌肉中LPL mRNA表达丰度;随着饲料脂肪水平的升高,肝脏中LPL mRNA表达水平出现升高的趋势,16.55%高脂肪水平组LPL mRNA表达最高,显著高于3.71%低脂肪水平组(P<0.05);禁食(饥饿)48h后,吉富罗非鱼肝脏LPL mRNA表达水平最高,再投喂后12 h显著下降,到48 h又逐渐回到饥饿时表达水平。研究表明:高脂肪显著促进了吉富罗非鱼肝脏LPL活性的分泌;LPL mRNA在吉富罗非鱼肝脏和肌肉中表达具有组织特异性,且肝脏是吉富罗非鱼LPL合成和表达的主要组织器官之一;高脂肪诱导了吉富罗非鱼肝脏LPL基因表达,同时吉富罗非鱼肝脏LPL基因表达受到饲养状态(饱食、饥饿)的调控。
     6饲料脂肪水平和再投喂对吉富罗非鱼血脂、血糖的影响
     为研究高脂肪饲料和再投喂对吉富罗非鱼摄食后血液脂肪代谢的影响,选择平均体重为(2.63±0.16)g的健康的315尾吉富罗非鱼幼鱼,随机分成3组,每组3个重复,投喂3组不同脂肪水平(饲料中脂肪含量分别为3.71%、7.67%和16.55%)的等氮低脂肪组、中脂肪组、高脂肪组,以低脂肪组为对照组,饲养90 d,试验结束后,禁食24 h,取样测定血液中脂肪代谢相关指标,再禁食24 h投喂,摄食3.71%组、7.67%组和16.55%组饲料后0、6、12、24、48 h每个水族箱随机取样3尾取样测定试验鱼血清中甘油三酯、胆固醇及血糖。结果显示:高脂肪饲料使吉富罗非鱼血清甘油三酯、胆固醇、碱性磷酸酶、谷丙转氨酶显著升高(P<0.05),血糖显著下降(P<0.05);吉富罗非鱼摄食不同脂肪水平饲料后,48 h内,其血液甘油三酯、胆固醇和血糖均呈现先上升后下降的趋势,在摄食后同一时间点,摄食高脂肪试验鱼血液中甘油三酯和胆固醇显著高于低脂肪组(P<0.05),而血糖无显著变化,但有下降的趋势(P>0.05)。结果说明:高脂肪(16.55%)诱导吉富罗非鱼肝脏受到一定损害或病变。摄食后48 h内,吉富罗非鱼摄食低、中脂肪水平饲料后血液甘油三酯、胆固醇、血糖呈现单峰波形图变化规律,其中三组甘油三酯含量达到最高时间点均为摄食后第12 h;中低脂肪组胆固醇峰值为摄食后6 h,高脂肪为12 h;高中脂肪组血糖峰值为摄食后第6 h、低脂肪组为摄食后第12 h。高脂肪诱导血液甘油三酯合成代谢,但没有改变其变化基本规律,使胆固醇峰值时间比正常组滞后6 h,有抑制吉富罗非鱼血糖的浓度变化,不利于血糖的代谢趋势。
GIFT is the genetically Improved Farmed Tilapia Strain of nile tilapia(Oreochromis niloticus), which have became an important aquaculture species. Unbalance nutrition in diet, i.e. low protein, high fat, high carbohydrate, and vitamins lacking, lead to the liver damage, smaller body and poor quality of fish. Lipid is an important nutrient for fish and it is difficult to be replaced by other nutrients because of its unique biological function. In order to explore the optimal lipid demand and the regulation mechanism of different lipid levels on fat metabolism and key enzyme in lipid metabolism for GIFT tilapia, the optimal lipid demand of GIFT tilapia, and the effects of different lipid levels on fat deposition, fatty acid composition were studied; the GIFT tilapia fatty acid synthase (FAS), lipoprotein lipase (LPL) cDNA were first obtained; the effects of lipid levels and refeeding on the activity, expression of FAS and LPS and blood biochemical parameters were studied.
     1 Effects of dietary lipid levels on growth, muscle composition, feed apparent digestibility, muscle composition and blood biochemical parameters of GIFT strain of nile tilapia(Oreochromis niloticus)
     In order to determine the optimal levels of the lipid of GIFT Strain of Nile tilapia (Oreochromis niloticus),630 GIFTs (average weight 2.63±0.16 g) were divided into six groups randomly, with one control group that fed with basal diet (1.73%lipid) and five experimental groups fed with different lipid level diet (3.71%,5.69%,7.67%,9.64%and 16.55%) by supplementing with 2%,4%,6%,8%and 15%fish oil as lipid source, respectively. Every group was triplicate. After rearing for 90 d, the fish was fasted for 48 h, then three fishes were randomly selected from each group, and the growth, feed conversion ratio, muscle composition, digestive enzyme activities, nutrient apparent digestibility and blood biochemical parameters were detected. The results showed that, along with dietary lipid level raising, weight gain rate and specific growth rate had a trend of going up first then falling down, protein efficiency ratio improved (P<0.05) and feed conversion ratio reduced (P<0.05). Lipid content of muscle increased with increasing dietary lipid levels by the range of 2.29%to 4.27%, protein, ash and phosphorus contents had a decreasing trend. There was no significantly change of the protease activities of stomach and intestine between each treatments (p<0.05), however the lipase activities of foregut and midgut, and amylase activities of foregut were significantly decreased with increasing of dietary lipid levels (P<0.05). Second-order regression analysis of weight gain rate on dietary lipid level indicated that the optimal dietary lipid for maximal growth of GIFT was about 9.34%. Crude protein and dry-matter digestibility had no significant effect by dietary lipid levels (P>0.05). Crude lipid and phosphorus digestibility increased significantly with dietary lipid level increasing (P<0.05). Albumin and albumin/globulin ratio in 1.73%group (control group) was significantly higher than other groups (P<0.05). Along with dietary lipid level increasing, cholesterol and alkaline phosphatase of fish serum raised significantly (P<0.05). Dietary lipid level had significantly influence on blood glucose (P<0.05), and had no significantly influence on the content of triglyceride, activities of glutamic-pyruvic transaminase and glutamic-oxaloacetic transaminase (P>0.05). Those results indicated that a certain content of lipid in diet could promote the growth and improve the apparent digestibility of lipid and phosphorus, but excessive amount of lipid might be negative for fish growth and blood biochemical parameters. So, the optimal added levels of lipid in GIFT diet was 7.67%-9.34%.
     2 Effects of dietary lipid levels on fat deposition and fatty acid composition of GIFT strain of nile tilapia (Oreochromis niloticus)
     The conceptual design of raising was the same as that of the One. Raised for 90 d, the fish was fasted for 48 h, then three fishes were randomly selected from each group, and the effects of dietary lipid levels on partial physique indices, the fat deposition and fatty acid composition in muscle, liver and celiac adipose tissue of GIFT were studied. The results showed the condition factor in 5.69%,7.67%and 9.64%group was higher than other groups; the hepatosomatic index of 1.73%and 16.55%group were significantly higher than that of other groups (P<0.05). Except 1.73%group, the index of viscera-body in other groups were increased as increasing lipid level in diet. The fat content of muscle in 7.67%group were significantly higher than that of 3.71%group (p<0.05) and lower than that of 16.55%group (P<0.05). The higher of dietary lipid level, the fat deposition in fish body and the proportion of unsaturated fatty acids in total fatty acids were higher, accordingly. Those results different dietary lipid levels could affect the partial fish physique indices, especially on the hepatosomatic index. Excessive lipid in diet made lipid easier to be accumulated in muscle and liver, and the fat contents and fatty acid composition of fish could reflect the lipid level and fatty acid composition in diet.
     3 Molecular Cloning and sequence analysis of FAS and LPL from GIFT strain of nile tilapia(Oreochromis niloticus)
     The FAS and LPL cDNA sequences were cloned from GIFT (Oreochromis niloticus) by using RT-PCR and RACE method. The obtained partial FAS cDNA was 557 bp in length encoding 185-aa (GenBank accession no. GU433188). Sequence analysis showed that GIFT FAS shared 62%-82%identities with other species FAS. The full length of GIFT LPL cDNA was 2298 bp in length encoding 515 amino acids (GenBank accession no. GU433189). Sequence analysis showed that GIFT LPL shared highly identities with other vertebrates LPLs, ranging from 57.3%to 87.9%. The residues and motifs needed for LPL function was also conserved in GIFT. The predicted protein structure of GIFT LPL showed that it possessed the typical structure of lipase.
     4 Effects of dietary lipid levels and refeeding on the activity and expression of FAS in GIFT strain of nile tilapia(Oreochromis niloticus)
     To study the FAS activity and gene expression affected by different dietary lipid levels, 315 healthy fish (average weight 2.63±0.16 g) was divided into three groups and fed with different lipid levels (3.71%,7.67%and 16.55%). The low lipid level group (3.71%) was set as control group. After feeding for 90 d, the fish were fasted for 48 hours and then the activity and gene expression level of FAS in liver and muscle were studied; Furthermore, using realtime PCR analysis the FAS mRNA expression level in liver was examined at 6,12, 24,48 h after refeeding with different lipid level diet. The results showed that there was no significantly effect of dietary lipid level on FAS activity in liver (P>0.05); the expression level of FAS mRNA in liver was significantly higher than that in muscle (P<0.05). Meanwhile, the expression levels of FAS mRNA in liver and muscle were significantly decreased with rising of dietary lipid level (p<0.05). After refeeding for 6 to 48 h, the expression level of FAS mRNA in liver was significantly decreased in each group (P<0.05). Those results indicated that the higher dietary lipid level could not induce the secretion of FAS in liver; the expression level of FAS mRNA in liver was significantly higher than that of in muscle. The higher dietary lipid level could inhibit the expression of FAS mRNA, and the tendency is the higher of lipid level the more inhibition. The expression of FAS was also inhibited after refeeding.
     5 Effects of dietary lipid levels and refeeding on the activity and expression of LPL in GIFT strain of nile tilapia (Oreochromis niloticus)
     The conceptual design of raising was the same as that of the Four. Raised for 90 d, the fish were fasted for 48 hours and then the activity and gene expression level of FAS in liver and muscle were studied; Furthermore, using realtime PCR analysis the FAS mRNA expression level in liver was examined at 6,12,24,48 h after refeeding with different lipid level diet. The results showed that GIFT LPL also was detected in adult liver and muscle which was in accordance with other piscine LPL. However, the expression level in liver was significantly higher than that in the muscle (P<0.05). GIFT LPL expression was increased with the increasing of lipid level in diet, with the highest in 16.55%group and significantly higher than that of 3.71%group (P<0.05). Furthermore, expression level of GIFT LPL in liver was increased after fasting for 48 h, and decreased after refeeding for 12 h and then back to the level at beginning of fasting. Those results indicated that the higher dietary lipid level could induce the secretion of LPL in liver; the expression of GIFT LPL was in a tissue specific pattern and the GIFT liver was the main organ for secretion and expression of LPL. The higher lipid in diet induced the expression of LPL in liver and this condition was regulated by the feeding status (satiation or starvation).
     6 Effects of dietary lipid levels and refeeding on lipid and sugar in the blood of GIFT strain of nile tilapia(Oreochromis niloticus)
     To explore further study of the effects of dietary lipid level on the blood lipometabolism parameters, the blood was randomly collected from three fish in 3.71%, 7.67%and 16.55%group after fasting for 24 h and refeeding for 0,6,12,24,48 h, and the blood indices related to lipometabolism, i.e. blood glucose(GLU), triglyceride (TG), cholesterol (CHO), were detected. The results showed that the higher lipid in diet could significantly increase the TG, CHO, alkaline phosphatase (ALP) and glutamic-pyruvic transaminase (GPT) (P<0.05), and decrease blood sugar (P<0.05); After refeeding for 48 h, the TG, CHO and GLU were first increased and then decreased. At the same time-points after refeeding, the TG and CHO of the high-lipid group were significantly higher than that of the low-lipid group (P<0.05), the GLU had a decreasing trend but no significant change was observed (P>0.05). Those results indicated that the high-lipid level (16.55%) might be harmful to liver. After refeeding for 48h, the TG, CHO, GLU appeared to be a singlet curve and reached to the highest at 12 h,6 h and 12 h after feeding, respectively. The same case was also observed in high-lipid group and middle-lipid group. The high-lipid could reduce the metabolism of TG and make time of CHO lag to 12 h after feeding.
引文
[1]Alvarez M J, Diez A, Lopez-Bote C, et al. Short-term modulation of lipogenesis by macronutrients in rainbow trout{Oncorhynchus mykiss) hepatocytes[J]. Br J Nutr,2000,84(5):619-628.
    [2]Amaya A, Joan S G, Joaquim G, et al. Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues[J]. Gen Comp Endocrino,2006,146(3):226-235.
    [3]Ando S, Mori Y. Characteristics of serum lipoprotein features associated with lipid levels of muscle and liver from five species of fish[J]. Nippon Suisan Gakkaishi,1993,59:1565-1571.
    [4]Arnault F, Etienne, Raisonnier A, et al. Human lipoprotein lipase last exon is not translated, incontrast to lower vertebrates[J]. J Mol Evol 1996,43:109-115.
    [5]Arzel J, Francisco X, Martinez Lopez, et al. Effect of dietary lipid on growth performance and body composition of brown trout Salmo trutta reared in seawater[J]. Aquaculture,1994,123: 361-375.
    [6]Austerng E, Skrede A. Effect of dietary fat source on the digestibility of fat and fatty acids in rainbow trout and mink[J]. Acta Agric Scand,1979,29:119-126.
    [7]Awad A B, Chattopadhyay J P. Effect of dietary saturated fatty acids on intracellular free fatty acids and kinetic properties of hormone-sensitive lipase of rat adipocytes[J]. Journal of Nutrition, 1986,116(6):1095-1100.
    [8]Baillie R A R, Takada M, Nakamura, et al. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil:a mechanism for decreased body fat deposition[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids,1999,60:351-356.
    [9]Beamish F W H, Medland T E. Protein sparing effects in large rainbow trout, Salmo gairdneri[J]. Aquaculture,1986,55:35-42.
    [10]Bell M V, Henderson R J, Pirie B J S, et al. Effects of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot, Scophthalmus maximus[J]. Fish Biol,1985,(26):181-191.
    [11]Bell M V, Henderson R J, Sargent J R. The role of polyunsaturated fatty acids in fish[J]. Comp Biochem Physiol,1986,83B:711-719
    [12]Bjerkeng B, Refstie S, Fjalestad K T, et al. Quality parameters of the flesh of Atlantic Salmon (Salmo salar) as affected by dietary fat content and full-fat soybean meal as a partial substitute for fish meal in the diet[J]. Aquaculture,1997,157:297-309.
    [13]Blake W L, Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat[J]. Journal of Nutrition,1990,120:1727-1729.
    [14]Borlongan I G. Lipid and fatty acid composition of milkfish (Chanos chanos) grown in fresh water and seawater[J]. Aquaculture,1992,140:79-89.
    [15]Boujard T, Gelineau A, Coves D, et al. Regulation of feed intake, growth, nutrient and energy utilisation in European seabass(Dicentrarchus labrax) fed high fat diets[J]. Aquaculture,2004,231 (1-4):529-545.
    [16]Bransden M P, Carter C G, Nichols P D. Replacement of fish oilwith sunflower oil in feeds forAtlantic salmon(Salmo salar L):effect on growth performance, tissue fatty acid composition and disease resistance[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2003,135 (4):611-625.
    [17]Bromley P J. Effect of dietary protein, lipid and energy content on the growth of turbot (Scophthalamus maximus L)[J]. Aquaculture,1980,19:359-369.
    [18]Cahu C L, Zambonino I J L, Corraze G, et al. Dietary lipid level affects fatty acid composition and hydrolase activities of intestinal brush border membrane in seabass [J]. Fish Physiology and Biochemistry,2000,23:165-172.
    [19]Castell J D, Lee D J, Sinnhuber R O. Essential fatty acids in the diet of rainbow trout(Salmo gairdneri Richardson):Metabolism and fatty acid composition[J]. Nutr,1972,102:93-100.
    [20]Castell J D, Sinnhuber R O, Wales J H, et, al. Essential fatty acids in the diet of rainbow trout(Salmo gairdnerii):Growth, feed conversion andsome gross deficiency symptoms[J]. Nutr, 1972,102:77-86.
    [21]Chaiyapechara S, Casten M T, Hardy R W, et al. Fish performance, fillet characteristics, and health assessment index of rain-bow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E[J]. Aquaculture,2003, (9):715-738.
    [22]Choct M, Annison G. Anti-nutritive activity of wheat pentosans in broiler diets[J]. British Poultry Science,1990,31(4):811-822.
    [23]Chou B S and Shiau S Y. Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus(?)Oreochromis aureus[J]. Aquaculture,1996,143:185-195.
    [24]Chou R L, Su M S and Chen H Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum)[J]. Aquaculture,2001,193:81-89.
    [25]Clarke S D, and Jump D B. Dietary polyunsaturated fatty acid regulation of gene transcription[J]. Annual Review of Nutrition,1994,14:83-98.
    [26]Clarke S D, Armstrong M K and Jump D B. Nutritional control of rat liver fatty acid synthase and S14mRNA abundance[J]. Journal of Nutrition,1990,120:218-224.
    [27]David Menoyo, Clemente J, Lopez Bote, et al. Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmosalar) fed varying levels of n-3 and saturated fatty acids[J]. Aquaculture,2003,225 (1-4):295-307.
    [28]Deng D F, Refstie S, Hung S S S. Glycemic and glycosuric responses in white sturgeon (Acipenser transmontnus) after oral administration of simple and complex carbohydrates[J]. Aquaculture,2001,199:107-117.
    [29]Dey M M and Gupta M V. Socioeconomics of disseminating genetically improved Nile tilapia in Asia: an introduction[J]. Aquaculture Economic and Management.2000,4(1/2):5-11.
    [30]Dias J, Alvarez M J, Arzel J, et al. Dietary protein source affects lipid metabolism in the European seabass(Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology, Part A,2005,142(1): 19-31.
    [31]Dias J, Alvarez M J, Diez A, et al. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax)[J]. Aquaculture,1998,161 (1-4):169-186.
    [32]Du Z Y, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella)[J]. Aquac. Nutr,2005,11:139-146.
    [33]Eknath A E, Tayamen M M, Palada-de Vera M S, et al. Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments[J]. Aquaculture.1993,111:171-188.
    [34]Ellis S C, Reigh R C. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum(Sciaenops ocellstus)[J]. Aquaculture,1991,97:383-394.
    [35]Favarger P. Adipose tissue. In: Renold A E, Cahill C F. Handbook of physiolgy, section 5[C]. Washington D C:Am Physiol Soc,1965:19-25.
    [36]Geurden a P, Coutteau a P, Sorgeloos. Increased docosahexaenoic acid levels in total and polar lipid of European sea bass (Dicentrarchus labrax) postlarvae fed vegetableor animal phospholipids[J]. Marine Biology,1997,129:689-698.
    [37]Halver J E. Fish Nutrition (2nd edn.)[M]. San Diego: Academic Press. Inc,1989:32-109.
    [38]Hardy R W, Scott T M, Harrell L W. Replacement of herring oil with menhaden oil, soybean oil, or tallow in the diets of Atlantic salmon raised in marine net-pens[J]. Aquaculture,1987,65: 267-277.
    [39]Hegsted D M, Mcgandy R B, Myers M L, et al. Qualitative effects of dietary fat on serum cholesterol in man[J]. American Journal of Clinical Nutrition,1965,17:281-295.
    [40]Helland S J, Grisdale-Helland B. The influence of replacing fish meal in the diet with oil on growth, feed utilization and body composition of Atlantic Salom(Salmon salar) during the smoltification period[J]. Aquaculture,1998,162:1-10.
    [41]Hemre G I and Sandnes K. Effect of dietary lipid level on muscle composition in Atlantic salmon Salmo salar[J]. Aquacult. Nutr,1999,5:9-16.
    [42]Hillestad M and Johnsen F. High-energy/low-protein diets for Atlantic salmon:effects on growth, nutrient retention and slaughter quality[J]. Aquaculture,1994,124:109-116.
    [43]Hiraoka Y, Nakagawa H, Murachi S. Blood properties of rainbow trout in acute hepatotoxity by carbontetrachloride[J]. Bulletin of the Japanese Society of Fisheries Oceanography,1979,45(4): 527-532.
    [44]Hutchins C G, Rawles S D, Gatlin D M. Effects of dietary carbohydrate kind and level on growth, body composition and slycemic response of juvenile sunshine bass[J]. Aquaculture,1998,161: 187-199.
    [45]Ibeas C, Izquierdo M S, Lorenzo A. Effect of different levels of n-3 highly unsaturated fatty acids on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata)[J]. Aquaculture, 1994,127:177-188.
    [46]Izquierdo M S, Watanabe T, Takeuchi T, et al. Requirement of larval red seabream, Pagrus major, for essential fatty acids[J]. Bull Jpn Soc Sci Fish,1989,55:859-867.
    [47]Jantrarotai W, P Sitasi and S Rajchapakdee. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias marcrocephal (?) C.gariepinus) diet containing raw broken rice[J]. Aquaculture,1994,127(1):61-68.
    [48]Jobling M, Knudsen R, Pedersen P S, et al. Effects of dietary composition and energy content in the nutritional energetics of cod Gadus morhua[J]. Aquaculture,1991,92:243-257.
    [49]Jon Ovrum Hansen, Gerd Marit Berge, Marie Hillestad, et al. Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels[J]. Aquaculture,2008,284:159-166.
    [50]Jones L L, Schmidhauser C and Bissell M J. Regulation of gene expression and cell function by extracellular matrix[J]. Critical Reviews in Eukaryotic Gene Expression,1993,3:137-154.
    [51]Jose A A, Gama M A, Lanna D D. Effects of trans-10, cis-12 conjugated linoleic acid on gene expression and lipid metabolism of adipose tissue of growing pigs[J]. Genet Mol Res,2008,7(2): 284-294.
    [52]Jose Ibanez A, Peinado-Onsurbe J, Sanchez E, et al. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L), during gonadal development[J]. Comp Biochem Physiol A Mol Integr Physiol,2008,150:347-354.
    [53]Jover M, Garcia-Gomez A, Tomas A, et al. Growth of Mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid[J]. Aquaculture,1999,179:25-33.
    [54]Kakuta Y, Fumiaki T, Hung P N, et al. Effect of dietary lipid level on growth performance and feed utilization of juvenile kelp grouper Epinephelus bruneus[J]. Fish Sci,2010,76:139-145.
    [55]Kanazawa A S, Teshima, M. Sakamoto, et al. Awal. Requirement of Tilapia zillii for essential fatty acids[J]. Bulletin of the Japanese of Scientific Fisheries,1980,46:1353-1356.
    [56]Kaushik S J, Medale F, Fauconneau B, et al. Effect of digestible carbohydrates on protein/energy utilization and on glucose metabolism in rainbow t rout (Salmo gairdneri R.)[J]. Aquaculture,1989, 79:63-74.
    [57]King S, Gillette M, Titman D, et al. The Sensory Quality System:a global quality control solution[J]. Food Quality and Preference,2002,13 (6):385-395.
    [58]Knazwa A. Esseniial Fattyacid and Lipid Requierment of Fish[J]. In:Cowey C B, Nutrition and Feeding in Fish London:Aeademie Perss,1985,281-298.
    [59]Kotaro K, Takeshi F, Nakahiro I, et al. Effect of dietary lipid levels on the growth, feed utilization, body composition andblood characteristics of tiger puffer Takifugu rubripes[J]. Aquaculture,2009, 298:111-117.
    [60]Koven W M, Tandler A, Wm Kissil G, et al. The effect of dietary n-3 polyunsaturated fatty acids on growth, survival and swim bladder development in Sparus aurata larvae[J]. Aquaculture,1990, 91:131-141.
    [61]Koven W M, Tandler A, Wm Kissil G, et al. The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurata and their effect on survival, lipid composition and size distribution[J]. Aquaculture,1992,104:91-104.
    [62]Kumar S, Sahu N P, Pal A K, et al. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in Lrohita juveniles[J]. Fish&Shellish Immunology,2005, 19:33-44.
    [63]Kwon J Y, Prat F, Randall C et al. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout(Oncorhynchus mykiss)[J]. Biol Reprod,2001,65:1701-1709.
    [64]Lanari D, Poli B M, Ballestrazzi R, et al. The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.).Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency[J]. Aquaculture,1999,179:351-364.
    [65]Leaver M J, Tocher D R, Obach A, et al. Effect of dietary conjugated linoleic acid (CLA) on lipid composition, metabolism and gene expression in Atlantic salmon (Salmo salar) tissues[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,2006,145 (2):258-267.
    [66]Lee S M, Cho S H, Kim K D. Effects of dietary protein and energy levels on growth and body composition of juvenile Japanese flounder Paralichthys olivaceus[J]. World Aquacult Soc,2000,31: 306-315.
    [67]Lee S.M, Jeon I G, Lee J Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli)[J]. Aquaculture,2002,211:227-239.
    [68]Lee S-M, Lee J H, Kim K-D. Effect of dietary essential fatty acid on growth, body composition and blood chemistry of juvenile starry flounder(Platichthys stellatus)[J]. Aquaculture,2003,225: 269-281.
    [69]Liang X F, Ogata H Y, Oku H. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream (Pagrus major)[J]. Com Bioche Physio Part A,2002,132:913-919.
    [70]Liang X F, Oku H, Ogata HY, et al. The cDNA sequence and tissue expression of lipoprotein lipase gene of a marine fish, red sea bream (Pagrus major)[J]. Chinese Journal of Biochemistry and Molecular Biology,2002,18:712-719.
    [71]Lie O, Lied E, Lambertsen G. Liver retention of fat and fatty acids in cod (Gadus morhua) fed different oils[J]. Aquaculture,1986,59:187-196.
    [72]Lie. Flesh quality the role of nutrition[J]. Aquaculture research,2001,32 (Supp 1.1):341-348.
    [73]Likimani T A, Wilson R P. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue[J]. The Journal of Nutrition,1982,112:112-117.
    [74]Lin D, MaoY Q, CaiF S. Nutritional lipid liver disease ofgrass carpCtenopharyngodon idellus[J]. Chin JOceanalLimna,1990,8:363-374.
    [75]Lin H, Romsos D R, Tack P I, et al. Influence of dietary lipid on lipogenic enzyme activities in coho salmon Oncorhynchus kisutch (Walbaum)[J]. The Journal of Nutrition 1977a,107:846-854.
    [76]Lin H, Romsos D R, Tack P I, et al. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon Oncorhynchus kisutch Walbaum[J]. Nutr,1977b,107: 1477-1483.
    [77]Lin J H, Ho L T, Shiau S Y. Plasma Glucose and Insulin Concent ration in Tilapia Af ter Oral Administration of Glucose and Starch[J]. Fisheries Science,1995,61:986-988.
    [78]Lindberg A, Olivecrona G. Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals[J]. Gene,2002,292:213-223.
    [79]Luo Z, Liu Y, Mai K S, et al. Effect of dietary lipid level on growt h performance, feed utilization and body composition of grouper Epineph elus coioi des juveniles fed isonit rogenous diet s in floating net cages[J]. Aquaculture International,2005,13:257-269.
    [80]Lus M L, Eduardo D, Maria T V, Mark D and Dominique P B. Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis[J]. Aquaculture,2009,289(1-2):101-105.
    [81]Martins D A, Valente M L P, Lall S P. Effects of dietary lipid level on growth and lipid utilization by juvenile Atlantic halibut(Hippoglossus hippoglossus, L.)[J]. Aquaculture,2007,272:573-580.
    [82]McGoogan B B, Gatlin D M. Dietary manipulations affecting growth and nitrogenous waste production of red drum Sciaenops ocellatus:I. Effects of dietary protein and energy levels[J]. Aquaculture,1999,178:333-348.
    [83]Menendez J A, Lupu R. Fatty acid synthase-catalyzed de novo fatty acid biosynthesis: from anabolic-energy-storage pathway innormal tissues to jack-of-all-trades in cancer cells[J]. Arch Immunol Ther Exp,2004,52(6):414-426.
    [84]Mildner A M, Clarke S D. Porcine fatty acid synthase:Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein[J]. Nutr,1991,121:900-907.
    [85]Moon T W. Glucose intolerance in teleost fish:factor fiction[J]. Comparative Biochemistry and Physiology Part B,2001,129:243-249.
    [86]Morais S, Bell J G, Robertson D A, et al. Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.):effects on growth, feed utilization, muscle composition and liver histology[J]. Aquaculture,2001,203,101-119.
    [87]Mourente G, Good J E and Bell F G. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.):effects on flesh fatty acid composition, plasma prostaglandins E2 and F2a, immune function and effectiveness of a fish oil finishing diet[J]. Aquaculture Nutrition,2005,11:25-40.
    [88]Mukherjee M. Human digestive and metabolic lipases-abrief review[J]. Mol Catal B,2003,22: 369-376.
    [89]Nakagawa H. Classification of albumin and globulin in yellow tailplasma[J]. Bull Japan Soc Fish, 1978,44(3):251-257.
    [90]Nanton D A, Lall S P, Mcniven M A. Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L[J].Aquac. Res,2001,32:225-234
    [91]Ng W K, Abdullah N, De Silva S S. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid[J]. Aquaculture, 2008,284(1-4):201-206.
    [92]Nickell D C, Bromage N R. The effect of dietary lipid level on variation of flesh pigmentation in rain-bow trout (Oncorhynchus mykiss)[J]. Aquaculture,1998,161:237-251.
    [93]Nordrum S, Bakke-Mckellep A M, Krogdahl A, et al. Effects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon(Salmo salar L.)and rainbow trout(Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology B,2000,125(3):317-325.
    [94]NRC (National Research Council). Nutrient Requirements of Fish[M]. National Academy of Science Press, Washington, DC,1993,114 pp.
    [95]Oku H, Koizumi N, Okumura T, et al. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes:effects of fasting and refeeding on their gene expression in red sea bream Pagrus major[J]. Comp Biochem Physiol B Biochem Mol Biol,2006,145:168-178.
    [96]Oku H, Ogata H Y, Liang X F. Organization of the lipoprotein lipase gene of red sea bream Pagrus major[J]. Comp Biochem Physiol B Biochem Mol Biol,2002,131:775-785.
    [97]Olsen R E, Henderson R J, Ring E. The digestion and selection absorption of die-tary fatty acids in Arctic charr, Salvelinus alpinus[J]. Aquaculture Nutrition,1998,4:13-21.
    [98]Om A D, Umino T, Nakagawa H, et al. The effects of dietary EPA and DHA fortication on lipolysis activity and physiological function in juvenile black sea bream Acanthopagrus schlegeli (Bleeker)[J]. Aquaculture Research,2001,32 (Supp 11):255-262.
    [99]Ostos Garrido M V, Nunez Torres M V, Abaurrea Equisoain M A. Lipid absorption by enterocytes of the rainbow trout, Oncorhynchus mykiss:diet-inducedchanges in the endomembranous system[J]. Aquaculture,1993,110:161-171.
    [100]Owen J M, Adron J W, Sargent J R, et al. Studies on the nutrition of marine flatfish. The effect of dietary fatty acids on the tissue fatty-acids of the plaice Pleuronectes platessa[J]. Marine Biology, 1972,13(2):160-166.
    [101]Page G I, Hayworth K M, Wade R R, et al. Non-specific immunity parameters and the formation of advanced glycosylation end-products(AGE) in rainbow trout, Oncorhynchus mykiss(Walbaum), fed high levels of dietary carbohydrates [J]. Aquaciult Res,1999,30:287-297.
    [102]Page J W, Andrews J W. Interaction of dietary levels of protein and energy on channel catfish (Ictalurus punctatus)[J]. J. Nutr,1973,103:1339-1346.
    [103]Pers H, Oliva-Teles A. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles(Dicentrarchus Labrax)[J]. Aquaculture,1999,179:325-334.
    [104]Radunz-Neto J, Corraze G, Bergot P, et al. Estimation of essential fatty acid requirements of common carp larvae using semi-purified artificial diets[J]. Arch Anim Nutr,1996,49:41-48.
    [105]Regost C, Arzel J, Cardinal M, et al. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Pset-tamaxima)[J]. Aquaculture,2001,193(324):291-309.
    [106]Reinitz G, Hitzel F. Formulation of practical diets for rainbow trout based on desired performance and body composition[J]. Aquaculture,1980,19:243-252.
    [107]Saera-Vila A, Calduch-Giner JA, Gomez-Requeni P et al. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues[J]. Comp Biochem Physiol B Biochem Mol Biol, 2005,142:224-232.
    [108]Sebahattin Ergun, Murat Soyuturk, Betul Guroy, et al. Influence of Ulra meal on growth, feed utilization and body composition of juvenile Nile tilapia(Orechromis niloticuss)at two levels of dietary lipid[J]. AquacultInt,2009,17:355-361.
    [109]Sheridan M A. Regulation of lipid metabolism in poikilothermic vertebrates[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1994,107:495-508.
    [110]Skalli A, Hidalgo M C, Abellan E, et al. Effects of the dietary protein/lipid ratio on growth and nutrient utilization in common dentex (Dentex dentex L) at different growth stages[J]. Aquaculture, 2004,(235):1-11.
    [111]Sztalryd C, Kramemer F B. Differences in hormone-senstive lipase expression in white adipose tissue from various anatomic cocations of the rat[J]. Metabolism,1994,44(11):1391-1396.
    [112]Takeda M, Shimeno S, Hosokawa H, et al. The effect of dietary caloria-to-protein ratio on the growth, feed conversion and body composition of young yellow tail[J]. Bull jpn Soc Sci Fish,1975, 41:443-447.
    [113]Takeuchi T and Watanabe T. Effects of various polyunsaturated fatty acids on growth and fatty acid compositions of rainbow trout Salmo gairdneri, coho salmon Onchorhynchus kisutch, and chum salmon Onchorhynchus keta[J]. Bulletin of the Japanese Society of Scientific Fisheries,1982, 48:1745-1752.
    [114]Takeuchi T, Arai S, Watanabe T, et al. Requirement of eel Anguilla japonica for essential fatty acids[J]. Bull. Japan Soc Sci. Fish,1980,46: 345-353.
    [115]Takeuchi T, Satohand S, Watanabe T. Dietary lipids suitable for the practical feed of tilapia nilotica[J]. Bull Jpn Soc Sci Fish.1983,49(9):1361-1365.
    [116]Takeuchi T, Toyta M, Satoh S, et al. Requiement of juvenile red seabream pagrus major for eicosapentaenoic and docosahexaenoic Acids[J]. Nippon Suisan Gakkaishi,1990,56(8): 1263-1269.
    [117]Takeuchi T, Watanabe K, Yong W Y, et al. Essential fatty acids of grass carp Ctenopharyngodon idella[J]. Bulletin of the Japanese Society of Scientific Fisheries,1991,57:467-473.
    [118]Takeuchi T, Watanabe T, Ogino C. Optimum ratio of protein to lipid in diets of rainbow trout[J]. Bull Jpn Soc Sci Fish,1978,44:683-688.
    [119]Thoman E S, Davis D A, Arnold C R. Evaluation of growout diets with varying protein and energy levels for red drum (Sciaenops ocellatus)[J]. Aquaculture,1999,176:343-353.
    [120]Thongrod S, Takeuchi T, Satoh S, et al. Requirement of Yamame Oncorhynchus masou for essential fatty acids[J]. Nippon Suisan Gakkaishi,1990,56: 1255-1262.
    [121]Tibalbi E, Beraldo L A, Volpelli Pinosa M. Growth response of juvenile dendex (Dendex dendexL.) to varying protein level and protein to lipid ratio in practical diets[J]. Aquaculture, 1996,139:91-99.
    [122]Torstensen B E, Lie O, Hamre K. A factorial experimental design for investigation of effects of dietary lipid content and proand antioxidants on lipid composition in Atlantic salmon (Salmo salar) tissues and lipoproteins[J]. Aquac. Nutr,2001,7:265-276.
    [123]Toussaint C, Faueonneau B, Medale E, et al. Description of the heterogeneity of lipid distribution in the flesh of brown trout(Salmo trutta) by MR imaging[J]. Aquaculture,2005,243(1-4):255-267.
    [124]Tucker J W, Lellis W A, G K Vermeer, et al. The effects of experiment starter diets with different levels of soybean or menhaden oil on red drum (Sciaenops ocellatus)[J]. Aquaculture,1997,149: 323-339.
    [125]Twibell R G, Watkins B A, Rogers L, et al. Effects of dietary conjugated linoleic acids on hepatic and muscle lipids in hybrid striped bass[J]. Lipids,2000,35(2):155-161.
    [126]Vergara J M, Lopez-Calero G, Robaina L et al. Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and fish meals of different quality[J]. Aquaculture,1999,179:35-44.
    [127]Vergara J M, Robaina L& Izquierdo M S. Protein sparing effect of lipids in diets for fingerlings of gilthead seabream[J]. Fish. Sci,1996,62:624-628.
    [128]Verreth J, Coppoolse J and Segner H. The effect of low HUFA and high HUFA enriched Artemia, fed at different feeding levels, on growth, survival, tissue fatty acids and liver histology of Clariasgariepinus larvae[J]. Aquaculture,1994,126:137-150.
    [129]Wang J T, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum)[J]. Aquaculture,2005, 249: 439-447.
    [130]Watanabe T and Takeuchi T. Evaluation of pollock liver oil as a supplement to diets for rainbow trout[J]. Bulletin of Japanese Society of Scientific Fisheries,1976,42:893-906.
    [131]Watanabe T, OUtsne and Ogino C. Effect of dietary methyl Linoleate and Linoenate on growth of Carp- I [J]. Bull Jpn Soc Sci Fish,1975,257-269.
    [132]Watanabe T, Takeuchi T, Arakawa T, et al. Requirement of juvenile striped jack Longrosris delicatissimus for n-3 highly unsaturated fatty acids[J]. Nippon Suisan Gakkaishi,1989b,55(6): 1111-1117.
    [133]Watanabe T, Takeuchi T, Okamoto N, et al. Feeding experiments of yellowtail with a newly developed soft-dry pellet[J]. Tokyo Univ,1993,80(1):1-17.
    [134]Watanabe T. Effect of dietary n-6 and n-3 fatty acids on growth, fatty acid composition and histological changes of white fish(Coregnonus lavaretus)[J]. Bull Jap Soc Sci Fish,1989,55: 1977-1982.
    [135]Watanabe T. Lipid nutrition in fish. Comparative Biochemistry and Physiology[J].1982,73B: 3-15.
    [136]West T G, Arthur P G, Suarez R K, et al. In Vivo Utilization of Glucose by Heart and Locomotory Muscles of Exerci-sing Rainbow Trout (Oncorhynchus mykiss)[J]. Journal of Experimental Biology, 1993,177:63-79.
    [137]Williams C D, Robinson E H. Response of red drum to various dietary level of menhaden oil[J]. Aquaculture,1988,70: 107-120.
    [138]Winfree R A,Stickney R R. Effects of dietary protein and energy on growth,feed conversion efficiency and body composition of Tilapia aurea[J]. Nutr,1981,111:1001-1012.
    [139]Winzell M S, Holm C, and Ahren B. Down-regulation of islet hormone-sensitive lipase during long-term high-fat feeding[J]. Biochemical and Biophysical Communications,2003,304:273-278.
    [140]Wong H, Schotz M C. The lipase gene family[J]. Lipid Res,2002,43:993-999.
    [141]World Fish Center. GIFT Technology Manua:l An aid to Tila-pia selective breeding[R]. WorldFish Center, Penang, Malaysia,2004,6.
    [142]Xu-Fang Liang, Hiromi O, Hiroshi Y, et al. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major[J]. Comparative Biochemistry and Physiology Part A,2002,131:335-342.
    [143]Yasmin A, Takeuchi T, Hayashi M, et al. Effect of conjugated linoleic and docosahexaenoic acids on growth of juvenile tilap in Oreochrom is niloticus[J].Fisheries Science,2004,70(3):473.
    [144]Zechner R. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism[J]. Current Opinion Lipidology,1997,8:77-88.
    [145]Zhi Luo, Yong-Jian Liu, Kang-Sen Mal, et al. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous dietsin floating netcages[J]. Aquaculture International,2005,13:257-269.
    [146]Zhou, Aekman R G, Morrison C. Adipocytes and lipid distribution in muscle tissue of Atlantic Salmon (Salmo salar)[J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53(2): 326-332.
    [147]何志辉,姜宏,姜志强,等.蒙古裸腹蚤作为海水鱼苗活饵料的试验[J].大连水产学院学报,1997,(4):1-7.
    [148]刘玮.不同脂肪源饲料对草鱼稚鱼生长的影响[J].水产学报,1995,19(4):362-365.
    [149]刘立鹤,吴建开,周永奎,等.中华绒螯蟹性腺发育期脂肪合成酶活性变化研究[J].水利渔业,2005,25(6):18-20.
    [150]吉红,尚顺,刘茜,等.草鱼LPL基因的表达及饥饿和再投喂对其影响[J].水产学报,2009,33(6):980-986.
    [151]向枭,周兴华,陈建,等.日粮脂肪水平对翘嘴红鲌幼鱼生长性能和体组成的影响[J].动物营养学报,2009,3:411-416.
    [152]吴永胜,董国忠,王立常.饲粮中添加铬-烟酸复合物对肉鸭生产性能、胴体成分及血液生化指标的影响[J].动物营养学报,2000,12(2):20-25.
    [153]周文玉,俞春玉,刘建忠,等.饲料中油脂的质和量对团头鱿生长的影响[J].水产科技情报,1997,24(1):3-9.
    [154]周立红,胡家财,陈学豪.青石斑鱼人工配合饵料中脂肪适宜含量的研究[J].厦门水产学院学报,1995,17(2):13-16.
    [155]唐传核,徐建祥,彭志英.脂肪酸营养与功能的最新研究[J].中国油脂,2000,25(10):20-25.
    [156]夏蕾,张志宏,左金国,等.沙棘提取物对猪脂肪中部分脂肪代谢相关基因表达的影响[J].营养学报,2009,31(2):177-180.
    [157]孙明堂,肖锦腾,杨竹仙,等.食物对大鼠血清胆固醇和肝脂质的影响[J].营养学报,1982,4:45.
    [158]孙长颢.分子营养学(上)[J].国外医学卫生学分册,2004,31(1):1-5.
    [159]宋凯,单安山.不同小麦日粮对肉仔鸡肉质、脂肪酸合成酶mRNA与脂蛋白脂肪酶mRNA表达的影响[J].动物营养学报,2008,20(1):69-74.
    [160]宋理平,韩勃,王爱英,等.脂肪水平对淡水黑鲷生长及体成分的影响[J].长江大学学报(自然科学版)农学卷,2010,(1):27-31.
    [161]尹靖东,齐广海,霍启光.家禽脂类代谢调控机理的研究进展[J].动物营养学报,2000,2:1-7.
    [162]庞思成.饲料中脂肪含量对罗非鱼生长的影响[J].饲料研究,1994,(12):10-11.
    [163]康格菲.临床生物化学[M].北京:人民卫生出版社,1989:73-96.
    [164]张家国,冷向军,罗艳萍.泥鳅幼鱼对饲料中脂肪的营养需求量研究[J].中国水产,2010,7:66-68.
    [165]张满隆,何小慧.脂肪在鱼类营养及其饲料中的作用[J].水利渔业,2003,23(5):62-63.
    [166]张辉,张海莲.碱性磷酸酶在水产动物中的作用[J].河北渔业,2003,131(5):12-13.
    [167]彭志东.饲料中不同水平的蛋白质和脂肪对红笛鲷幼鱼生长和肌肉成分的影响[J].中国饲料.2007,(9):39-43.
    [168]徐奇友,王炳谦,徐连伟,等.哲罗鱼稚鱼的蛋白质和脂肪需求量[J].中国水产科学,2007,14(3):498-503.
    [169]惠天朝,施明华,朱荫媚.硒对罗非鱼慢性镉中毒肝抗氧化酶及转氨酶的影响[J].中国兽医学报,2000,20(3):264-266.
    [170]戈贤平.不同糖、脂含量日粮对翘嘴红鲌相关糖代谢酶的调节研究[D]:博士论文.南京:南京农业大学,2006.
    [171]曹俊明,林鼎,劳彩玲.饲料中添加大豆磷脂对草鱼肝胰脏脂质脂肪酸组成的影响[J].水产学报,1997a,21(1):32-38.
    [172]曹俊明,关国强,刘永坚,等.饲料蛋白质、脂肪、碳水化合物水平对草鱼生长和组织营养成分组成的影响[J].水产科技情报,1997b,24(2):56-60.
    [173]李军,李晓宁,杨坚,等.猪Fas基因的克隆及序列分析[J].广西农业生物科学,2006,25(1):6-10.
    [174]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社,2000.
    [175]杜震宇,刘永坚,田丽霞,等.草鱼摄食高脂饲料后血脂变化的初步研究[J].中山大学学报(自然科学版),2004,43(增刊):77-79.
    [176]来长青,刘传忠,宋剑,等.饲料中添加不同比例磷脂油养殖虹蹲试验[J].水产学杂志,1998,11(2):76-80.
    [177]杨凤.动物营养学[M].北京:中国农业出版社,2006.
    [178]杨秀平.动物生理学[M].北京:高等教育出版社,2005.
    [179]林小植,罗毅平,谢小军.饲料碳水化合物水平对南方鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响[J].水生生物学报,2006,30(3):304-310.
    [180]梁旭方,白俊杰,劳海华,等.真鲷脂蛋白脂肪酶基因表达与内脏脂肪蓄积营养调控定量研究[J].海洋与湖沼,2003,34(6):625-631.
    [181]段彪,向枭,周兴华,等.齐口裂腹鱼饲料中适宜脂肪需要量的研究[J].动物营养学报,2007,19(3):232-236.
    [182]沈竑,张勤.石油污染对莫桑比克罗非鱼血清酶活性的影响[J].海洋学报,1998,20(4):60-65.
    [183]王吉桥,张丽燕,楮衍伟,等.饲料中脂肪含量对花生长性能的影响[J].饲料博览技术版,2008,9:1-5.
    [184]王成章,王恬主编.饲料学[M].北京:中国农业出版社,2006.
    [185]王朝明,罗莉,张桂众,等.饲料脂肪水平对胭脂鱼生长性能、肠道消化酶活性和脂肪代谢的影响[J].动物营养学报,2010,4:969-976.
    [186]王爱民,徐跑,李沛,等.异育银鲫饲料中适宜脂肪需求量的研究[J].上海水产大学学报.2008,17(6):662-667.
    [187]王贵英,曾可为,郑翠华,等.饲料脂肪水平对鳜鱼生长的影响[J].饲料研究,2003,(4):38-41.
    [188]王道尊,丁磊,赵德福.必需脂肪酸对青鱼生长影响的初步研究[J].水产科技情报,1986,(2):4-6.
    [189]王道尊.不同脂肪源饲料对青鱼生长的影响[J].水产学报,1989,13(4):370-374.
    [190]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M],北京:高等教育出版社,2002.
    [191]甘晖,李坚明,冯广朋,等.饲料脂肪水平对奥尼罗非鱼幼鱼生长和血浆生化指标的影响[J].上海海洋大学学报,2009,18(1):35-41.
    [192]田娟,冷向军,李小勤,等.肉碱对草鱼生长性能、体成分和脂肪代谢酶活性的影响[J].水产学报,2009,33(2):295-302.
    [193]纪丽丽,王浩,李瑞伟,等.奥尼和吉富罗非鱼营养成分研究[J].食品研究与开发,2008,29(12):129-132.
    [194]罗莉,李英文,林仕梅,等.半胱胺对草鱼酮体代谢、转氨酶和碱性磷酸酶活性的影响[J].饲料广角,2003,16:33-35.
    [195]肖懿哲,林金忠.史氏鲟饲料脂肪的最适量研究[J].水利渔业,2001,(5):4-5.
    [196]胡国成,李思发,何学军,等.不同饲料蛋白质水平对吉富品系尼罗罗非鱼幼鱼生长和鱼体组成的影响[J].饲料工业,2006,27(6):24-27.
    [197]董晓慧,郭云学,叶继丹,等.吉富罗非鱼幼鱼对10种饲料原料表观消化率的研究[J].动物营养学报,2009,21(3):326-334.
    [198]蒋广震,刘文斌,王煜恒,等.饲料中蛋白脂肪比对斑点叉尾鮰幼鱼生长、消化酶活性及肌肉成分的影响[J].水产学报,2010,34(7):1129-1135.
    [199]赵水平.高脂血症的病因和分类[J].中国冶金工业医学杂志,1997,14(5):289-295.
    [200]载福云,余其兴,刘江东.显微分离黄鳝单条染色体用于基因定位的研究[J].科学通报,2001,46(22):1894-1898.
    [201]载福云,刘江东,易梅生,等.应用PRINS技术定位黄鳝HOX基因的研研究[J].遗传学报,2002,29(7):612-615.
    [202]郑惠芳,夏中生,林岗,等.饲料蛋白质和脂肪水平对赤眼鳟生长和鱼体营养成分的影响[J].淡水渔业,2009,39(2):42-47.
    [203]郑珂珂,朱晓鸣,韩冬,等.饲料脂肪水平对瓦氏黄颡鱼生长及脂蛋白脂酶基因表达的影响[J].水生生物学报,2010,(4):815-821.
    [204]郝淑贤,李来好,杨贤庆等.五种罗非鱼营养成分分析及营养评价[J].营养学报.2007,29(6):614-618.
    [205]韩涛,王骥腾.海水鱼脂肪营养研究进展[J].浙江海洋学院学报,2007,26(3):312-319.
    [206]须山三千三,鸿巢章二(吴光红等泽).水产食品学[M].上海:上海科技出版社.1992.
    [207]马国红,张延华,师吉华,等.新吉富罗非鱼的含肉率及营养价值评定[J].长江大学学报(自然科学版),2008,5(4):35-37.
    [208]马平.添加油脂影响石斑鱼幼鱼内脏脂肪蓄积的试验[J].台湾海峡,1996,15(增刊):55-57.
    [209]马晶晶,邵庆均,许梓荣,等.n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[J].水产学报,2009,33(4):639-648.
    [210]马晶晶.n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[D]:博十论文.杭州:浙江大学,2008.
    [211]高露姣,施兆鸿,艾春香.不同脂肪源对施氏鲟幼鱼血清生化指标的影响[J].海洋渔业,2005,27(4):319-3.
    [1]Bromiey P J. Effect of dietary protein, lipid and energy content on the growth of Scophthalmus[J]. Aquaculture,1980,100:107-123.
    [2]Chou B S and Shiau S Y. Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus (?) (?) O. aureus (?)[J]. Aquaculture,1996,143:185-195.
    [3]Cowey C B, Cooke D J, Matty A J, et al. Effects of quantity and quality of dietary protein on certain enzyme activities in rainbow trout[J]. Journal of Nutrition,1981,111:336-345.
    [4]De S S, Gunaskera R M, Shim K F. Interactions of varying dietary protein and lipid levels in young red tilapia: evidence of protein sparing[J]. Aquaculture,1991,95:305-318.
    [5]Gelineau A, Bolliet V, Corraze G, et al. The combined effects of feeding time and dietary fat levels on feed intake, growth and body composition in rainbow trout[J]. Aquat Living Res,2002,1(4): 225-230.
    [6]Grisdale-Helland B, Shearer K D, Gatlin Iii D M, et al. Effects of dietary protein and lipid levels on growth, protein digestibility, feed utilization and body composition of Atlantic cod (Gadus morhua)[J]. Aquaculture,2008,283(1-4):156-162.
    [7]Hanley, F. Effects of feeding supplementary diets containing varying levels of lipid on growth, food conversion, and body composition of Nile tilapia, Oreochromis niloticus(L.)[J]. Aquaculture.1991, 93:323-334.
    [8]Kim L O and Lee S M. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco[J]. Aquaculture,2005,243(1-4):323-329.
    [9]Lee S M, Jeon I G, Lee J Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli)[J]. Aquaculture. 2002,211:227-239.
    [10]Leigh A B, Shawn D C, James H T. Effect of dietary lipid level and protein energy Ratio on growth and body composition of largemouth bass, Micropterus salmoides[J]. J World Aquac Soc,2005, 36(1):129-134.
    [11]Lopez L M, Durazo E, Viana M T, et al. Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis[J]. Aquaculture. 2009,289(1-2):101-105.
    [12]Lus M L, Eduardo D, Maria T V, et al. Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis[J]. Aquaculture, 2009,289(1-2):101-105.
    [13]Ng W K, Abdullah N, De Silva S S. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid[J]. Aquaculture,2008, 284(1-4):201-206.
    [14]Takeuhi T, Shiina Y, Watanabe T. Suitable protein and fat levels in diet for fingerling of red sea bream Pagrus major[J]. Nippon Suisan Gakkaishi,1991,57:293-299.
    [15]Wang J T, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum)[J]. Aquaculture,2005, 249:439-447.
    [16]Zambonino I J L, Cahu C L. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development[J]. The Journal of Nutrition.1999.129(6): 1195-1200.
    [17]Zeitoun I H, Ulhey D E and Magee W T. Quantifying nutrient requirement of fish[J]. Fish. Res. Board Can.,1976,33:167-172.
    [18]常青,梁萌青,王家林.等.花鲈对不同饲料原料的表观消化率[J].水生生物学报,2005,29(2):172-176.
    [19]段彪,向枭,周兴华,等.齐口裂腹鱼饲料中适宜脂肪需求量的研究[J].动物营养学报,2007,19(3):232-236.
    [20]冯健,刘永坚,刘栋辉,等.红姑鱼日粮脂肪水平和脂肪酸比例与脂肪肝病关系研究[J].海洋科学,2004,28(6):28-31.
    [21]何志谦.人类营养学(第二版)[M].北京:人民卫生出版社.2000,95-123.
    [22]胡国成,李思发,何学军,等.不同饲料蛋白质水平对吉富品系尼罗罗非鱼幼鱼生长和鱼体组成的影响[J].饲料工业,2006,27(6):24-27.
    [23]黎军胜,李建林,吴婷婷.饲料成分与环境温度对奥尼罗非鱼消化酶活性的影响[J].中国水产科学,2004,585-588.
    [24]刘永坚,刘栋辉,田丽霞,等.饲料蛋白质和能量水平对红姑鱼生长和鱼体组成的影响[J].水产学报,2002,(3):242-246.
    [25]骆作勇,王雷,王宝杰,等.不同投喂模式对奥利亚罗非鱼血液生化指标与生长性能的影响[J].中国水产科学,2007,14(5):743-748.
    [26]庞思成.饲料中脂肪含量对罗非鱼生长的影响[J].饲料研究,1994,(12):10-11.
    [27]王道尊,龚希章,刘玉芳.饲料中脂肪的含量对青鱼鱼种生长的影响[J].水产学报,1987,11(1):23-28.
    [28]王重刚,陈品健,顾勇,等.不同饵料对真鲷稚鱼消化酶活性的影响[J].海洋学报,1998,20(4):103-106.
    [29]尾崎久雄.许学龙,熊国强,等.鱼类血液与循环生理[M].上海:上海科学出版社,1982,116-120.
    [30]杨凤.动物营养学(第二版)[M].北京:中国农业出版社.2006,94-96.
    [31]张丽英.饲料分析及饲料质量检测技术(第2版)[M].北京:中国农业大学出版社46-56.
    [32]周景祥,王桂芹,余涛.淀粉酶和蛋白酶活性检测方法探讨[J].中国饲料.2001,11:23-24.
    [33]周玉,郭文场,杨振国,等.鱼类血液学指标研究的进展[J].上海水产大学学报,2001,10(2):163-165.
    [34]邹师哲,王义强,张家国.饲料中蛋白质、脂肪、碳水化合物对鲤消化酶的影响[J].上海水产大学学报,1998,7(1):69-74.
    [1]Barbara G H, Karl D S, Delbert M G, et al. Effects of dietary protein and lipid levels on growth, protein digestibility, feed utilization and body composition of Atlantic cod (Gadus morhua)[J]. Aquaculture,2008,283(1-4):156-162.
    [2]Bell J G, McEvcy J, Tocher D R, et al. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon(Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism[J]. Nutrition,2001,131:1535-1543.
    [3]Christie W W. A simple procedure for rapid transmethylation of glycerolipids and cholestery I esters[J]. Lipid Res,1982,23:1072-1075.
    [4]Dosanjh B S, Higgs D A, Plotnikoff M D, et al. Efficacy of canola oil, pork lard and marine oil singly and in combination as supplemental dietary lipid sources for juvernile coho salmon (Oncorhynchus kisutch)[J]. Aquaculture,1984,36:333-345.
    [5]Ellis S C and Reigh R C. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Sciaenops ocellatus[J]. Aquaculture,1991,97:383-394.
    [6]Fitzsimmons K, Dickenson G, Brand C. Effects of reducing dietary lipid levels on growth and body composition of hybrid tilapia in an intensive recirculating-water system[J]. Progr Fish-Culturist, 1997,59(4):293-296.
    [7]Folch M L and Stanley G H S. Simple method for the isolation and purification of total lipids from animal tissues[J]. Biol Chem,1957,226:497-509.
    [8]Gelineau A, Bolliet V, Corraze G, et al. The combined effects of feeding time and dietary fat levels on feed intake, growth and body composition in rainbow trout[J]. Aquat Living Res,2002,1(4): 225-230.
    [9]Guillou A, Souey P, Kalil M, et al. Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brookcharr (Salvelinusfontinalis)[J]. Aquaculture,1995,136:351-362.
    [10]Hillestad, Johnsen, Austreng, et al. Long-term effects of dietary fat level and feeding rate on growth, feed utilization and carcass quality of Atlantic salmon[J]. Aquac Nutr,1998,4(2):89-97.
    [11]Leigh A B, Shawn D C, James H T. Effect of Dietary Lipid Level and Protein Energy Ratio on Growth and Body Composition of Largemouth Bass, Micropterus salmoides[J]. J World Aquac Soc, 2005,36(1):129-134.
    [12]Montero D, Kalinowski T, Obach A, et al. Vegetable lipid sources for gilthead seabream (Sparus aurata):effects on fish health[J]. Aquaculture,2003,225:353-370.
    [13]Mourente, G, Good J E, and Bell F G. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.):effects on flesh fatty acid composition, plasma prostaglandins E2 and F2a, immune function and effectiveness of a fish oil finishing diet[J]. Aquaculture Nutrition.2005,11:25-40.
    [14]Nanton D A, Lall S P, McNiven M A. Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L[J]. Aquac Res,2001,32:225-234.
    [15]Sigurgisladottir S, Lall S P, Parrish C C, et al. Cholestane as a digestibility marker in the absorption of polyunsaturated fatty acid ethyl esters in Atlantic salmon[J]. Lipids,1992,27:418-424.
    [16]Tocher D R, Bell J G, MacGlaughlin P, et al. Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oil[J]. Comp Biochem Physiol,2001, 130B:257-270.
    [17]Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Rev Fish Sci,2003, 11:107-184.
    [18]Torstensen B E, Froyland L, Lie O. Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil-effects on Atlantic salmon(Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities[J]. Aquac Nutr,2004,10:175-192.
    [19]冯健.4种不同脂肪源对太平洋鲑生长和体组成的影响[J].水生生物学报,2006,30(3):256-260.
    [20]李坚明,甘晖,冯广朋,等.饲料脂肪含量与奥尼罗非鱼幼鱼肝脏形态结构特征的相关性[J].南方水产,2008,10:37-43.
    [21]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社,2000.
    [22]胡述楫,胡人卫.罗罗非鱼鱼脂中脂肪酸的鉴定与评价[J].西南农业学报,1997,10(1):115-118.
    [23]须山三千三,鸿巢章二.水产食品学[M].上海:上海科技出版社.1992
    [1]Arnault F, Etienne J, Noe L, et al. Human lipoprotein lipase last exon is not translated, in contrast to lower vertebrates[J]. Mol Evo,1996,143:109-115.
    [2]Bendtsen J D, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0[J]. J Mol Biol.2004,340(4):783-95.
    [3]Bourne Y,Cambillauc. horse pancreatic lipase. the crystal structure at 2.3 ang stroms resolution[J]. J mol boil,1998,238:709-732
    [4]Cheng H L, Sun S P, Peng Y X, et al. cDNA sequence and tissues expression analysis of lipoprotein lipase from common carp(Cyprinus carpio Var. Jian)[J]. Mol Biol Rep,2010,37:2665-2673.
    [5]Clewley, J P, and Arnold C. MegAlign. The multiple alignment module of LaserGene[J]. Methods Mol Biol,1997,70:119-129.
    [6]Jose I A, Peinado-Onsurbe J, Sanchez E, et al. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L.), during gonadal development[J]. Comp Biochem Physiol A Mol Integr Physiol,2008,150:347-354
    [7]Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Briefings in Bioinformatics,5(2):150-163.
    [8]Kwon JY, Prat F, Randall C, et al. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss)[J]. Biol Reprod,2001,65:1701-1709.
    [9]Liang X F, Oku H, Ogata H Y, et al. The cDNA sequence and tissue expression of lipoprotein lipase gene of a marine fish, red sea bream (Pagrus major)[J]. Chinese Journal of Biochemistry and Molecular Biology,2002,18:712-719.
    [10]Lindberg A, Olivecrona G. Lipase evolution:Trout, Xenopus and chicken have lipoprotein lipase and apolipoprotein C-II-like activity but lack hepatic lipase-like activity[J]. Biochimica et Biophysica Acta,1995,1255:205-211.
    [11]Menendez J A and Lupu R. Fatty acid synthase-catalyzed de novo fatty acid biosynthesis:from anabolic-energy-storage pathway innormal tissues to jack-of-all-trades in cancer cells[J]. Arch. Immunol. Ther. Exp.2004,52:414-426.
    [12]Mukherjee M. Human digestive and metabolic lipases-abrief review[J]. Mol Catal B,2003,22: 369-376.
    [13]Oku H, Tokuda M, Okumura T, et al. Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream(Pagrus major)[J]. Comparative Biochemistry and Physiology, Part B,2006a,144:326-333.
    [14]Oku H, Koizumi N, Okumura T, et al. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: Effects of fasting and refeeding on their gene expression in red sea bream Pagrus major[J]. Comp Biochem Physiol B,2006b,145:168-178.
    [15]Oku H, Ogata H Y, Liang X F. Organization of the lipoprotein lipase gene of red sea bream Pagrus major[J]. Comp Biochem Physiol B Biochem Mol Biol,2002,131:775-785.
    [16]Saera-Vila A, Calduch-Giner J A, Gomez-Requeni P et al. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues[J]. Comp Biochem Physiol B Biochem Mol Biol, 2005,142:224-232.
    [17]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res,1994,22(22):4673-4680.
    [18]Wong H, Schotz M C. The lipase gene family[J]. Lipid Res,2002,43:993-999.
    [19]Yves B, Chrislaine M, Brigitte K, et al. Horse Pancreatic Lipase:The Crystal Structure Refined at 2-3 A Resolution[J]. Journal of Molecular Biology,1994,238(5):709-732
    [20]吉红,苏尚顺,刘茜,等.草鱼LPL基因的表达及饥饿和再投喂对其影响[J].水产学报,2009,33(6):980-986.
    [21]杨凤.动物营养学[M].北京:中国农业出版社.2006.
    [1]Alvarez M J, Diez A, Lopez-Bote C, et al. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes[J]. Br. J. Nutr,2000,84:619-628.
    [2]Blake W L, and Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat[J]. Journal of Nutrition,1990,120:1727-1729.
    [3]Boujard T, Gelineau A, Coves D, et al. Regulation of feed intake, growth, nutrient and energy utilisation in European seabass(Dicentrarchus labrax) fed high fat diets[J]. Aquaculture,2004,231 (1-4):529-545.
    [4]Clarke S D and Jump D B. Dietary polyunsaturated fatty acid regulation of gene transcription[J]. Annual Review of Nutrition,1994,14:83-98.
    [5]Clarke S D, Armstrong M K and Jump D B. Nutritional control of rat liver fatty acid synthase and Si4 mRNA abundance[J]. Journal of Nutrition,1990,120:218-224.
    [6]Dey M M and Gupta M V. Socioeconomics of disseminating genetically improved Nile tilapia in Asia: an introduction[J]. Aquaculture Economic and Management,2000,4(1/2):5-11.
    [7]Dias J, Alvarez M J, Arzel J, et al. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology,2005, Part A 142: 19-31.
    [8]Dias J, Alvarez M J, Diez A, et al. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax)[J].Aquaculture,1998,161 (1-4):169-186.
    [9]Favarger P. Adipose tissue Renold A E, Cahill C F. Handbook of physiolgy, section5[M]. Washington D C:Am Physiol Soc,1965.19-25.
    [10]Greene D H S and Selivonchick D P. Lipid metabolism in fish[J]. Progress in Lipid Research.1987, 26:53-85.
    [11]Jantrarotai W, P Sitasi and S Rajchapakdee. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias marcrocephal (?) C.gariepinus) diet containing raw broken rice[J]. Aquaculture.1994,127:61-68.
    [12]Jose A A, Gama M A, Lanna D D. Effects of trans-10, cis-12 conjugated linoleic acid on gene expression and lipid metabolism of adipose tissue of growing pigs[J]. Genet Mol Res,2008,7: 284-294.
    [13]Kenneth J L and Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod[J]. Methods,2001,25:402-408.
    [14]Likimani T A and Wilson R P. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue[J]. Nutr,1982,112:112-117.
    [15]Lin H, Romsos D R, Tack P I, et al. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon Oncorhynchus kisutch Walbaum[J]. Nutr.1977a,107:1477-1483.
    [16]Lin H, Romsos D R, Tack P I, et al. Influence of dietary lipid on lipogenic enzyme activities in coho salmon Oncorhynchus kisutch (Walbaum)[J]. Nutr.1977b,107:846-854.
    [17]Menendez J A and Lupu R. Fatty acid synthase-catalyzed de novo fatty acid biosynthesis:from anabolic-energy-storage pathway innormal tissues to jack-of-all-trades in cancer cells[J]. Arch. Immunol. Ther. Exp.2004,52:414-426.
    [18]Mildner A M and Clarke S D. Porcine fatty acid synthase: Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein[J]. Nutr,1991,121:900-907.
    [19]刘立鹤,吴建开,周永奎,等.中华绒螯蟹性腺发育期脂肪合成酶活性变化研究[J].水利渔业,2005,25(6):18-20.
    [20]马晶晶,邵庆均,许梓荣,等.n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[J].水产学报,2009,33(4):639-648.
    [21]宋凯和单安山.不同小麦日粮对肉仔鸡肉质、脂肪酸合成酶mRNA与脂蛋白脂肪酶mRNA表达的影响[J].动物营养学报,2008,20(1):69-74.
    [22]田娟,冷向军,李小勤,等.肉碱对草鱼生长性能、体成分和脂肪代谢酶活性的影响[J].水产学报,2009,33(2):295-302.
    [23]夏蕾,张志宏,左金国,等.沙棘提取物对猪脂肪中部分脂肪代谢相关基因表达的影响[J].营养学报,2009,31(2):177-180.
    [24]尹靖东,齐广海,霍启光.家禽脂类代谢调控机理的研究进展[J].动物营养学报.2000,(2):1-7.
    [I]Amaya A, Sanchez-Gurmaches J, Gutierrez J, et al. Regulation of lipoprotein lipase activity in rainbow trout(Oncorhynchus mykiss) tissues[J]. Gen Comp Endocrino,2006,146(3):226-235.
    [2]Ando S and Mori Y. Characteristics of serum lipoprotein features associated with lipid levels of muscle and liver from five species of fish[J]. Nippon Suisan Gakkaishi,1993,59:1565-1571.
    [3]Barbara A B and Robert M R. Present Knowledge in Nutrition (8th edition Volume II)[M]. International Life Sciences Institute (ILSI), Washington, DC,2006:111-137.
    [4]Black D and Skinner E R. Changes in plasm a lipoproteins and tissue lipoproteins lipase and salt-res is tant lipase activities during spawing in the rainbow trout(Salmo gairdneriir)[J]. Com Biochem Physioy Part B,1987,88:261-267.
    [5]Cheng H L, Sun S P, Peng Y X, et al. cDNA sequence and tissues expression analysis of lipoprotein lipase from common carp (Cyprinus carpio Var. Jian)[J]. Mol Biol Rep,2010,37:2665-2673.
    [6]Cooper D A, Stein J C, Strieleman P J, et al. Avian adipose lipoprotein lipase: cDNA sequence and reciprocal regulation of mRNA levels in adipose and heart[J]. Biochim Biophys Acta,1989,1008 (1):92-101.
    [7]Ibarz A, Beltran M, Fernandez-Borras J, et al. Alter-ations in lipid metabolism and use of energy depots of gilthead sea bream(Sparus aurata) at low tempera-tures[J].Aquaculture,2007,262(2-4): 470-480.
    [8]Kenneth J L and Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods,2001,25:402-408.
    [9]Kirchgessner T G, Svenson K L, Lusis A J, Schotz M C. The Sequence of cDNA encoding lipop rote in lipase[J]. Biol Chem,1987,262 (18):8463-8466.
    [10]Liang X F, Bai J J, Lao H H, et al. Nutritional regulation of lipoprotein lipase gene expression and visceral fat deposition in red sea bream(Pagrus major)[J]. Oceanologiaet Limnologia Sinica,2003, 34(6):625-631.
    [11]Liang X F, Oku H, Ogata H Y. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major[J]. Comparative Biochemistry and Physiology Part A,2002,131:335-342.
    [12]Lindberg A and Olivecrona G Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals[J]. Gene,2002,292:213-223.
    [13]Lindberg A, Olivecrona G. Lipase evolution:Trout, Xenopus and chicken have lipoprotein lipase and apolipoprotein C-II-like activity but lack hepatic lipase-like activity[J]. Biochimica et Biophysica Acta,1995,1255:205-211.
    [14]Mukherjee M. Human digestive and metabolic lipases-abrief review[J]. Mol Catal B,2003,22: 369-376.
    [15]Oku H, Koizumi N, Okumura T, et al. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: Effects of fasting and refeeding on their gene expression in red sea bream Pagrus major[J]. Comp Biochem Physiol B,2006a,145:168-178.
    [16]Oku H, Ogata H Y, Liang X F. Organization of the lipoprotein lipase gene of red sea bream Pagrus major [J]. Comp Biochem Physiol B Biochem Mol Biol,2002,131:775-785.
    [17]Oku H, Tokuda M, Okumura T, et al. Effects of in-sulin, triiodothyronine and fat soluble vitamins on adi-pocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major[J].Comp Biochem Physiol B Biochem Mol Biol,2006b,144(3):326-333.
    [18]Saera-Vila A, Calduch-Giner J A, Gomez-Requeni P, et al. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues[J]. Comparative Biochemistry and Physiology, Part B,2005,142:224-232.
    [19]Senda M, Oka K, Brown W V, et al. Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase[J]. Proc Natl Acad Sci USA,1987,84 (13):4369-4373.
    [20]Sheridan M A. Regulation of lipid metabolism in poikilothermic vertebrates [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1994,107:495-508.
    [21]Vannier C, Amri E Z, Etienne J, et al. Maturation and secretion of lipoprotein lipase in cultured adipose cells 1.interacellular activation of the enzyme[J].Journal of Biological Chemistry,1985,260: 4424-4431.
    [22]Wong H and Schotz M C. The lipase gene family[J]. Lipid Res,2002,43:993-999.
    [23]Zechner R. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism[J]. Current Opinion Lipidology,1997,8:77-88.
    [24]吉红,苏尚顺,刘茜,等.草鱼LPL基因的表达及饥饿和再投喂对其影响[J].水产学报,2009,33(6):980-986.
    [25]梁旭方,Oku H, Ogata H Y,等.海水鱼真鲷脂蛋白脂肪酶基因cDNA序列与组织表达[J].中国生物化学与分子生物学报,2002,18(6):712-719.
    [26]杨凤.动物营养学(第二版)[M].北京:中国农业出版社,2003:76-88.
    [27]姚煜,梁旭方,李光照,等.鳜脂蛋白脂酶和肝脂酶基因结构与组织表达[J].中国水产科学,2009,169(4):506-517.
    [28]郑珂珂,朱晓鸣,韩冬,等.饲料脂肪水平对瓦氏黄颡鱼生长及脂蛋白脂酶基因表达的影响[J].水生生物学报,2010,34(4):815-821.
    [1]Dey M M and Gupta M V. Socioeconomics of disseminating genetically improved Nile tilapia in Asia:an introduction[J]. Aquaculture Economic and Management,2000,4(1/2):5-11.
    [2]Deng D F, Refstie S, Hung S S S. Glycemic and glycosuric responses in white sturgeon(Acipenser transmontnus)after oral administration of simple and complex carbohydrates[J]. Aquaculture,2001, 199:107-117.
    [3]Eduardo D B, Maria T V, Louis R D, et al. Effects of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone(Haliotis fulgens)[J]. Aquaculture, 2004,238:329-341.
    [4]Ellen J K, Bente R, Anne V, et al. Effects of 3-thia fatty acids on expression of some lipid related genes in Atlantic salmon (Salmo salar L.)[J]. Comparative Biochemistry and Physiology, Part B, 2006,145:239-248.
    [5]Fu S J, Cao Z D, Peng J L. Effect of meal size on specific dynamic action in Chinese catfish[J]. Journal of Comparative Physiology B,2006,176:489-495.
    [6]Gershanovich A D, Kiselev G A. Growth and hematological response of sturgeon hybrids Russian sturgeon (Acipenser gueldenstaedti Brandt)×Beluga(HusoHuso L.) to protein and lipid contents in the diet[J]. Comp Biochem Physio,1,1993,106A(3):581-586.
    [7]Hiraoka Y, Nakagawa H, Murachi S. Blood proper-ties of rainbow trout in acute hepatotoxity by carbontetrachloride[J]. Bulletin of the Japanese Society of Fisheries Oceanography,1979,45(4): 527-532.
    [8]Ji-Teng Wang, Yong-Jian Liu, Li-Xia Tian, et al. Effect of dietary lipid level on growth performance, lipid Deposition, hepatic lipogenesis in juvenile cobia(Rachycentron canadum)[J]. Aquaculture, 2005,249:439-447.
    [9]Kumar S, Sahu N P, Pal A K, et al. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in Lrohita juveniles[J]. Fish&Shellish Immunology,2005,19: 33-44.
    [10]Moon T W. Glucose intolerance in teleost fish: fact or fiction[J].Comparative Biochemistry and Physiology Part B,2001,129:243-249.
    []Nordrum S, Bakke M, Kellep A M, et al. Effects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon(Salmo salar L.)and rainbow trout(Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology B,2000,125(3):317-325.
    [12]Panserat S, Capilla E, Gutierrez J, et al. Glucokinase is highly in-duced and glucose-6-phosphatase poorly repressed in liver of rainbowtrout(Oncorhynchus mykiss) by a single meal with glucose[J]. Comparative Biochemistry and Physiology, Part B,2001,128:275-283.
    [13]Shu-Ling H, Chun-Yi H, Ya-Ting H, et al. Influence of dietary lipids on the fatty acid composition and stearoyl-CoA desaturase expression in hybrid tilapia(Oreochromis niloticus(?)O. aureus)under cold shock[J]. Comparative Biochemistry and Physiology, Part B,2007,147:438-444.
    [14]Wilson R P. Utilization of dietary carbohydrate by fish[J]. Aquaculture,1994,124:67-80.
    [15]Xueliang Xu, Patrick Kestemont. Lipid Metabolism and FA Composition in Tissues of Eurasian Perch Perca fluviatilis as Influenced by Dietary Fats[J]. Lipids,2002,37(3):297-304.
    [16]蔡春芳,陈立侨,宋学宏,等.异育银鲫口服葡萄糖后血糖、血脂和肝糖原的变化[J].水产学报,2002,26(3):237-241.
    [17]杜震宇,刘永坚,田丽霞,等.草鱼摄食高脂饲料后血脂变化的初步研究[J].中山大学学报(自然科学版),2004,43(增刊):77-79.
    [18]甘晖,李坚明,冯广朋,等.饲料脂肪水平对奥尼罗非鱼幼鱼生长和血浆生化指标的影响[J].上海海洋大学学报,2009,18(1):35-41.
    [19]高露姣,施兆鸿,艾春香.不同脂肪源对施氏鲟幼鱼血清生化指标的影响[J].海洋渔业,2005,27(4):319-323.
    [20]黄世蕉,沈竑.维生素B6对草鱼脂肪代谢的影响[J].水生生物学报,1992,16(4):313-321.
    [21]黄鹤忠,丁磊,宋学宏,等.青鱼和草鱼葡萄糖耐量的比较研究[J].中国水产科学,2005,12(4):496-500.
    [22]康格菲.临床生物化学[M].北京:人民卫生出版社,1989:73-96.
    [23]李健斋.正常人脂肪餐后血脂反应的初步观察[J].中华医学检验杂志,1997,20(5):278-280.
    [24]刘爱兵,李卫东,辛洁,等.健康人脂肪耐量试验460例分析[J].中华医学检验杂志,2001,24(3):161-164.
    [25]林小植,罗毅平,谢小军.饲料碳水化合物水平对南方鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响[J].水生生物学报,2006,30(3):304-310.
    [26]倪燕君.脂肪肝的发病机理和诊断治疗研究进展[J].国外医学消化疾病分册,1997,17(3):158-159.
    [27]清水祥一.酶分析法的原理和应用[M].上海:上海科技出版社,1982,113-114.
    [28]沈竑,张勤,徐韧,等.石油污染对莫桑比克罗非鱼血清酶活性的影响[J].海洋学报,1998,20(4):60-65.
    [29]王爱民,韩光明,韦信健,等.吉富罗非鱼FAS基因的克隆及再投喂和饲料脂肪水平对其表达的影响[J].水产学报,2010,34(7):1113-1120.
    [30]王琰,钱士匀.生物化学和临床生物化学检验实验教程[M].北京:清华大学出版社,2005, 70-102.
    [31]向枭,陈建,周兴华,等.5种脂肪源对齐口裂腹鱼生长性能及血清生化指标的影响[J].动物营养学报,2010,22(2):498-504.
    [32]周顺伍.动物生物化学[M].北京:中国农业出版社,1999,134-144.
    [33]张辉,张海莲.碱性磷酸酶在水产动物中的作用[J].河北渔业,2003,131(5):12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700