异质物体的分界面提取与边界面重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在体数据可视化中,等值面提取是一种物体表面重建技术。本质上,传统的等值面可以看作两类材质之间的分界面:标量值大于或小于特定值的两类材质。在现实世界中,很多物体包含了两类材质或者多类材质,即异质物体或多材质物体。对于每类材质,需要准确地确定其与其它材质之间的分界面,并高效地重建其与其它材质分离的边界曲面。而传统的等值面提取方法难以处理上述异质物体表示和建模问题。因此,研究高效、准确地重构异质物体中的分界面和边界面的方法和关键技术,既是对体数据可视化理论和方法的发展,同时在医学图像处理、异质物体建模等领域中具有重要的应用价值。
     本文首先定量分析和对比了传统等值面提取算法。然后,针对定义在立方体单元上且已进行材质标注的体数据所表示的异质物体,分别提出了基于四面体单元和三棱柱单元的分界面提取方法和边界曲面重构方法,所得到的分界面和边界曲面均为2-流形,方便了后续的图形绘制和几何处理。此外,结合图形处理单元的强大并行计算能力对相关算法进行了加速。论文的主要工作包括:
     等值面是曲面的一种分片线性逼近表示。为了定量表示逼近误差,引入了豪斯道夫距离、距离平均偏差、距离均方差等度量,并采用了多个具有不同次数和拓扑的代数曲面作为测试对象,定量地分析和对比了各种基于立方体和四面体单元的等值面提取算法的精度、效率和空间复杂度等,为实际应用中等值面提取算法的选取提供了指导。
     提出了基于四面体单元的异质物体边界曲面重建算法,可以处理包含任意多类材质的异质物体。算法首先将立方体单元对称地剖分为六个四面体单元,然后根据四面体单元顶点的材质属性,生成将四面体完全分割成不同材质部分的三角面片,最后通过归类合并三角面片生成异质物体中所有物质的边界曲面。算法设计了层次数据结构用于表示异质物体中的边界曲面,并可以通过遍历数据结构高效地获取不同材质的边界面之间的各种相交信息,如分界面、交线等。此外,所有材质的边界曲面或不同材质之间的分界面均是2-流形。
     通过发掘基于四面体单元的异质物体边界曲面重建算法的并行性,设计并实现了基于图形处理单元(GPU)和统一计算设备架构(CUDA)的加速算法。算法充分利用了GPU提供的强大数据收集与分散能力,以及对线程间数据访问具有加速作用的共享内存,并且将所生成的几何数据直接提供给图形流水线进行绘制,克服了大规模数据在显存和主存之间的传输瓶颈。
     提出了基于三棱柱单元的异质物体边界曲面重建算法,大大降低了面片数量,提高了算法效率。算法首先将立方体单元对称地剖分为两个三棱柱单元,对三棱柱的每一个面和三棱柱本身进行”材质相关的序号编码”(MOIEM),然后以”维度攀升”的方式同时重建所有材质的边界曲面,即首先取三棱柱边与面上的分隔点,然后按规则连接分隔点生成分隔线,恰当遍历分割线依次生成环、分界面、边界面等。该算法同样不受材质种类数目的限制,而且算法的有效性和正确性可以通过MOIEM编码枚举的方式得以验证。
     上述算法均已在统一的软件框架下实现,实验结果和分析证明了算法的有效性和正确性。本文研究为实现高效、准确的异质物体的边界表示和建模提供给了新的理论和方法,并将传统的体数据等值面提取算法推广至多材质分界面的情形,丰富和发展了科学数据可视化的理论和方法。论文在总结部分指出了进一步的研究方向。
Isosurface extraction is a fundamental technology in scientific data visualization. Es-sentially, an isosurface can be regarded as the interface between two materials, whose scalar value is greater or less than the specified value. In the real world, it is a common case that an object contains two or more than two materials, i.e., heterogeneous object or multi-material object. For each material in a heterogeneous object, it is necessary to accurately determine the interfaces between the material and the others in one pass, and efficiently reconstruct the boundary surface of the material. Obviously, the traditional isosurface extraction algo-rithms can not accomplish these goals. Thus, it is important to develop new methods for heterogeneous object representation and boundary surface reconstruction. The investiga-tion is an important extension to the isosurface extraction algorithms; meanwhile it can be potentially applied to medical image processing and heterogeneous object modeling;
     In the thesis, the traditional isosurface extraction algorithms are first reviewed and compared quantitatively in detail. Then for the heterogeneous object defined on the cubi-cal voxels, the algorithms of interface extraction and boundary surface reconstruction are proposed, which are based on tetrahedral voxel and tri-prism voxel respectively. The inter-faces and boundary surfaces obtained are2-manifold, which is important for subsequent rendering and geometry processing. In addition, the massive parallel computing power of GPU is exploited to accelerate the algorithm. The main contributions of the thesis include:
     Isosurface is a piecewisely linear approximation of the original surface. To quanti-tatively estimate the approximation errors of isosurfaces via different algorithms, several metrics are introduced, i.e., Hausdorff distance, mean deviation and mean square deviation. Five implicit surfaces of different degrees and topologies are employed to evaluate the ap-proximation accuracy, space complexity and time complexity of the most widely applied isosurface extraction algorithms, i.e., Marching Cubes algorithms and Marching Tetrahe- dra algorithms, respectively. The estimation results provide users a reference of selecting isosurface extraction algorithms.
     A tetrahedron based boundary surface reconstruction algorithm is proposed for the heterogeneous objects. It is free of the number of materials in the heterogeneous object. As a pre-processing step, each cubical voxel is subdivided into6tetrahedral voxels. Accord-ing to the material types of tetrahedral vertices, the triangles are extracted to partition each heterogeneous tetrahedron into several homogeneous parts. Then, the boundary surface for each homogeneous material is generated by clustering the separating triangles prop-erly. A hierarchical data structure is carefully designed to organize the extracted surfaces so that the intersection information between or among the different materials can be re-trieved straightforwardly. Furthermore, the interfaces and boundary surfaces obtained are2-manifold.
     The above tetrahedron based algorithm is accelerated using GPU and CUDA. The acceleration algorithm takes full advantages of the powerful gathering and scattering op-erations of GPU and the shared memory on-chip that can accelerate the data exchange between the working threads. The generated geometry data are sent into the rendering pipeline directly so that the huge data transfer bottleneck between main memory and the video memory is avoided.
     To improve the reconstruction efficiency and reduce the triangle number in the bound-ary surfaces, a tri-prism based boundary surface reconstruction algorithm is proposed then. As a preprocessing step, each cubical voxel is subdivided into two tri-prism voxel. Then, each face in a tri-prism and each tri-prism are encoded by using Materials Oriented Index Encoding Method (MOIEM). The boundary surfaces of the heterogeneous object are re-constructed in a dimension-ascending (DA) way, i.e., first extracting the separating points on the edges or in the faces of the tri-prism, then generating the separating line segments by connecting the separating points, and finally generating the loops, interfaces, boundary surfaces. The tri-prism based reconstruction algorithm is also independent of the number of material types in the heterogeneous object. The validation and correctness can be verified using MOIEM in an enumeratedly way.
     The algorithms mentioned above has been implemented and integrated into a hetero-geneous object reconstruction system. The experimental results show the validation and correctness of the proposed algorithms. The above methods provide new approaches of the heterogeneous object representation and modeling. They also extend the isosurface extrac-tion algorithms to the heterogeneous case, subsequently enrich the theoretical framework and related technologies in the area of scientific data visualization. Finally, the future works are indicated in the conclusion section.
引文
[1]吕晟珉.曲面重建的网格方法和技术研究[D].博士学位论文.浙江大学,2004.
    [2]MCCORMICK B H, DEFANTI T A, BROWN M D. Visualization in Scientific Computing[M]. New York:ACM SIGGRAPH,1987.
    [3]JOHNSON C R, HANSEN C D. The Visualization Handbook[M]. Elsevier Butter-worth-Heinemann,2005.
    [4]BLINN J F. Ten more unsolved problems in computer graphics [J]. IEEE Computer Graphics and Applications,1998,18(5):86-89.
    [5]JOHNSON C. Top scientific visualization research problems[J]. IEEE Computer Graphics and Applications,2004,24(4):13-17.
    [6]R. K, L. G P, M. M T, et al. Computer-assisted interactive three-dimensional plan-ning for neurosurgical procedures [J]. Neurosurgery,1996,38(4):640-651.
    [7]R. K, E. S M, V. I D, et al. A digital brain atlas for surgical planning, model-driven segmentation, and teaching[J]. IEEE Transactions on Visualization and Computer Graphics,1996,2(3):232-241. http://dx.doi.org/10.1109/2945.537306.
    [8]BIELSER D, MAIWALD V A, GROSS M H. Interactive cuts through 3-dimensional soft tissue[J]. Computer Graphics Forum,1999,18(3):31-38.
    [9]秦绪佳.医学图像三维重建及可视化技术研究[D].博士学位论文.大连理工大学,2001.
    [10]COTIN S, DELINGETTE H, AYACHE N. Real-time elastic deformations of soft tissues for surgery simulation[J]. IEEE Transactions on Visualization and Computer Graphics,1999,5:62-73.
    [11]SPITZER V, ACKERMAN M J, SCHERZINGER A L, et al. The visible human male:A technical report[J]. Journal of American Medical Informatics Association, 1996,3(2):118-130.
    [12]贾春光,段会龙,吕维雪.Visible human计划的发展与应用[J].国外医学:生物医学工程分册,1997,20(5):269-274.
    [13]ZHANG S X, HENG P A, LIU Z J. Chinese visible human project[J]. Clinical Anatomy,2006,19(3):204-215.
    [14]唐雷,原林,黄文华,王兴海,洪辉文,樊继宏,钟世镇.”虚拟中国人”(vch)数据采集技术研究[J].中国临床解剖学杂志,2002,20(5):324-329.
    [15]钟世镇,原林,唐雷,et al.数字化虚拟中国人女性一号(vch-f1)实验数据集研究报告[J].第一军医大学学报,2003,23(3):196-209.
    [16]方涛.基于医学CT/MR图像的三维可视化技术研究[D].硕士学位论文.哈尔滨工业大学,2007.
    [17]赵兴龙.基于人体结构断层图像的医学三维建模[D].硕士学位论文.中国石油大学,2010.
    [18]赵改善.勘探开发中虚拟现实技术的应用与展望[J].勘探地球物理进展,2002,25(4):9-20.
    [19]唐泽圣.三维数据场可视化[M]. 1st ed.北京:清华大学出版社,1999.
    [20]王强.基于医学图像的曲面重构的基础算法研究[D].博士学位论文.浙江大学,2001.
    [21]石教英.科学计算可视化算法与系统[M].北京:科学出版社,1999.
    [22]ELVINS T T. A survey of algorithms for volume visualization[J]. SIGGRAPH Comput. Graph.,1992,26(3):194-201. http://doi.acm.org/10.1145/142413.142427.
    [23]LORENSEN, E. W, CLINE, et al. Marching cubes:A high resolution 3d surface construction algorithm[C]. SIGGRAPH'87:Proceedings of the 14th annual confer-ence on Computer graphics and interactive techniques. New York, NY, USA:ACM, 1987:163-169.
    [24]杨光.多等值面抽取算法[D].硕士学位论文.浙江大学,2007.
    [25]DURST M. Letters:Additional reference to "marching cubes"[J]. ACM Computer Graphics,1988,22(4):72-73.
    [26]NING P, BLOOMENTHAL J. An evaluation of implicit surface tilers[J]. IEEE Computer Graphics and Applications,1993,13(6):33-41.
    [27]ANDUJAR C, BRUNET P, CHICA A, et al. Optimizing the topological and com-binatorial complexity of isosurfaces[J]. Computer-Aided Design,2005,37(8):847-857.
    [28]NEWMAN T S, YIH. A survey of the marching cubes algorithm[J]. Computers & Graphics,2006,30(5):854-879.
    [29]LACHAUD J O. Topologically defined isosurfaces[J]. Lecture Notes in Computer Science,1996,1176:243-256.
    [30]MONTANI C, SCATENI R, SCOPIGNO R. A modified look-up table for implicit disambiguation of marching cubes[J]. The Visual Computer,1994,10(6):353-355.
    [31]BLOOMENTHAL J. [G]. HECKBERT P S. Graphics gems IV. San Diego, CA, USA:Inc. Academic Press Professional,1994:324-349. http://dl.acm.org/citation.cfm?id= 180895.180923.
    [32]ZAHLTEN C. Piecewise linear approximation of isovalued surfaces[G]. POST F H, HIN A J S. Advances in Scientific Visualization. Springer Berlin Heidelberg,1992: 105-118.
    [33]NIELSON G, FOLEY T, HAMANN B, et al. Visualizing and modeling scattered multivariate data[J]. IEEE Computer Graphics and Applications,1991,11(3):47-55.
    [34]WALLIN A. Constructing isosurfaces from ct data[J]. IEEE Computer Graphics and Applications,1991, 11(6):28-33.
    [35]NIELSON G M, HAMANN B. The asymptotic decider:resolving the ambi-guity in marching cubes [C]. Proceedings of the 2nd conference on Visualiza-tion'91. Los Alamitos, CA, USA:IEEE Computer Society Press,1991:83-91. http://dl.acm.org/citation.cfm?id=949607.949621.
    [36]WYVILL G, MCPHEETERS C, WYVILL B. Data structure for soft objects[J]. The Visual Computer,1986,2:227-234.
    [37]VAN GELDER A, WILHELMS J. Topological considerations in iso-surface generation[J]. ACM Trans. Graph.,1994,13(4):337-375. http://doi.acm.org/10.1145/195826.195828.
    [38]LEWINER T, LOPES H, VIEIRA A W, et al. Efficient implementation of march-ing cubes'cases with topological guarantees [J]. Journal of Graphics Tools,2003, 8(12):1-15.
    [39]WEBER G H, SCHEUERMANN G, HAGEN H, et al. Exploring scalar fields using critical isovalues[C]. Proc. of IEEE Visualization 2002. Boston MA USA:IEEE Computer Society Press,2002:171-178.
    [40]STANDER B T, HART J C. Guaranteeing the topology of an implicit surface poly-gonization for interactive modeling[C]. ACM SIGGRAPH 2005 Courses. New Y-ork, NY, USA:ACM,2005. http://doi.acm.org/10.1145/1198555.1198642.
    [41]NIELSON G M. On marching cubes[J]. IEEE Transactions on Visualization and Computer Graphics,2003,9(3):283-297.
    [42]CIGNONI P, GANOVELLIA F, MONTANIA C, et al. Reconstruction of topolog-ically correct and adaptive trilinear isosurfaces[J]. Computers & Graphics,2000, 24(3):399-418.
    [43]FRISKEN S F, PERRY R N, ROCKWOOD A P, et al. Adaptively sampled dis-tance fields:a general representation of shape for computer graphics[C]. Proceed-ings of the 27th annual conference on Computer graphics and interactive techniques. New York, NY, USA:ACM Press/Addison-Wesley Publishing Co.,2000:249-254. http://dx.doi.org/10.1145/344779.344899.
    [44]KOBBELT L P, BOTSCH M, SCHWANECKE U, et al. Feature sensitive surface extraction from volume data[C]. Proceedings of the 28th annual conference on Com-puter graphics and interactive techniques. New York, NY, USA:ACM,2001:57-66. http://doi.acm.org/10.1145/383259.383265.
    [45]JU T, LOSASSO F, SCHAEFER S, et al. Dual contouring of hermite data[J]. ACM Trans. Graph.,2002,21(3):339-346.
    [46]VARADHAN G, KRISHNAN S, KIM Y J, et al. Feature-sensitive subdivision and isosurface reconstruction[C]. IEEE Visualization 2003. Seattle, WA, USA:IEEE Computer Society Press,2003:99-106.
    [47]OHTAKE Y, BELYAEV A G. Mesh optimization for polygonized isosurfaces[J]. Computer Graphics Forum,2001,20(3):368-376.
    [48]OHTAKE Y, BELYAEV A, PASKO A. Dynamic mesh optimization for polygonized implicit surfaces with sharp features[J]. The Visual Computer,2003,19(2-3):115-126.
    [49]GABOR T. HERMAN H K L. Three-dimensional display of human organs from computed tomograms[J]. Computer Graphics and Image Processing,1979,9(1):1-21.
    [50]NELSON G M. Dual marching tetrahedra:Contouring in the tetrahedronal envi-ronment[J]. Lecture Notes in Computer Science Volume,2008,5358:183-194.
    [51]POSTON T, NGUYEN H T, HENG P A, et al. "skeleton climbing":fast isosurfaces with fewer triangles[C]. Proceedings of the 5th Pacific Conference on Computer Graphics and Applications. Washington, DC, USA:IEEE Computer Society,1997: 117-126.
    [52]POSTON T, WONG T T, HENG P A. Multiresolution isosurface extraction with adaptive skeleton climbing[J]. Computer Graphics Forum,1998,17:137-148.
    [53]OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations [J]. Journal of Computational Physics,1988,79(1):12-49.
    [54]CHEN S, MERRIMAN B, OSHER S, et al. A simple level set method for solving stefan problems[J]. Journal of Computational Physics,1997,135(1):8-29.
    [55]ASHGRIZ N, POO J Y. Flair:Flux line-segment model for advection and interface reconstruction[J]. Journal of Computational Physics,1991,93(2):449-468.
    [56]SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solu-tions to incompressible two-phase flow[J]. Journal of Computational Physics,1994, 114(1):146-159.
    [57]MERRIMAN B, BENCE J K, OSHER S J. Motion of multiple junctions:A level set approach[J]. Journal of Computational Physics,1994,112(2):334-363.
    [58]PENG D, MERRIMAN B, OSHER S, et al. A pde-based fast local level set method[J]. Journal of Computational Physics,1999,155(2):410-438.
    [59]张镭,袁礼.Ghost fluid方法与双介质可压缩流动计算[J].计算物理,2003,6(20):503-508.
    [60]柏劲松,陈淼华.重新初始化的1s方法跟踪二维可压缩多介质流界面运动[J].高压物理学报,2003,](17):22-26.
    [61]CHEN W, LU A, EBERT D S. Shape-aware volume illustration[J]. Computer Graphics Forum,2007,26(3):705-714.
    [62]WANG Y, CHEN W, SHAN G, et al. Volume exploration using ellipsoidal gaus-sian transfer functions[C].2010 IEEE Pacific Visualization Symposium (PacificVis). IEEE.2010:25-32.
    [63]PRAβNI J S, ROPINSKI T, HINRICHS K H. Efficient boundary detection and trans-fer function generation in direct volume rendering[C]. Proceedings of the 14th In-ternational Fall Workshop on Vision, Modeling, and Visualization (VMV09).2009: 285-294. http://viscg.uni-muenster.de/publications/2009/PRH09.
    [64]SCHROEDER W, AVILA L, HOFFMAN W. Visualizing with vtk:a tutorial[J]. IEEE Computer Graphics and Applications,2000,20(5):20-27.
    [65]PARKER S G, JOHNSON C R. Scirun:a scientific programming envi-ronment for computational steering[C]. Proceedings of the 1995 ACM/IEEE Conference on Supercomputing. New York, NY, USA:ACM,1995. http://doi.acm.org/10.1145/224170.224354.
    [66]PARKER S G, WEINSTEIN D M, JOHNSON C R. The scirun computation-al steering software system[C]. Modern Software Tools for Scientific Computing. Birkhauser Boston 1997:5-44.
    [67]PARKER S, MILLER M, HANSEN C, et al. An integrated problem solving environ-ment:the scirun computational steering system[C]. Proceedings of the Thirty-First Hawaii International Conference on System Sciences. vol 7.1998:147-156.
    [68]徐梅生.医学图像的三位重建技术的研究[D].硕士学位论文.武汉理工大学,2012.
    [69]彭群生,鲍虎军,金小刚.计算机真实感图形学的算法基础[M].北京:科学出版社,2002.
    [70]MACLEOD R, JOHNSON C, ERSHLER P. Construction of an inhomegeneous model of the human torso for use in computational electrocardiography[C]. In IEEE Engineering in Medicine and Biology Society 13th Annual International Confer-ence, vol 13.1991:688-689.
    [71]PASKO A, SHAPIRO V. Heterogeneous object models and their applications[J]. Computer-Aided Design,2005,37:285.
    [72]CORPORATION N. Nvidia cuda c programming guide:Version 3.2[M]. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html:[EB/OL], 2010.
    [73]ADAMS S, BAUM R P, STUCKENSEN T, et al. Prospective comparison of 18f-fdg pet with conventional imaging modalities (ct, mri, us) in lymph node staging of head and neck cancer[J]. European journal of nuclear medicine,1998,25(9):1255-1260.
    [74]GUEZIEC A, HUMMEL R. Exploiting triangulated surface extraction using tetra-hedral decomposition[J]. Visualization and Computer Graphics, IEEE Transactions on,1995,1(4):328-342.
    [75]卫飞飞,周飞,冯结青.Cagd/cg领域中一元多项式方程求根问题综述[J].计算机辅助设计与图形学学报,2011,23(2):193-207.
    [76]孙伟,张彩明,杨兴强.Marching cubes算法研究现状[J].计算机辅助设计与图形学学报,2007,19(7):947-952.
    [77]NATARAJAN B K. On generating topologically consistent isosurfaces from unifor-m samples[J]. The Visual Computer,1994, 11(1):52-62.
    [78]TREECE G M, PRAGER R W, GEE A H. Regularised marching tetrahedra:im-proved iso-surface extraction[J]. Computers & Graphics,1999,23(4):583-598.
    [79]CARR H, MOLLER T, SNOEYINK J. Artifacts caused by simplicial subdivision[J]. IEEE Transactions on Visualization and Computer Graphics,2006,12(2):231-242.
    [80]NIELSON G M. Dual marching cubes[C]. Proceedings of the conference on Visu-alization'04. IEEE Computer Society.2004:489-496.
    [81]OHTAKE Y, BELYAEV A G. Dual/primal mesh optimization for polygonized im-plicit surfaces[C]. Proceedings of the seventh ACM symposium on Solid modeling and applications. ACM.2002:171-178.
    [82]张迎平,高国贤,陆一峰.基于区间树硬件加速索引的marching cubes算法[J].计算机辅助设计与图形学学报,2012,24(7):871-878.
    [83]SHAMMAA M H, SUZUKI H, OHTAKE Y. Extraction of isosurfaces from multi-material ct volumetric data of mechanical parts[C]. SPM'08:Proceedings of the 2008 ACM symposium on Solid and physical modeling. NY, USA:ACM,2008: 213-220.
    [84]WANG M, FENG J Q.2d-manifold boundary surfaces extraction from hetero-geneous object on gpu[J]. Journal of Computer Science and Technology,2012, 27(4):862-871.
    [85]WU Z, M.SULLIVAN J. Multiple material marching cubes algorithm[J]. Interna-tional Journal for Numerical Methods in Engineering,2003,58(2):189-207.
    [86]TANG M, LE M, KIM Y J. Interactive hausdorff distance computation for general polygonal models[C]. ACM Transactions on Graphics (TOG). vol 28. ACM.2009: 74.
    [87]KARMARKAR N. A new polynomial-time algorithm for linear programming[C]. Proceedings of the sixteenth annual ACM symposium on Theory of computing. ACM.1984:302-311.
    [88]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [89]BYRD R H, HRIBAR M E, NOCEDAL J. An interior point algorithm for large-scale nonlinear programming[J]. SIAM Journal on Optimization,1999,9(4):877-900.
    [90]WANG C C L. Direct extraction of surface meshes from implicitly represented heterogeneous volumes[J]. Comput. Aided Des.,2007,39(l):35-50.
    [91]MOLLER T. A fast triangle-triangle intersection test[J]. Journal of graphics tools, 1997,2:2:25-30.
    [92]ROSENTHAL P, LINSEN L. Direct isosurface extraction from scattered volume data[C]. Eurographics/IEEE-VGTC Symposium on Visualization.2006:99-106.
    [93]NELSON G M, FRANKE R. Computing the separating surface for segmented da-ta[C]. VIS'97:Proceedings of the 8th conference on Visualization'97. Los Alami-tos, CA, USA:IEEE Computer Society Press,1997:229-233.
    [94]BONNELL K S, JOY K I, HAMANN B, et al. Constructing material interfaces from data sets with volume-fraction information[C]. VIS'00:Proceedings of the conference on Visualization'00. Los Alamitos, CA, USA:IEEE Computer Society Press,2000:367-372.
    [95]FENG P, JU T, WARREN J. Piecewise tri-linear contouring for multi-material vol-umes[C]. Advances in Geometric Modeling and Processing. vol 6130.2010:43-56.
    [96]PATIL L, DUTTA D, BHATT A D, et al. Representation of heterogeneous objects in iso 10303 (step)[C]. Proceedings of the ASME Conference. vol 11. FL, USA Orlando.2000:355-364.
    [97]JACKSON T R, CHO W, PATRIKALAKIS N M, et al. Memory analysis of sol-id model representations for heterogeneous objects[J]. Journal of Computing and Information Science in Engineering,2002,2(1):1-10.
    [98]PRATT M J, BHATT A D, DUTTA D, et al. Progress towards an international stan-dard for data transfer in rapid prototyping and layered manufacturing[J]. Computer-Aided Design,2002,34(14):1111-1121.
    [99]WANG C C L. Computing on rays:A parallel approach for surface mesh modeling from multi-material volumetric data[J]. Computers in Industry,2011,62:660-671.
    [100]HUNG C, BUNING P. Simulation of blunt-fin induced shock wave and turbulent boundary layer separation[C]. AIAA Aerospace Sciences Conference.1984.
    [10l]张舒,褚艳利,赵开勇,et al. GPU高性能计算之CUDA[M].北京:中国水利水电出版社,2009.
    [102]HAMADA T, NARUMI T, YOKOTA R, et al.42 tflops hierarchical n-body simula-tions on gpus with applications in both astrophysics and turbulence[C]. Proceedings of the Conference on High Performance Computing Networking, Storage and Anal-ysis. ACM.2009:62.
    [103]TANIAR D, LEUNG C H, RAHAYU W, et al. High performance parallel database processing and grid databases[M]. Wiley,2008.
    [104]BERNHARDT A, MAXIMO A, VELHO L, et al. Real-time terrain modeling using cpu-gpu coupled computation[C]. Graphics, Patterns and Images (Sibgrapi),2011 24th SIBGRAPI Conference on. IEEE.2011:64-71.
    [105]PAGANI M, TRANQUILLI P. Parallel reduction in resource lambda-calculus[G]. Programming Languages and Systems. Springer,2009:226-242.
    [106]COHEN F, DECAUDIN P, NEYRET F. Gpu-based lighting and shadowing of com-plex natural scenes[C]. ACM SIGGRAPH 2004 Posters. ACM.2004:91.
    [107]SANDER P V, MITCHELL J L. Progressive buffers:view-dependent geometry and texture lod rendering[C]. ACM SIGGRAPH 2006 Courses. ACM.2006:1-18.
    [108]ROST R J. OpenGL着色语言[M].北京:人民邮电出版社,2006.
    [109]MARK W R, GLANVILLE R S, AKELEY K, et al. Cg:a system for programming graphics hardware in a c-like language[C]. ACM Transactions on Graphics (TOG). vol 22. ACM.2003:896-907.
    [110]BUCK I, FOLEY T, HORN D, et al. Brook for gpus:stream computing on graphics hardware[C]. ACM Transactions on Graphics (TOG). vol 23. ACM.2004:777-786.
    [111]PASCUCCI V. Isosurface computation made simple:Hardware accelera-tion,adaptive refinement and tetrahedral stripping[C]. Eurographics/IEEE TVCG Symposium on Visualization (VisSym).2004:293-300.
    [112]KLEIN T, STEGMAIER S, ERTL T. Hardware-accelerated reconstruction of polyg-onal isosurface representations on unstructured grids [C]. In Proceedings of Pacific Graphics'04.2004:186-195.
    [113]KIPFER P, WESTERMANN R. Gpu construction and transparent rendering of iso-surfaces[C]. Modeling and Visualization 2005.2005:241-248.
    [114]BUATOIS L, CAUMON G, LeVY B. Gpu accelerated isosurface extraction on tetra-hedral grids [C]. Proceedings of the Second international conference on Advances in Visual Computing. vol 4291. Springer 2006:383-392.
    [115]HORN D R, SUGERMAN J, HOUSTON M, et al. Interactive kd tree gpu raytrac-ing[C]. Proceedings of the 2007 symposium on Interactive 3D graphics and games. ACM.2007:167-174.
    [116]KASHYAP S, GORADIA R, CHAUDHURI P, et al. Implicit surface octrees for ray tracing point models[C]. Proceedings of the Seventh Indian Conference on Comput-er Vision, Graphics and Image Processing. ACM.2010:227-234.
    [117]NAVARRO C A, HITSCHFELD-KAHLER N, MATEU L. A survey on parallel computing and its applications in data-parallel problems using gpu architectures [J]. Commun. Comput. Phys.,2014,15:285-329.
    [118]WANG M, FENG J.2d-manifold boundary surfaces extraction from heterogeneous object on gpu[J]. Journal of Computer Science and Technology,2012,27(4):862-871.
    [119]BLOOMENTHAL J. Polygonization of implicit surfaces[J]. Computer Aided Geo-metric Design,1988,5:341-355.
    [120]FUJISHIRO I, MAEDA Y, SATO H. Interval volume:a solid fitting technique for volumetric data display and analysis[C]. Proceedings of the 6th conference on Visu-alization'95. IEEE Computer Society.1995:151-158.
    [121]FUJISHIRO I, MAEDA Y, SATO H, et al. Volumetric data exploration using inter-val volume[J]. IEEE Transactions on Visualization and Computer Graphics,1996, 2(2):144-155.
    [122]DEY T K, JANOOS F, LEVINE J A. Meshing interfaces of multi-label data with delaunay refinement[J]. Engineering with Computers,2012,28(1):71-82.
    [123]CHENG S W, DEY T K, RAMOS E A. Delaunay refinement for piecewise smooth complexes[J]. Discrete Comput. Geom.,2009,43(1):121-166.
    [124]KOU X, TAN S. Heterogeneous object modeling:A review[J]. Computer-Aided Design,2007,39:284-301.
    [125]HUNG C M, BUNING P G. Simulation of blunt-fin-induced shock-wave and turbu-lent boundary-layer interaction[J]. Journal of Fluid Mechanics,1985,154:163-185.
    [126]PARKER S G, JOHNSON C R. Scirun:a scientific programming environment for computational steering[C]. Proceedings of the 1995 ACM/IEEE conference on Su-percomputing (CDROM). New York, NY, USA:ACM,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700