陕西省渭北苹果园表层土壤物理性质与水分特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西省渭北地区是世界苹果最佳适生区,但该区干旱少雨,水资源短缺且利用难度大,土壤水分成为苹果生产中的首要限制因子。苹果园土壤的水分特征对果树的生长状况有极大影响,而表层土壤的物理性质直接影响土壤在果树根系吸水范围的水分特征。本研究对渭北地区苹果园表层土壤的物理和水分性质进行了测定,分析其分布特点及不同层次的相关性和变异性,为研究黄土高原地区苹果园的土壤水分生态特征和运动规律服务,促进节水果业的发展和水资源的科学利用。
     通过对陕西省渭北地区12个区县的优质苹果示范园表层土壤的基本物理性质和水分特征进行测定,结合相关分析和方程拟合方法,分析了渭北地区不同苹果园土壤的物理结构性质和水分特性的空间分布与变化情况。取得以下主要结论:
     (1)渭北苹果园表层土壤的机械组成中粉粒含量较高,粘粒含量较低:安塞土样为砂质壤土,砂粒含量高达76.55%,其他土样为粉质壤土,粉粒含量普遍达到50%以上;大部分土样的粘粒含量低于10%。渭北果园土壤的容重变异较小,容重随土层深度的增加而变大,总孔隙度则逐渐降低。部分土样的总孔隙度变异较大,表现出差异性。
     (2)渭北苹果园表层土壤的结构较好,团聚体水稳性很强,适宜果树种植生产:不同土样的团聚体分布情况差别较大,总体上0.5~1mm中间粒径团聚体含量最高,随着土层深度的增加,不同粒径团聚体含量呈现不同程度的变化。表层土壤的平均重量直径范围在0.33~1.58mm之间。果园土壤的有机质和粘粒含量对土壤团聚体稳定性具有重要作用,团聚体稳定性随有机质含量的增加而显著增加。
     (3)渭北苹果园表层土壤水分特征曲线显示:渭北苹果园土壤的含水量在接近植物能有效利用的低水吸力范围内随土壤水吸力增加而显著减小。在水吸力较低的情况下(小于100kPa)水分特征曲线实测值与幂函数经验公式能较好拟合,相关程度较高,可作为土壤水吸力和含水量换算的参照,以及用于分析不同质地土壤的持水性和土壤水分的有效性,为合理有效地利用土壤水分和科学指导灌溉提供条件。
     (4)渭北苹果园表层土壤的持水、导水特征表明:随土层深度增加,果园土壤饱和含水量降低;土壤田间持水量的分布出现波动,反映出表层土壤水分特征的空间变异性极强;土壤饱和导水率出现一定波动,整体上小幅降低,在土壤剖面上表现出异质性。果园土壤有效含水量沿土壤剖面变化的规律性不强,安塞土壤水分有效性高,蒲城土壤低。土壤质地、容重、结构、有机质含量、温度等因素都对土壤水分运动产生影响。团聚体含量越多,容重越小,水分特征曲线在低吸力段越平缓。有机质的积累能改善土壤结构和孔隙状况,提高土壤导水性能,并有助于保持土壤水分,增加土壤含水量。
Weibei region in Shaanxi Province is the world's best suitable area for apple, but the area is drought, water shortage and difficult to use, therefore, soil water become the first limiting factor in apple production. Soil water characteristics of orchards have great impact on the growth of apple tree, while the physical properties of topsoil directly affect the soil water characteristics in the range of root. For this reason, the soil physical and water properties of apple orchards in Weibei region were determined to analyze the distribution and different levels of relevance and variability, service for the study of ecological characteristics of apple orchard and soil water movement law on the Loess Plateau region, promote the development of apple industry and the scientific use of water resources.
     Through determine the basic physical properties and water characteristics of topsoil in 12 demonstration apple garden in Weibei region of Shaanxi Province to analyze the soil physical structure and water features in different apple orchards by combination of correlation analysis and equation fitting method. Obtained the following main conclusions:
     (1) Topsoil in apple orchards is higher silt content and low clay content in mechanical composition: The soil in Ansai is sandy loam, the sand content of up to 76.55%, most of the other samples more than 50% silt content for the silty loam, the clay content of soil in most less than 10%. Soil bulk density have little variation and increased with soil depth. Total porosity decreased gradually. Part of the total porosity of soil samples varied greatly, Show differences.
     (2) The soil structure of apple orchards in Weibei region is good, water stable aggregates are suitable for the growth of apple trees: Different distribution of soil aggregates varies considerably, the aggregate content of diameter between 0.5mm to 1mm in the middle is the highest, with the increase of soil depth, different aggregate sizes varying in content. The mean weight diameter of topsoil is range between 0.33mm to 1.58mm. Soil organic matter and clay content have important role in aggregate stability, which increased significantly with the organic matter content increase.
     (3) Soil water characteristic curves of topsoil in apple orchards show: Soil water decreased significantly within the soil water suction increased under low water suction. In the case of low water suction (<100kPa), measured water characteristic curve equation with the power function can be well fited and correlation is high. Soil water suction and water content can be translated as a reference, and for the analysis of different soil texture and water holding capacity. Further more, provide the conditions for the rational and efficient use of soil water and scientific guidance for irrigation.
     (4) Soil water retention and hydraulic conductivity characteristics of topsoil in apple orchards show: With soil depth increase, saturated water content lower; fluctuations in the distribution of soil field capacity, reflecting the characteristics of topsoil water spatial variability; soil saturated hydraulic conductivity have certain fluctuations, the overall slightly lower in the soil profile showed heterogeneity. Soil effective water content change along the soil profile in law is not strong; Ansai soil has slightly high soil water availability while Pucheng soil is low. Soil texture, bulk density, structure, organic matter content, temperature and other factors are all have impact on soil water movement. The more aggregate content and smaller bulk density, the more gentle water retention curve at low suctions. The accumulation of organic matter can improve soil structure, porosity condition and soil hydraulic conductivity, and also help to maintain soil moisture and increase soil water content.
引文
包雪梅,张福锁,马文奇,徐文华.2003.陕西省有机肥料施用状况分析评价.应用生态学报,14(10):1669~1672
    陈春平,罗菊春,戈峰.2006.荒坡地开垦种植蜜橘后对土壤主要物理特性的影响.农业现代化研究,27(4):300~303
    陈恩凤,周礼恺,武冠云.1994.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力中的作用.土壤学报,31(1):18~28
    陈建耀,刘昌明,吴凯.1999.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散.应用生态学报,10(1):45~48
    陈永平,施明恒.2000.基于分形理论的多孔介质渗透率的研究.清华大学学报:自然科学版,40(12):94~97
    陈志雄,汪仁真.1979.中国几种主要土壤的持水性质.土壤学报,14(3):277~281
    程金茹,郭择德,郭大波.1996.非饱和土壤特性参数获取方法.水文地质工程地质,(2):9~10
    单秀枝,魏由庆,严慧峻,刘继芳,张锐.1998.土壤有机质含量对土壤水动力学参数的影响.土壤学报,35(1):1~3
    邓建才,卢信,陈效民,王代长,蒋新.2005.封丘地区土壤水分扩散率的研究.土壤通报,36(3):317~119
    龚元石,廖超子,李保国.1998.土壤含水量和容重的空间变异及其分形特征.土壤学报,35(1):10~15
    郭兆元,陕西省土壤普查办公室.1992.陕西土壤.北京:科学出版社:106
    郭忠升,吴钦孝,任锁堂.1996.森林植被对土壤入渗速率的影响.陕西林业科技,(4):27~31
    胡良军.2002.黄土高原植被恢复的土壤水分生态环境.[硕士学位论文].杨凌:西北农林科技大学
    华孟,王坚.1993.土壤物理学.北京:北京农业大学出版社:3~4
    蒋定生,黄国俊,谢永生.1984.黄土高原土壤入渗能力野外测试.水土保持通报,4(4):7~9
    景为.2003.推求土壤水分运动参数的方法.[硕士学位论文].杨凌:西北农林科技大学
    康绍忠,刘晓明,高新科.1992.土壤-植物-大气连续体水分传输的计算机模拟.水利学报,(3):1~12
    李成华,马成林.1997.有机物覆盖地面对土壤物理因素影响的研究II有机物覆盖对土壤孔隙度的影响.Transaction of CSAE,13(2):82~85
    李会科.2008.渭北旱地苹果园生草的生态环境效应及综合技术体系构建.[博士学位论文].杨凌:西北农林科技大学
    李开元,李玉山.1991.土壤水分特征曲线的意义及其应用.陕西农业科学,(4):47
    李卫东,李保国,石元春.1999.区域农田土壤质地剖面的随机模拟模型.土壤学报,36(3):289~301
    李玉山,韩仕峰,汪正华.1985.黄土高原土壤水分性质及其分区.中国科学院西北水土保持研究所集刊,2:1~17
    李玉山,史竹叶,张孝中.1990.长武王东沟小流域土壤墒情影响因素与分布特征.水土保持通报,6:1~6
    李玉山.1983.黄土区土壤水循环特征及其对陆地水文循环的影响.生态学保,3(2):9l~101
    李志洪,王淑华.2000.土壤容重对土壤物理性状和小麦生长的影响.土壤通报,31(2):55~58
    刘建国,聂永丰.2001.非饱和土壤水力参数预测的分形模型.水科学进展,12(1):99~104
    刘晚苟,山仑,邓西平.2000.不同土壤水分条件下土壤容重对玉米根系生长的影响.西北植物学报,22(4):831~838
    刘贤赵,衣华鹏.李世泰.2004.渭北旱塬苹果种植分区土壤水分特征.应用生态学报,15(11):55~60
    刘雪梅,黄元仿.2005.应用激光粒度仪分析土壤机械组成的实验研究.土壤通报,36(4):580
    路克国,朱树华,张连忠.2003.有机肥对土壤理化性质和红富士苹果果实品质的影响.石河子大学学报,7 ( 3):205
    吕春花.2006.子午岭地区植被恢复对土壤质量的影响研究.[硕士学位论文].杨凌:西北农林科技大学
    马成.1994.有机质含量对土壤几项物理性质的影响.土壤通报,25(2):65~67
    马延庆,徐志达,刘长民,陈力,王斌生,马文.2009.陕西渭北旱塬苹果种植区域农田水分特征分析.干旱地区农业研究,27(2):54~59
    孟春红,夏军.2004.“土壤水库”储水量的研究.节水灌溉,(4):8~10
    孟庆华,李根英.2007.山东主要土类有机质及其与供磷特性的关系.土壤通报,38(1):25~28
    乔照华.2008.土壤有机质含量与土壤物理性能参数的相关性分析.中国农村水利水电,(2):1~3
    邵明安,陈志雄.1991.SPAC中的水分运动.西北水土保持研究所集刊,(13):3~12
    邵明安,王全九.2000.推求土壤水分运动参数的简单入渗法(理论分析).土壤学报,37(1):1~7
    石元春.1995.节水农业应用基础研究进展.北京:中国农业出版社:56~63
    史奕,陈欣,沈善敏.2002.有机胶结形成土壤团聚体的机理及理论模型.应用生态学报,13(11):1495~1498
    史竹叶,刘文兆,郭胜利.2003.中连川小流域土壤水分物理特征及其与地形条件的关系.干旱地区农业研究,21(4):101~104
    唐亚莉,董文明,赵晶晶.2006.优化算法确定土壤水分特征曲线的分析.新疆大学学报:自然科学版,(2):240~243
    田洪艳,周道玮,李质馨.2003.土壤胀缩运动对草原土壤的干扰作用.草地学报,11(3):261~268
    田佳秋,兰伟,李树森,赵晶明.2005.整地深度对土壤物理性质的影响.防护林科技,5(3)
    王健,吴发启.2007.黄土高原丘陵沟壑区果园土壤水分动态.节水灌溉,(3):32~37
    王孟本,李洪建.2001.林分立地和林种对土壤水分的影响.水土保持学报,15(6):43~44
    王清奎,汪思龙.2005.土壤团聚体形成与稳定机制及影响因素.土壤通报,36(3):415~417
    王锐,刘文兆,李志.2008.黄土塬区10 m深剖面土壤物理性质研究.土壤学报,45(3):550
    乌云.2008.大青山油松人工林土壤物理特征及水分动态研究.[硕士学位论文].呼和浩特:内蒙古农业大学
    吴长文,王礼先.1995.林地土壤的入渗及其模拟分析.水土保持研究,2(1):71~75
    吴承祯,洪伟.1995.不同经营模式土壤团粒结构的分形特征研究.土壤学报,36 (2):162~167
    郗荣庭.2000.果树栽培学总论.第3版.北京:中国农业出版社:115~117
    席瑞卿.2006.苹果树养分吸收利用特征及其养分资源管理.[硕士学位论文].杨凌:西北农林科技大学
    夏卫生,雷廷武,潘英华.2002.土壤水动力学参数研究与评价.灌溉排水,21(1):72~75
    肖波,赵允格,邵明安.2007.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响.农业工程学报,23(12):35~39
    刑存旺,陈峻崎,金子明.1998.整地对滨海盐碱地土壤物理性状的影响.河北林业科技,(1):17~20
    徐绍辉,张佳宝,刘建立.2002.表征土壤水分持留曲线的几种模型的适应性研究.土壤学报,39(4):498~504.
    徐永福,董平.2002.非饱和土的水分特征曲线的分形模型.岩土力学,23(4):400~405
    许明祥.2003.黄土丘陵区生态恢复过程中土壤质量演变及调控.[博士学位论文].杨凌:中科院水土保持研究所
    许松葵,薛立,陈红跃.2006.广州南沙典型林地土壤理化性质的研究.土壤通报,37(1):36~40
    杨金楼,朱连龙,朱济成.1982.上海地区土壤持水性的研究.土壤学报,19(4):331~341
    杨诗秀,雷志栋,谢森传.1985.均质土壤一维非饱和流动通用程序.土壤学报,(1):24~34
    杨文治,邵明安,彭新德,夏卫生.1998.黄土高原环境的旱化与黄土中水分关系.中国科学:D辑,28(4):357~365
    杨文治,邵明安.2000.黄土高原土壤水分研究.北京:科学出版社:1~84,214~219
    曾河水.2002.不同治理措施侵蚀地土壤物理性状变化的研究.福建水土保持,14(1):50~52
    张景略,苗付山.1985.黄泛平原不同质地土壤的持水特性.土壤学报,22(4):350~355
    张强,孙向阳,张广才.2004.土壤水分研究进展.林业科学研究,17(增刊):105~108
    张扬,赵世伟,华娟.2009.宁南山区草地植被恢复方式对土壤饱和导水率的影响.中国水土保持科学,7(5):100~104
    张一平,白锦鳞,张君常.1990.温度对土壤水势影响的研究.土壤学报,27(4):454~458
    张玉珍.2006.沙壤土入渗性能和水分特征曲线的测定.福建工程学院学报,4(6):759~762
    赵传燕,李林.2003.兰州市郊区土壤水稳定性微团聚体的组成分析.兰州大学学报:自然科学版,39(6):91~94
    赵政阳,戴军,王雷存.2002.陕西苹果产业现状及国际竞争力分析.西北农业学报,11(4):108~111
    郑春.2008.陕西苹果业可持续发展现状、问题及对策研究.(4):256
    周维博.1991.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟.水利学报,(9):32~36
    周择福,洪玲霞.1997.不同林地土壤水分入渗和入渗模拟的研究.林业科学,33(1):9~17
    周钟瑜.1986.土壤水分测定方法.北京:水利电力出版社:64~86
    朱德兰,吴发启.2003.不同地形部位土壤水分的年变化分析.中国水土保持科学,1(4):28~31
    朱德兰,吴发启.2004.黄土高原早地果园土壤水分管理研究.水土保持研究,11(1):40~42
    朱首军.2001.渭北旱塬农林复合系统水量平衡要素变化规律的试验研究.[博士学位论文].杨凌:西北农林科技大学
    朱祖祥.1979.土壤水分的能量概念及其意义.土壤学进展,(1):1~2
    朱祖祥.1983.土壤学:上册.北京:农业出版社:56~62
    庄季屏,王伟.1986.土壤低吸力段持水性能及其与早期土壤干旱的关系研究.土壤学报,23(4): 306~313
    庄季屏.1989.四十年来的中国土壤水分研究.土壤学报,26(3):241~247
    Arya L M, Paris J F. 1981. A physic empirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Soil Science Society of America Journal, 45: 1023~1030
    Bear J. 1972. Dynamics of fluids in Porous media. NewYork: Elsevier Bruce R R. 1972. Hydraulic conductivity evaluation of the soil profile from soil water retention relations. Soil Sci Am Proc.
    Cosby B J, Hornberger G M, Clapp R B. 1984. A statistical exploration of the relationships of soil moisture characteristics to the Physical Properties of soils. Water Resour Res, 20: 682~690
    Daniel H. 1998. Environmental Soil Physics. Academic Press: 155~158
    De Jong R, Campbell C A, Nicholaichuk W. 1983. Water retention equations and their relationship to soil organic matter and Particle size distribution for disturbed Samples. Can J Soil Sci, 63: 291~302
    Edwards A P, Bremner J M. 1969. Micro-aggregates in soils. Soil Science, 18: 64~73
    Fredlund D G, Rahardjo H. 1993. Soil mechanics for unsaturated soils. New York: Wiley&his sons Fredlund D G, Xing A, Fredlund M D. 1996. The relationship of the unsaturated soil shear strength function to the soil water characteristics. Can Geotech J,33(3): 440~448
    Gardner W R, Hillel D, Benyamini Y. 1970. Post irrigation movement of soil waterⅠRedistribution. Water Resource Research, 6: 851~861
    Gupta S C, Larson W E. 1977. Estimating soil water retention characteristics from Particle size distribution, organic matter percent, and bulk density. Water Resour Res, 15: 1633~1635
    Haverkam P R, Parlange J Y. 1986. Predicting the water retention curve from Particle size distribution: Sandy soil without organic matter. Soil Sci, 142: 325~399
    Hillel, Daniel. 1980. Applications of soil physics. New York: Academic Press: 357~376
    Horn R, Taubner H, Wuttke M. 1994. Soil physical properties related to soil structure. Soil Till Res, 30: 187~216
    Kemper W D, Koch E J. 1966. Aggregate stability of soils from western US and Canada VSDA. Tech.Bull.1355. US Govt. Printing office, Washington DC
    Klute A and C Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods: Second Edition, Klute (editor). American Society of Agronomy, Madison: 687~734
    Kovacs G. 1981. Seepage Hydraulics. Amsterdam:Elsevier Science Oublishers Kutilek M, Nielsen D R. 1994. Soil Hydrology. Germany: Catena-Verlag
    M Borkovec, Q Wu, G Degovics, P Laggner, H Sticher. 1993. Surface area and size distributions of soil Particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 73: 65~76
    Medioni G, Yasumoto. 1984. A note on using the fractal dimension for segmentation. In IEEE Computer Vision Worksh, Los Alamitos: IEEE Computer Soc Press: 25~30
    Milly P C D. 1987. Estimation of the Brooks~Corey parameters from water retention data. Water Resource Research, 23: 1 085~1 089
    Milly P C. 1982. Moisture and heat transport in hysteretic inhomogeneous porous media: a matrix head~based formulation and a numerical model. Water Resource Res., 18(3): 489~498
    Moran C J, Ali B. 1996. Microspore structure.1.Specimen Preparation and digital binary Production. Soil Sci Am J,53: 921~928
    Mualem Y. 1974. A conceptual model of hysterics. Water Resour Res, (10)
    Rattan L. 2000. Physical management of soils of the tropics: priorities for the 21st century. Soil Science, 165: 191~207~114
    Shouse P J, Russell W B, Burden D S. 1995. Spatial variability of soil water retention functions in a siltloam soil. Soil Sci, 159(1): 1~12
    Tyler S W, Wheatcraft S W. 1990. Fractal process in soil water retention. Water Resources Res, 26(5): 1047~1054
    Xu YF, Sun D A.2001. Determination on of expansive soil strength using a fractal model. Fractals, 9(1): 51~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700