窄带宽带氧化物径向异质纳米结构光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科技的不断发展,新型异质纳米结构成为当前研究的热点。借助异质材料的接触与融合所产生的表面和界面的奇异功能特性,可以构建新型光电器件。本论文从SnO2和ZnO基一维纳米结构出发合成了一类典型的一维异质结纳米结构,研究其所具有的新的光电特性。论文主要内容包括:SnO2基和ZnO基异质纳米结构材料的可控制备;对SnO2基异质纳米结构的发光特性进行了研究,并对其机理进行了探讨;对SnO2基和ZnO基异质纳米结构的气敏特性进行测试,并探讨了其机理。
     本文首先介绍了SnO2、ZnO一维纳米材料的结构、特性、应用以及制备方法,同时对纳米复合材料的发展现状进行了分析。
     本文中,材料的制备主要采用液相化学法合成出了SnO2/CdS、SnO2/La2O3、SnO2/ZnO、SnO2/CuO、ZnO/TiO2等一维异质纳米结构。研究了SnO2/CdS、SnO2/La2O3、SnO2/ZnO的光致发光特性,分析了SnO2的异质结构与纯SnO2纳米棒相比光致发光谱发生变化的原因。其中,SnO2/ZnO异质纳米结构的新发光峰是由SnO2/ZnO的界面引起的。SnO2/CdS异质纳米材料的光致发光峰的红移是复合CdS引起的,而SnO2/La2O3异质纳米材料的光致发光峰的红移是La2O3的催化作用引起的。
     研究了所制备的复合纳米材料在不同工作温度下的气敏特性。发现复合材料中各物质之间的摩尔比为一适当值时,对乙醇和氢气等气体表现了增强的气敏特性,包括高的灵敏度和低的最佳工作温度。其气敏机理可归结为半导体同型异质结模型、p-n结模型、催化剂模型等。
Recently, new types of heteronanostructures have attracted a lot of interest with a deep development of nanoscience and nanotechnology. Novel optoelectronic devices can be fabricated in terms of the special properties induced by the interface of the heteronanostructures. In the thesis, one kind of one-dimensional (ID) heteronanostructures is synthesized based on one-dimensional SnO2 and ZnO nanomaterials for investigating their new optoelectronic properties. The main contents of the thesis contain control synthesis of 1 D heteronanostructures based on SnO2 and ZnO, room temperature photoluminescence properties and the corresponding mechanism of SnO2-based heteronanostructures, and gas sensing properties and the relative mechanism of all the heteronanostructures.
     The structure, characteristics, applications and synthesis methods are firstly introduced in the thesis, and then the development trend is analyzed.
     1 D SnOz/CdS, SnO2/La2O3, SnO2/ZnO, SnO2/CuO and ZnO/TiO2 nanostructures are prepared by wet chemical methods. Room temperature photoluminescence properties and the corresponding mechanism of SnO2-based heteronanostructures such as SnO2/CdS, SnO2/La2O3 and SnO2/ZnO are investigated. The new peak in SnO2/ZnO heterostructures is attributed to the interface between SnO2 and ZnO. Redshift of the main peak in SnO2/CdS is induced by CdS, whereas the phenomenon in SnO2/La2O3 is related to the catalytic effect of La2O3.
     The sensing properties of those 1 D heteronanostructures are investigated at different working temperature. We find that those nanocomposites with an appropriate moral proportion exhibit enhanced sensing characteristics including high sensitivity and low optimum working temperature. The sensing mechanisms can be summarized as the same type of semiconductor heterojunction model, p-n junction model and catalytic model etc.
引文
[1]解挺,焦明华,俞建卫,吴玉程,张立德.准一维纳米材料制备方法的研究现状和发展趋势.《材料科学与工程学报》.2006,24(2):311页
    [2]刘文成,蔡伟,孟祥龙.准一维纳米材料的研究现状.《功能材料》.2006,4(37):515页
    [3]荆忠国,樊刚,张德丰,宋群玲.纳米SnO2材料制备技术研究进展.《南方金属》.2007,10(158):5页
    [4]高兆芬,曾宇平.Pd掺杂对SnO2气敏性能的影响.《传感器与微系统》.2007,10(26):32-34页
    [5]刘元隆,吴建刚,吴小琴,舒红英,陈德.CeO2/SnO2纳米材料的制备与气敏性能研究.《化学研究与应用》.2008,1(20):26-29页
    [6]周秉明,申利春.纳米SnO2/ZnO复合氧化物对甲醛的光催化性能研究.《贵州工业大学学报(自然科学版)》.2008,3(37):1-4页
    [7]颜秀茹,李晓红,霍明亮,郭伟巍,巩永进.纳米SnO2@Ti02的制备及其光催化性能.《物理化学学报》.2001,17(1):23-28页
    [8]郭俊平.锂离子电池负极材料纳米SnO2制备及电化学性能研究.《贵州化工》.2008,3(33):4-6页
    [9]何则强,熊利芝,刘文萍,吴显明,陈上,黄可龙.新型纳米SnO2-CuO复合氧化物负极材料的制备与电化学性能.《稀有金属材料与工程》.2007,3(36):455页
    [10]张志勇,王雪文.MOPECVD法制备超微颗粒SnO2薄膜.西北大学学报.2000,30(3):185-188页
    [11]Baumann T F, Kucheyev S O, Gash A E, Satcher J H. Facile Synthesis of a Crystalline, High Surface Area SnO2 Aerogel. Adv. Mater.2005,17:1546 P
    [12]Lou X W, Yuan C L, Archer L A. Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nano-architectured Walls:Cavity Size Tuning and Functionalization. Small.2007,3:261-265 P
    [13]Yang H G, Zeng H C, Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites. Angew. Chem. Int. Ed. 2004,43-.5930-5933P
    [14]苗鸿雁,丁常胜.湿化学法制备纳米SnO2粉体.西北轻工业学院学报.2002,20(5):83-85页
    [15]张黎,陈尔凡.一维ZnO纳米材料的制备技术与应用.当代化工.2007.36(4):411-412页
    [16]Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, and Morkoc H. A comprehensive review of ZnO materials and devices. J. Appl. Phys.2005 (98):041301 P
    [17]Gamer A O, Leibold E, Ravenzwaay B V. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicology in Vitro. 2006,20:301-307 P
    [18]Villasenor J, Reyes P, Pecchi G. Photodegradation of PentaehloroPhenol on ZnO. Chem.Technol.Biotechnol.1998,72:105-110 P
    [19]Lin H F, Liao S C, Hung S W. The do thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Photochem.Photobi.A.2005,174: 82-87 P
    [20]Driessen M D, Miller T M, Grassian V H. Photocatalytic oxidation of trichloroethylene on zinc oxide:characterization of surface-bound and gas-Phase products and intermediates with FI-IR spectroscopy. Mol. Catal. A. 1998,131:149-156 P
    [21]Jime-Gonzalez A, Suarez-Parra R. Effect of heat treatment on the properties of ZnO thin films prepared by successive ion layer adsorption and reation (SILAR). J Crys Growth.1996,167:649-655 P
    [22]He Y J.A novel emulsion route to sub-micrometer polyaniline/nano-Zno composite fibers. Appl Surf Sci.2005,249:1-6 P
    [23]Rao B B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater.Chem.Phys.2000,64:62-65 P
    [24]Bott B, Jones T A, Mann B. The detection and measurement of CO using ZnO single crystals. Sens.Actoators.1984,5:65-73 P
    [25]sberveglieri G, Nelli P, Groppelli S. Oxygen gas sensing characteristics at Ambient pressure of undoped and lithium-doped ZnO-sputtered thin films. Mater.Sci.Eng.B.1990,7:63-68 P
    [26]Nanto H, Sokooshi H, Kawai T. Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods. Sens. Actuators B.1993,14: 715-717 P
    [27]Nanto H, Minami T, Takata S. Zinc-oxide thin-film ammonia gas with High-sensitivity and excellent selectivity. J.APPl.Phys.1986,60:482-484 P
    [28]Xu Q A, Zhang J W, Ju K R, Yang X D, Hou X. ZnO thin film Photoconductive ultraviolet detector with fast photoresponse. J. Crystal Growth.2006,289:44-47 P
    [29]Cao H, Zhao Y C, Ho S T, Seelig E W, Wang Q H, Chang R P H. Random Laser Action in Semiconductor Powder. Phys Rev Lett.1999,82:2278-2281 P
    [30]Wan Q, Lin C L, Yu X B, Wang T H. Room-Temperature hydrogen storage characteristics of ZnO nanowires. Appl Phys Lett.2004,84:124-126 P
    [31]Dai Y, Zhang Y, Bai Y Q and Wang Z L. Bicrystalline zinc oxide nanowires. Chem.Phys.Lett.2003,375:96-101 P
    [32]Zhang Y, Ji H B a, Luo X H, Chen X H, Yu D P and Wang R M. Mierostructure, and gowth mechanism of dendrite ZnO nanowires. J.Phys.Chem.B.2003,107:8289-8293 P
    [33]Gao P X, Wang Z L. Mesoporous Polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J.Am.Chem.Soc.2003,125: 11299-11305 P
    [34]Dai Z R, Pan Z W, Wang Z L. Novel nanstructures of functional oxides synthesized by thermal evaporation. Adv.Funct.Mater.2003,13:9-24 P
    [35]Singhal M, Chhabra V, Kang R, et al. Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion. Materials Research Bulletin.1997,32(2):239-247 P
    [36]李栋梁,董峰亮,邹炳锁.直接沉淀法制备纳米ZnO.化工新型材料.2002,30(6):47-49页
    [37]李凤生,杨毅.纳米微米复合技术及应用.国防工业出版社.2002,1:96-97页
    [38]Wang X D, Summers C J, Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods fo nano-optoelectronics and nanosensor arrays. Nano Lett.2004,4:423-426 P
    [39]徐国财,张立德.纳米复合材料.化学工业出版社.2002,1:3-5页
    [40]潘钟毅,黄世震.ZnO基氯气传感元件的制备及其气敏性能.功能材料与器件学报.2008,14:43-46页
    [41]冬连红,丁克强,曹萌.二氧化钛/碳纳米管复合纳米材料的制备和表征.河北师范大学学报.2008.32(3):367-369页
    [42]曹佳伟,黄运华,张跃等.四针状纳米氧化锌电磁波吸收特性.物理学报.2008,57(6):3641-3645页
    [43]Cao Y W, Banin U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores. J. Am. Chem. Soc.2000,122:9692 P
    [44]Sungjee Kim, Brent Fisher, Hans-Jurgen Eisler, and Moungi Bawendi. Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc.2003,125:11466-11467 P
    [45]Steckel J S, Zimmer J P, Sullivan S L, et al. Blue Luminescence from (CdS)ZnS Core-Shell Nanocrystals. Angew. Chem. Int. Ed.2004,43: 2154-2158 P
    [46]Andrei Piryatinski, Sergei A. Ivanov, Sergei Tretiak, and Victor I. Klimov. Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type Ⅱ Core/Shell Semiconductor Nanocrystals. Nano. Lett.2007,7:108-115 P
    [47]邓勇辉,汪长春,杨武利等.磁性聚合物微球研究进展.高分子通报2006,5:27-36页
    [48]端木云,张宇,马明Fe/Au核壳复合纳米粒子的制备及表征.东南大学学报2004,34(3):340-343页
    [49]段箐华,王柯敏,谭蔚新型有机荧光染料嵌合的核壳荧光纳米材料的研制.高等化学学报2003,24(2):255-259页
    [50]黄俐研,杜江,刘正平壳层可控导电聚吡咯/聚苯乙烯复合微球及聚吡咯中空微胶囊的制备.高等学校化学学报.2005,26(6):1186-1188页
    [51]Hai Feng Zhang, Chong Min Wang, and Lai Sheng Wang. Helical Crystalline SiC/SiO2 Core-Shell Nanowires Nano Lett.2002,2:941-944 P
    [52]Hu J Q, Bando Y, Liu Z W, et al. Epitaxial Heterostructures:Side-to-Side Si-ZnS, Si-ZnSe Biaxial Nanowires, and Sandwichlike ZnS-Si-ZnS Triaxial Nanowires. J. Am. Chem. Soc.2003,125:11306-11313 P
    [53]Kong X Y, Ding Y, Wang Z L, Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes. J. Phys. Chem.. B.2004,108:570-574 P
    [54]Park P T, Yong K. Controlled growth of core-shell Si-SiOx and amorphous SiO2 nanowires directly from NiO/Si. Nanotechnology 2004,15:365-370 P
    [55]Bae S Y, Seo H W, Choi H C. Heterostructures of ZnO Nanorods with Various One-Dimensional Nanostructures. J. Phys. Chem. B.2004,108:12318 P
    [56]Daihua Zhang, Zuqin Liu, Song Han, Chao Li, et al. Magnetite(Fe3O4) Core-Shell Nanowires:Synthesis and Magnetoresistance. Nano Lett.2004,4: 2151-2155 P
    [57]Song Han, Chao Li, Zuqin Liu, Bo Lei, et al. Transition Metal Oxide Core-Shell Nanowires:Generic Synthesis and Transport Studies. Nano. Lett. 2004,4:1241-1246 P
    [58]Liu Z Q, Zhang D H, Han S, et al. Single crystalline magnetite nanotubes. J. Am. Chem. Soc.2005,127:6-7 P
    [59]Liu B, Lee J Y. Ordered Alignment of CdS Nanocrystals on MWCNTs without Surface Modification. J. Phys. Chem. B.2005,109:23783-23786 P
    [60]Mohan P, Motohisa J, Fukui T. Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett.2006,88:133105 P
    [61]Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Appl. Phys. Lett.2004,85:1407-1409 P
    [62]Banerjee D, Jo S H, Ren Z F. Enhanced Field Emission of ZnO Nanowires Adv. Mater.2004,16:2028-2032 P
    [63]Huang Y, Duan X, Liber C M. Nanowires for Integrated Multicolor Nanophotonics Small. Small.2005,1:142-147 P
    [64]Fang Qian, Silvija Gradeak, Yat Li, et al Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Lett.2005,5:2287-2291 P
    [65]Hayden O, Greytak A B, Bell D C. Core-Shell Nanowire Light-Emitting Diodes. Adv. Mater.2005,17:701-704 P
    [66]Li Zhang, Ryan Tu, and Hongjie Dai. Parallel Core-Shell Metal-Dielectric-Semiconductor Germanium Nanowires for High-Current Surround-Gate Field-Effect Transistors. Nano Lett 2006,6:2785-2789 P
    [67]Chueh Y L, Hsieh C H, Chang M T, et al. RuO2 nanowires and RuO2/TiO2 core/shell nanowires:From synthesis to mechanical, optical, electrical, and photoconductive properties. Adv. Mater.2007,19:143 P
    [68]Gao T, Wang T H. Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures. Chem. Commun.2004,22: 2558-2559 P
    [69]Sun Y G, Tao Z L, Chen J, et al. Ag Nanowires Coated with Ag/Pd Alloy Sheaths and Their Use as Substrates for Reversible Absorption and Desorption of HydrogenJ. Am. Chem. Soc.2004,126:5940-5941 P
    [70]Che R C, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater.2004 16:401-405 P
    [71]Cao J, Sun J-Z, Hong J, et al.Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater.2004 16:84-87 P
    [72]Hung-Min Lin, Yong-Lin Chen, Jian Yang, Yao-Chung Liu, et al. Synthesis and Characterization of Core-Shell GaP@GaN and GaN@GaP Nanowires. Nano Lett.2003,3:537 P
    [73]Sun Z Y, Yuan H Q, Liu Z M, et al. A highly efficient chemical sensor material for H2S:a-Fe2O3 nanotubes fab-ricated using carbon nano tube templates. Adv. Mater.2005,17:2993-2997 P
    [74]Kuang Q, Jiang Z Y, Xie Z X, et al. Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:A Case of ZnO/SnO2. J. Am. Chem. Soc.2005,127:11777-11784 P
    [75]Zhang D F, Sun L D, Jia C J, et al. Hierarchical Assembly of SnO2 Nanorod Arrays on a-Fe2O3 Nanotubes:A Case of Interfacial Lattice Compatibility. J. Am. Chem. Soc.2005,127:13492-13493 P
    [76]黄惠中.纳米材料分析.化学工业出版社.2003,3:239-241,277-282页
    [77]王中林.Characterization of Nanophase Materiale.曹茂盛,李金刚.化学工业出版社.2005,6:10-11,31-32页
    [78]Bevlacqua G, Martinell L, Vogel E E. Jahn-Teller effect and the luminescence spectra of V2+ in ZnS and ZnSe. PhysRevB.2002,66:155338 P
    [79]FAZZO M, CALDAS J, ZUNGER A. Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. Phys Rev B.1984,30: 3430-3435 P
    [80]Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Svensson B G.. Electronic structure and optical properties of ZnX (X=O, S, Se, Te):a density functional study. Phys Rev B.2007,75:155104 P
    [81]黄风华.长方体形CdS微粒的合成及光谱性质.光谱学与光谱分析.2008,28(1):103-105页
    [82]谢万兴,王德平,吴立功等.CdS/CdSe核壳结构半导体纳米晶结构及光谱特性.硅酸盐学报.2009,37(2):219-221页
    [83]张立德,牟季美.纳米材料和纳米结构.第一版.科学出版社.2001:79-90页
    [84]施利毅等.纳米材料.第一版.华东理工大学出版社.2007:248页
    [85]Kolmakov A, Zhang Y X, Cheng G S, et al. Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater.2003,15:997-1000 P
    [86]Kind L H, Messer B, Kim F, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed.2002,41: 2405-2408 P
    [87]Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. App Phys Lett.2002,81: 1869-1871 P
    [88]Fields L L, Zheng J P, et al. Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl Phys Lett.2006,88: 263102-263104 P
    [89]Wang Y L, Jiang X C, Xia Y N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc.2005,125:16176-16177 P
    [90]Chen Y J, Nie L, Xue X Y, Wang Y G,T H Wang. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Applied Physics Letters. 2006,88:083105 P
    [91]Chen Y J, Xue X Y, Wang Y G., and Wang T H. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Applied Physics Letters. 2005,87:2333503 P
    [92]Paraguay D F, Yoshida M M, Morales J, et al. Influence of Al, In, Cu, Fe and Sri dopants on the response of Thin film ZnO gas sensor to ethanol vapour. Thin Solid Films.2000,373:137-140 P
    [93]Rao B B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Materials Chemistry and Physics.2000,64:62-65 P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700