酞菁铜和苝酰亚胺的溶解及纳米薄膜的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过测定酞菁铜(CuPc)和花酰亚胺(PTCDI)在不同的有机溶剂中的可见光吸收光谱,研究了不同溶剂以及加入不同量的三氟乙酸(TFAA)对酞菁铜和花酰亚胺溶解性的影响。研究发现质子酸三氟乙酸对于酞菁铜以及花酰亚胺的溶解均具有增溶作用,主要机理是质子酸与这两种材料发生质子化反应,从而提高了它们在有机溶剂中的溶解性,这种溶解的实质是化学反应过程。不同有机溶剂对酞菁铜以及花酰亚胺的溶解性能差异较大,酞菁铜在硝基甲烷以及氯仿中溶解情况良好,而花酰亚胺则更易溶于氯仿溶液中。
     以溶解性研究为基础,探讨了不同条件下电沉积法制备酞菁铜薄膜形貌的影响。以硝基甲烷为溶剂时,薄膜为花状结构,基本组成是一维纳米线,而以氯仿为溶剂时,薄膜是由直径约为100nm,长度为500nm的梭状晶体构成。通过紫外吸收光谱图表征,证明两种溶剂电化学沉积所得薄膜的组成相同,都为α-CuPc。通过扫描电镜(SEM)表征,发现改变电沉积时采用的电压,电沉积时间,溶液浓度可以控制纳米酞菁铜薄膜的形貌和尺寸。发现TFAA及酞菁铜的量对其薄膜的形貌影响较大,而沉积时间和沉积电压则影响较微弱。
     通过扫描电镜(SEM)表征,发现沉积电压对于花酰亚胺薄膜晶体生长具有导向作用,薄膜基本组成是直径约为100nm,且与基底垂直的棱柱状纳米晶体。改变电沉积时采用的电压,电沉积时间,溶液浓度能够得到晶体分布均匀,排列整齐致密的薄膜层。花酰亚胺与酞菁铜共沉积所得复合膜,既存在酞菁铜薄膜的形貌特征,也存在花酰亚胺薄膜的形貌特征。
In this article, by testing the UV-vis absorption spectra of copper pthalocyanine (CuPc) and perylene diimide (PTCDI), studied the solubility of CuPc and PTCDI in different solvents, and the effect of various amounts of trifluoroacetic acid (TFAA) to them. UV-vis specrum shows that the trifluoroacetic acid is good to the dissolving of CuPc and PTCDI, because TFAA and these two materials make to be protonic, which can increase the solubility of them. CuPc and PTCDI have different solubilities in different organic solvents. CuPc is dissolved well in nitromethane (NME) and chloroform (CHCl3), while PTCDI is more easily dissolved in CHCl3.
     Basied on the reaserch of solubility, the CuPc and PTCDI films are fabricated with different electro-chemical deposition conditions. When the solvent is NME, the CuPc films are flower shape structure, the basic compose is nanowires. If the solvent is chloroform, the CuPc films are formed by spindle crystals, the diameter is 100nm, and the length is 500nm. The UV-vis spectrums of the two kinds of films show that they have the same crystal form(α-CuPc). Using the scanning electron microscopy (SEM) observes the surface morphology of CuPc films. The result showed that:The amount of TFAA and CuPc has great influence to the surface morphology, while the deposition time and voltage impacts are feeble.
     The SEM pictures of PTCDI show that:The deposit voltage can effect the crystal growth direction, the basic compose of films is the prismatic nanocrystal, the crystal is perpendicular to the basement and its diameter is 100nm. Changing the deposited voltage, time and solution concentration can get PTCDI films with good surface morphology, the crystals in these films are homogeneously distributed, aligned and compact. The composit films of CuPc and PTCDI, not only have the morphological characters of CuPc, but also have the morphological characters of PTCDI.
引文
[1]Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: The case for thin-film solar cells[J]. Science,1999,285:692-698
    [2]席珍强,陈君,杨德仁.太阳能电池发展现状及展望[J].新能源,2000,22(12):100-102
    [3]钟迪生.硅薄膜太阳能电池研究的进展[J].应用光学,2001,22(3):34-45
    [4]King R.R, Law D.C, Edmondson K.M.40% efficient metamorphic GalnP/GaInAs/Ge multijunction solar cells[J]. Applied Physics Letters,2007, 90:1835161-4
    [5]邹永刚,李林,刘国军,万春明.GaAs太阳能电池的研究进展[J].长春理工大学学报(自然科学版),2010,33:44-50
    [6]Shay J.L, Wernick J.H. Termary chalcopyrite Semiconductors:Growth, Electronic Propertties and Application[M]. Pergamon Press; New York,1995
    [7]Andrew M.G, John R.T, et.al. High-efficiency CuInxGal-xSe2 solar cells made from (Inx,Gal-x)2Se3 precursor films[J]. Applied physics letters,1994,65: 198-200
    [8]Hoppe H, Sariciftci N. S. Organic solar cells:An overview[J]. Journal of Materials Research,2004,19:1924-1945
    [9]Koetse M.M, Sweelssen J.S, Hoekerd K.T,et al. Efficient polymer:polymer bulk heterojunction solar cells[J]. Applied physics letters,2006,88:083504
    [10]杨术明,李富友,黄春辉.染料敏化纳米晶太阳能电池[J].化学通报,2002,5:292-302
    [11]Desilvestro J, Gratzel M, Kavan L. Highly efficient sensitization of titanium dioxide[J]. Journal of the American Chemical Society,1985,107:2988-2990
    [12]陈振兴.高分子电池材料[M].北京:化学工业出版社,2006
    [13]Djara V, Bernede J.C. Effect of the interface morphology on the fill factor of plastic solar cells[J]. Thin solid films,2005,493:273-277
    [14]Ltaief A, Davenas J, Bouazizi A. Film morphology effects on the electrical and optical properties of bulk heterojunction organic solar cells based on MEH-PPV/C60 composite[J]. Materials Science and Engineering C,2005,25: 67-75
    [15]孔继川,缪娟.薄膜太阳能电池研究进展[J].化工时刊,2008,22:60-68
    [16]Haddon R.C, Perel A.S, Fleming R.M, et al. C60 thin film transistors. Applied physics letters,1995,67:121
    [17]Yang C, Heeger A.J, Wudl F, et al. Functionalized Methanofullerenes Used as n-Type Materials in Bulk-Heterojunction Polymer Solar Cells and in Field-Effect Transistors [J]. Journal of the American Chemical Society,2008,130:6444
    [18]Brown A.R, De Leeuw D.M, Lous E.J, Havinga E.E. Organic n-type field-effect transistor[J]. Synthetic Meterials,1994,66:257
    [19]Takahashi Y, Hasegawa T, Abe Y. Tuning of electron injections for n-type organic transistor based on charge-transfer compounds[J]. Applied Physics Letters,2005,86:63504
    [20]Chesterfield R.J, Newman C.R. Frisbie C.D, et al.High Electron Mobility and Ambipolar Transport in Organic Thin-Film Transistors Based on a n-Stacking Quinoidal Terthiophene[J]. Advance Materials,2003,15:1278
    [21]Horowitz G, Kouki F, Garnier F, et al. Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative [J]. Advance Materials,1996,8: 242
    [22]Malenfant P.R.L, Dimitrakopoulos C.D, Andreoni W, et al. N-type organic thin-film transistor with high field-effect mobility based on a N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative [J]. Applied Physics Letters,2002,80:2517
    [23]Jones B. A, Ahrens M.J, Wasielewski M.R, et al. High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4,9,10-bis(dicarboximides)[J]. Angew.Chem.Int.Ed.,2004, 43:6363
    [24]Weitz R.T, Klauk H, et al. Organic n-Channel Transistors Based on Core-Cyanated Perylene Carboxylic Diimide Derivatives[J]. Journal of the American Chemical Society,2008,130:4637
    [25]Li Y, Tan L, Hu W.P, et al. Air-Stable n-Type Semiconductor: Core-Perfluoroalkylated Perylene Bisimides[J]. Organic Letters,2008,10,529
    [26]霍利军,韩敏芳,李永舫.受体型有机光伏材料花二酰亚胺[J].化学进展,2007,19(11)1761-1771
    [27]Liu J B, Zhao F Q, Zhang F S, Tang Y W, Song X Q, Chau F T. Effects of protonation and deprotonation on phthalocyanine's spectra[J]. Acta Physico-Chimica Sinica,1996,12(3):202-207
    [28]Jenekhe S A. Complexation-mediated solubilization of polymers[P]. US:4 963 616,1990-10-16
    [29]罗倩,薛敏钊,张青,盛巧蓉,刘燕刚.铜酞菁同质多晶现象的研究及其超细粒子的制备[J].感光科学与光化学,2007,25(4):275-28
    [30]Hsieh B R, Melnyk A R, Talyor.J.H, et al. Processes for pigment dispersion and articles therefrom[P]. US:5449582,1995-09-12
    [31]Ye J, Chen H Z, Wang M. Preparation and characterization of chloroindium phthalocyanine nanoparticles from complexation-mediated solubilization[J]. Journal of Materials science.2003,38:4021-4025
    [32]Yang Z L, Chen H Z, Cao L, et al. Preparation and photoconductivity study of azo nanoparticles via liquid phase surfactant-assisted reprecipitation[J]. Materials Letters 2004,39:3587-3591
    [33]郑效盼,何志群,张春秀,徐征,王永生.固态和液态溶液中酞菁铜及其衍生物的光谱变化[J].光谱学与光谱分析,2006,26(6):1109-1112
    [34]Srvastava K P, Kumar A. UV spectral studies in protonation of Cu-phthalocyanine and phthalocyanine in sulphuric acid-solvent[J]. Asian J Chem,2001,13(3):1539-1543
    [35]Takeshi K, Masaki M, Hiroyuki T. The fabrication method of unsubstituted planar phthalocyanine thin films by a spin-coating technique[J]. Thin Solid Films,2009,518:688-691
    [36]Su J, Xue M, Ma N, Sheng Q, Zhang Q, Liu Y. Dissolution of copper phthalocyanine and fabrication of its nano-structure film[J]. Science in China, Series B:Chemistry,2009,52(6):911-915
    [37]Langhals H, Rademacher A, Markle S. Soluble perylene fluorescent dyes with high photostablity[J]. Chemische Berichte,1982,115:2927
    [38]彭必先,林童.花四酸二酰亚胺和化学及其功能性应用的进展[J].化学通报,1998,4(10),1013-1025
    [39]马宁,朱园园,钱凌峰,薛敏钊,盛巧蓉,张青,刘燕刚.溶液电沉积法制备花酰亚胺类化合物薄膜[J].影像科学与光化学,2010,28:247-254
    [40]何智兵,韩高荣,吴卫东,唐永建.真空热蒸发酞菁铜薄膜的结构及光学、电学性能研究[J].真空科学与技术学报,2005,4:278-282
    [41]唐福龙,顾冬红,陈启婴,唐晓东,朱从善,干福熹.旋涂法制备可溶性酞菁薄膜的光存储性能研究[J].中国激光,1995,22(11):853-856
    [42]P.Zhou, D.Xue, H.Luo, et.al. Nano Letters,2002,2(8):845
    [43]Zhu Y, Qian L, Xue M, Sheng Q, Zhang Q, Liu Y. Morphological control of copper phthalocyanine films by protonation-electrophoretic deposition[J]. Applied surface science,2010
    [44]孙景志,杨新国,汪茫.电化学沉积卟啉-花酰亚胺分子阵列薄膜[J].化学通报.2005,50(14):1450-1453
    [45]Che Y, Datar A, Yang X M, Naddo T, Zhao J C, Zang L. Enhancing one-dimensional charge transport through intermoleculare π-electron delocalization:Conductivity improvement for organic nanobelts[J]. Journal of the American Chemical Society,2007,129:6354-6355
    [46]Teruhisa K, Mutsumi K, Kenji H.H.S. Preparation of Electro-codeposited Film Consisting of Phthalocyanine and Perylene Derivatives[J]. Journal of Porphyrins and Phthalocyanines,1999,3:310-315
    [47]INIGO A.R, XAVIER F.P, GOLDSMITH G.J. Copper phthalocyanine as an efficient dopant in development of solar cells[J]. Material research bulleti,1997, 32(5):539-546
    [48]Hayashi S, Kozaru K, Yamamo K. Enhancement of photoelectric conversion efficiency by surface plasmon excitation:A test with an organic solar cell[J]. Solid State Communication,1991,79(9):763-767
    [49]Tang C.W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986,48(2):183-185
    [50]封伟,韦玮,曹猛,等.CuPc-G-Pan/Perylenes异质结太阳电池性能研究[J].太阳能学报,2000,21(4):384-390
    [51]Heayeon L, Tomoji K. Photoelectric properties of copper-pthalocyanine/PbTe multilayer[J]. Journal of Applied Physics,80(6):3801-3803
    [52]李亦兵,王丽颖,李文范等.酞菁铜衍生物LB膜/n-Si光伏电池的研究[J].太阳能学报,1992,13(3): 249-254
    [53]何智兵,黄勇刚,张溪文,赵高凌等.酞菁铜的性能和应用研究进展[J].材料导报,2000,14(10):51-55
    [54]吕安德,李亚君,庞小敏,蒋大鹏.新型酞菁铜L-B薄膜及其气敏特性[J].功能材料,1991,22(1):41-46
    [55]Julian I, Oliver B, Moritz S. Highly ordered thin films of perylene-3,4,9,10-tetracarboxylic acid dianhydride(PTCDA)on Ag(100). Surface Science,2008:2061-2068
    [56]Alejandro L.B, Stefan C.B.M, Colin R. Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters. Nano Letters,2007
    [57]Kaushik B, Aniket D, Randy O, et al. Nanobelt Self-Assembly from an Organic n-Type Semiconductor:Propoxyethyl PTCDI. Journal of the American Chemical Society,2005,127:10496-10497
    [58]Beigmohamadi M, Niyamakom P, Farahzadi A. Evolution of dislocations in perylene films with thickness and deposition rate. Physica status solidi (RRL)2, 2008,1:1-3
    [59]Zhuang P, Chen P, Zhao Y. Research on copper phthalocyanine pigments(Ⅱ) the rate and mechanism of crystal phase change of copper phthalocyanine in organic solvents[J]. Journal of Chemical Industry and Engineering(China),1986,445-454
    [60]Zhongping Ou, Hongxia S, Weihua Z, Zulin Da, Karl M.K. Solvent and acidity effects on the UV-visible spectra and protonation-deprotonation of free-base octaethylcorrole[J]. Journal of Porphyrins and Phthalocyanines,2008,12:1-10
    [61]Tunhoo B, Nukeaw J. Optical properties and structure of copper(Ⅱ)phthalocyanine(CuPc) Organic thin film grown by electron-beam evaporation technique[R].2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systerms,2007:506-509
    [62]Li B, Bao C, Shi B X, Tomonori K, Mitsuo H. Spectroscopic studies on the aandβ forms of copper phthalocyanine nanoparticles[J]. Journal of Infrared and Millimeter Waves,2002,21(4):257-260
    [63]Takeshi K, Masaki M, Hiroyuki T. The fabrication method of unsubstituted planar phthalocyanine thin films by a spin-coating technique[J]. Thin Solid Films,2009,518:688-691
    [64]白茹.有机给体-受体异质结纳米有序复合光电材料[D].浙江:浙江大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700