氧化锌基电泵浦激光器件的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO材料由于具有宽带隙(3.37 eV),大的激子束缚能(60 meV)等优点,在紫外发光二极管、半导体激光器等方面具有广阔的应用前景。针对目前国际上ZnO电泵浦激光研究方面的不足以及MgZnO材料深紫外激光的研究空白。本论文采用原子层沉积技术、分子束外延技术、磁控溅射等方法制备了ZnO基紫外发光器件。实现了低阈值的ZnO随机激光输出及ZnO异质pn结电泵浦受激发射。此外,对深紫外波段的MgZnO电注入受激发射进行了初步的研究探索。取得的主要结果如下:
     (1)针对目前随机增益介质p型掺杂难以实现的问题,采用介电层碰撞离化产生的空穴为随机增益介质提供空穴的思想,构建了Au/MgO/ZnO结构器件。室温条件下在该结构中获得了阈值电流为43 mA的ZnO随机激光输出。为了降低随机激光的阈值电流,通过引入绝缘ZnO层作为空穴产生层,降低了电子-空穴对的离化阈值,成功的将激光发射阈值电流降低到了6.5 mA。
     (2)针对目前MgZnO材料p型和n型有效掺杂难以实现的问题,我们采用MgO层碰撞离化产生的空穴为MgZnO发光层提供空穴载流子,同时利用n型ZnO为MgZnO发光层提供电子的思想,实现了MgZnO材料波长在330 nm附近的电泵浦激光发射。利用组分渐变MgxZn1-xO梯度势垒层来提高载流子注入的思路,在立方相MgZnO中首次实现了波长在276 nm的深紫外电注入发光。
     (3)采用介电层调节载流子输运的思想,克服了直接匹配型ZnO异质pn结中存在的ZnO发光较弱问题,达到电子和空穴在ZnO发光层同时富集的目的。在p-GaN/MgO/n-ZnO结构中实现了阈值电流为0.8 mA的受激发射。进而尝试将ZnO替代为带隙更大的MgZnO材料,获得了波长在374 nm附近的激子型电致发光。
ZnO possesses unique figures of merits for application in ultraviolet (UV) light emitting diode, semiconductor laser and photodetectors, such as large band gap (3.3 eV), large exciton binding energy (60 meV). For the problem of the electronically pump ZnO lasing and the absence of lasing from MgZnO currently. In this thesis, we fabricated ZnO-based UV light emitting devices by atom layer deposition, molecular beam epitaxy and radio-frequence magnetic sputtering. We realized low-threshold current ZnO random laser operation and ZnO pn heterojunction electrically pump lasing. In addition, we try to research the electrically pump the deep ultraviolet lasing based on MgZnO preliminarily. The main results were obtained as follows:
     (1) For the problem of the p type doping of the random gain materials currently, we make use of the method of dielectric impact the hole for the random gain materials. Based on this method we form the Au/MgO/ZnO MOS structure. At room temperature, the random lasing from ZnO with the threshold current 43 mA was obtained. For decrease the threshold current in laser devices. We take use the insulator ZnO, this insulator ZnO layer can decrease the generation threshold of holes carriers. Cosequentlly, the threshold current of the device was decreaseed to 6.5 mA successfully.
     (2) For the problem of that the efficiency p type and n type doping of MgZnO material is realized difficultly. We make use of the idea that the MgO impact the hole for the MgZnO active layer and use the n-ZnO supplies the electrons for the MgZnO active lasyer. The electronically pumped lasing with the emission wavelength of 330 nm from MgZnO was demonstrated. By use the idea that the grade component of MgxZn1-xO layer for increase the electron injection, the deep UV LED with the emission wavelength of 276 nm was demonstrated in the cubic-MgZnO firstly.
     (3) By use of the idea of dielectronic layer modulation carriers transport process for overcome the problem of low emission intensity from ZnO in the ZnO-based heterojuction pn devices and realize the purpose of electrons and holes accumulate in ZnO active layer. A lasing with the low threshold current of 0.8 mA was realized in the p-GaN/MgO/n-ZnO structure. In addition, instead the ZnO with the MgZnO material, the exciton type ultraviolet light emitting devices with the wavelength of 374 nm was demonstrated.
引文
[1] S. Nakamura, S. Pearton, and G. Fasol: The Blue Laser Diode (Springer-Verlag, Berlin), 2000, 2nd ed.
    [2] Tang Z. K., Wong G. K. L., Yu P. M. et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 72(1998)3270-3272
    [3]杜宝勋,半导体激光器原理[M],兵器工业出版社,2004年.
    [4] (日)栖原敏明著,周南生译,半导体激光器基础[M],科学出版社,2002年.
    [5]亨利克雷歇尔,巴特勒著,黄史坚译,半导体激光器和异质结发光二极管[M],国防工业出版社,1983年.
    [6] Agrawal, G. P. and Dutta, N. K., Semiconductor Lasers, 2nd edn. New York: Van Nostrand Reinhold, 1993.
    [7] S. L. Chuang, Physics of Optoelectronic Devices [M], Wiley Interscience, 1995.
    [8] (美)Larry A. Coldren, Scott W. Corzine著,史寒星译,二极管激光器与集成光路(Diode Lasers and Photonic Integrated circuits)[M],北京邮电大学出版社,2006年.
    [9] John Carroll, James Whiteaway. & Dick Plumb, Distributed Feedback Semiconductor Lasers [M]. SPIE IEEE 1998.
    [10] S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers [M]. Wiley Interscience, 2003.
    [11] Vahala, K.J. Optical microcavities [J]. Nature, 2003, 424, 839-846.
    [12] Ambartsumyan, R. V., Basov, N. G., Kryukov, et al. in Progress in Quantum Electronics [J], 1970, 1, 107-120.
    [13] Lawaridy N M, Salschandran R M, Lgomes A S, et al. Laser action in strongly scattering media [J]. Nature, 1994, 368, 436-439.
    [14] Wiersma D. S., Lagendijk A. Light diffusion with gain and random lasers [J], Phys. Rev. E ,1996 ,54, 4256-4265.
    [15] Cao H, Zhao Y. G., Ho S. T., et al. Random laser action in semiconductor powder [J]. Phys. Rev. Lett., 1999, 82, 2278-2281.
    [16] Bahoura M., Morris K. J., Noginov M. A. Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size [J]. Opt. Commun. 2002, 201, 405-411.
    [17] D V Martyshkin, V V Fedorov, C Kim, et al. Mid-IR random lasing of Cr-doped ZnS nanocrystals [J]. J. Opt. 2010, 12, 024005.
    [18] Polson R C, Vardeny Z V. Organic random lasers in the weak-scattering regime [J]. Phys. Rev. B., 2005, 71(4): 045205.
    [19] Klein S., Cregut O., Gindre D., et al. Random laser action in organic film during the photopolymerization process [J]. Opt. Express 2005, 3, 5387-5392.
    [20] A. Tulek, R. C. Polson, Z. V. Vardeny, Naturally occurring resonators in random lasing ofπ-conjugated polymer films [J], Nature Physics (2010) 6, 303-310.
    [21] Guerin W, Mercadier N, Brivio D, et al. Threshold of a random laser based on Raman gain in cold atoms [J]. Opt. Express, 2009, 17(14): 11236-11245.
    [22] Markushev J, Ryzhkov V M, M V, et al. Characteristic properties of ZnO random laser pumped by nanosecond pulses [J]. Appl. Phys. B 2006, 84: 333-337.
    [23] Sun T., Qiu Z. R., Su H. M., et al. Dynamics of random laser and coherent backscattering of light from ZnO amplifying random medium [J]. Appl Phys Lett, 2007, 91(24): 241110.
    [24] Noginov M A, Letokhov V S, Solid-State Random Lasers, (New York: Springer) 2005.
    [25] Sakai M, Inose Y, Ema K, et al. Random laser action in GaN nanocolumns [J]. Appl Phys Lett, 2010, 97(15): 151109.
    [26] Wiersma D S. The physics and applications of random lasers [J]. Nature Phys, 2008, 4: 359-367.
    [27] Yang H Y, Yu S F, Lau S P, et al. Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires [J]. Appl. Phys. Lett., 2009, 94(24): 241121.
    [28] Yang H Y, Yu S F, Tsang S H, et al. High temperature excitonic lasing characteristics of randomly assembled SnO2 nanowires [J]. Appl. Phys. Lett., 2009, 95(13): 131106.
    [29] Chen R, Utama M I B, Peng Zeping, et al. Excitonic Properties and Near-Infrared Coherent Random Lasing in Vertically Aligned CdSe Nanowires [J]. Adv. Mater., 2011, 23, 1404-1408.
    [30] Sapienza L, Thyrrestrup H, Stobbe S, et al, Cavity Quantum Electrodynamics with Anderson-Localized Modes [J]. Science, 2010, 327, 1352.
    [31] Cao H, Xu J Y, Seelig E W, et al. Micrclaser made of disordered media [J]. Appl. Phys. Lett., 2000, 76(21): 2997-2999.
    [32] Fallert J, Dietz R J B, Sartor J, et al. Co-existence of strongly and weakly localized random laser modes [J]. Nature Photonics, 2009, 3, 279-282.
    [33] Tureci H E, Ge L, Rotter S. et al. Strong interactions in multimode random lasers [J]. Science, 2008, 320, 643-646.
    [34] Zaitsev O, Deych L, Recent developments in the theory of multimode random lasers [J]. J. Opt., 2010, 12, 024001.
    [35] Cao H, Xu J Y, Ling Y, et al. Random Lasers with Coherent Feedback [J]. IEEE J. Sel. Top. Quant Electron, 2003, 9(1), 111-119.
    [36] Cao H. Review on latest developments in random lasers with coherent feedback [J]. J. Phys. A: Math. Gen., 2005, 38, 10497-10535.
    [37] Alpalkov V M, Raikh M E, Shapiro B. Random Resonators and Prelocalized Modes inDisordered Dielectric Films [J]. Phys. Rev. Lett., 2002, 89(1): 016802.
    [38] Khan M. A., Shatalov M., Maruska H. P., et al. III-Nitride UV Devices [J]. Jpn. J. Appl. Phys., 2005, 44(10): 7191–7206.
    [39] Tang Z. K., Kawasakib M., Ohtomo A., et al. Self-assembled ZnO nano-crystals and exciton lasing at room temperature [J]. J. Crystal Growth, 2006, 287(1): 169-179.
    [40] Y. Kimura, A. Ito, M. Miyachi, et al. Optical Gain and Optical Internal Loss of GaN-Based Laser Diodes Measured by Variable Stripe Length Method with Laser Processing [J]. Jpn. J. Appl. Phys., 2001, 40(10B): L1103-L1106.
    [41] M. R?we, M. Vehse, P. Michler, et al. Optical gain, gain saturation, and waveguiding in group III-nitride heterostructures [J]. physica status solidi (c), 2003,0(6):1860-1877.
    [42] K. Sebald, P. Michler, J. Gutowski, et al. Optical Gain of CdSe Quantum Dot Stacks [J]. physica status solidi (a), 2002,190(2):593-597.
    [43] Li H D, Yu S F, Lau S P, et al. High-Temperature Lasing Characteristics of ZnO Epilayers [J]. Adv. Mater., 2006, 18, 771-774.
    [44] Van Vugt L K, Ruhle S, Ravindran P, et al. Exciton Polaritons Confined in a ZnO Nanowire Cavity [J]. Phys. Rev. Lett., 2006, 97, 147401.
    [45] Faure S, Brimont C, Guillet T, et al. Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature [J]. Appl. Phys. Lett., 2009, 95(12): 121102.
    [46] Schmidt-Grund R, Rheinl?nder B, Czekalla C, et al. Exciton–polariton formation at room temperature in a planar ZnO resonator structure [J], Appl. Phys. B., 2008, 93, 331-337.
    [47] Wang Z L. Zinc oxide nanostructures: growth, properties and applications [J], J. Phys.: Condens. Matter, 2004, 16, R829-R858.
    [48] Zimmler M A., Bao J M, Capasso F, et al. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation [J]. Appl. Phys. Lett., 2008, 93(5): 051101.
    [49] Nobis T, Kaidashev E M, Rahm A, et al. Whispering Gallery Modes in Nanosized Dielectric Resonators with Hexagonal Cross Section [J]. Phys. Rev. Lett., 2004, 93(10): 103903.
    [50] Kalt H, Fallert J, Dietz R J. B., et al. Random lasing in nanocrystalline ZnO powders [J]. Phys. Status Solidi B, 2010, 247(6): 1448-1452.
    [51] S. Kalusniak, H. J. Wunsche, F. Henneberger, Random Semiconductor Lasers-Scattered versus Fabry-Perot Feedback [J]. Phys. Rev. Lett., 2011, 106(1): 013901.
    [52] Czekalla C, Sturm C, Grund R S, et al. Whispering gallery mode lasing in zinc oxide microwires [J]. Appl. Phys. Lett., 2008, 92(24): 241102.
    [53] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292, 1897-1899.
    [54] Chu S, Olmedo M, Yang Z, et al. Electrically pumped ultraviolet ZnO diode lasers on Si [J]. Appl. Phys. Lett., 2008, 93(18): 181106.
    [55] Yang Y, Sun X W, Tay B K, et al. A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation [J]. Appl. Phys. Lett., 2008, 93(25): 253107.
    [56] (o|¨)zgürü., Alivov Ya. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4): 041301.
    [57] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials, 2005, 4, 42-46.
    [58] S. J. Jiao,Z. Z. Zhang, Y. M. Lu, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88(3): 031911-031913.
    [59] Leong Eunice S P, Yu S F. UV Random Lasing Action in p-SiC(4H)/i-ZnO-SiO2 Nanocomposite/n-ZnO Al Heterojunction Diodes [J]. Adv. Mater., 2006, 18, 1685-1688.
    [60] Leong Eunice S P, Yu S F, Lau S P. Directional edge-emitting UV random laser diodes [J]. Appl. Phys. Lett., 2006, 89(22): 221109.
    [61] Ma X Y, Chen P L, Li D S, et al. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate [J]. Appl. Phys. Lett., 2007, 91(25): 251109.
    [62] Yu S F, Leong Eunice S P. High-Power Single-Mode ZnO Thin-Film Random Lasers [J]. IEEE J. Quantum Electron., 2004, 40(9): 1186-1194.
    [63] Eunice S. P. Leong, M. K. Chong, S. F. Yu, et al. Sol-Gel ZnO-SiO2 Composite Waveguide Ultraviolet Lasers [J]. IEEE Photon. Tech. Lett., 2004, 16(11): 2418-2420.
    [64] Leong Eunice S P, Yu S F, Abiyasa A P, et al. Polarization characteristics of ZnO rib waveguide random lasers [J]. Appl. Phys. Lett., 2006, 88(9): 091116.
    [65] Kumar Ashwani, Yu S F, Li X F. Random laser action in dielectric-metal-dielectric surface plasmon waveguides [J]. Appl. Phys. Lett., 2009, 95 (23): 231114.
    [66] Yang H Y, Yu S F, Liang H K, et al. High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide [J]. J. Appl. Phys., 2009, 106(4): 043102.
    [67] Liang H K, Yu S F, Yang H Y. ZnO random laser diode arrays for stable single-mode operation at high power [J]. Appl. Phys. Lett., 2010, 97(24): 241107.
    [68] Liang H K, Yu S F, Yang H Y. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes [J]. Appl. Phys. Lett., 2010, 96(10): 101116.
    [69] Turitsyn S K., Babin S A., EI-Taher A E, et al. Random distributed feedback fibre laser [J]. Nature Photonics, 2010, 4, 231-235.
    [70] (美)杜经宁.J.W迈耶,L.C费尔德曼著,黄信凡杜家方陈坤基译电子薄膜科学[M],科学出版社1997.
    [71] Chen Y, Bagnall D M, Ko H J, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization [J]. J. Appl. Phys., 1998, 84, 3912-3918.
    [72]许振嘉主编,半导体的检测与分析(第二版)[M],科学出版社,2007年.
    [73] Cao H., Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J], Appl. Phys. Lett., 1998, 73(25): 3656-3658
    [74] Cao H. Waves Random Media [J]. 2003, 13: R1-R39.
    [75] D S Wiersma, The smallest random laser [J]. Nature, 2010, 4, 231-235.
    [76] Z Q Zhang. Light amplification and localization in randomly layered media with gain [J]. Phys. Rev. B, 1995, 52(11): 7960-7964.
    [77] Zu P., Tang Z. K., Wong G. K. L., et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun. 1997, 103, 459.
    [78]施敏伍国珏著,耿莉张瑞智译,半导体器件物理(第三版)[M],西安交通大学出版社,2008年.
    [79] Hudgins J L, G S Simin, Santi E, et al. An assessment of wide bandgap semiconductors for power devices [J]. IEEE Trans. Power Electron. 2003, 18, 907-914.
    [80]虞丽生编著,半导体异质结物理(第二版)[M],科学出版社,2006年.
    [81] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode [J], Appl. Phys. Lett., 2008, 93(24): 241106.
    [82] E. Kuokstis, J. Zhang, Q. Fareed, et al. Near-band-edge photoluminescence of wurtzite-type AlN [J], Appl. Phys. Lett., 2002, 81(15): 2755-2757.
    [83] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a II–VI widegap semiconductor alloy [J]. Appl. Phys. Lett. 1998, 72, 2466-2468.
    [84] Yang W, Hullavarad S S, et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si (100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett., 2003, 82, 3424-3426.
    [85] W. I. Park, G. C. Yi, H. M. Jang, et al. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1?xMgxO (0≤x≤0.49) thin films [J]. Appl. Phys. Lett., 2001, 79, 2022.
    [86] Z. Vashaei, T. Minegishi, T. Suzuki, et al. Structural variation of cubic and hexagonal MgxZn1?xO layers grown on MgO (111)/c-sapphire [J]. J. Appl. Phys. 2005, 98, 054911.
    [87] Dong J W, Osinsky A, Hertog B, et al. Development of MgZnO-ZnO-AlGaN heterostructures for ultraviolet light emitting applications [J]. Journal of Electronic Materials, 2005, 34(4): 416-423.
    [88] S. Choopun, R.D. Vispute, W. Wang, et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1?xO alloy films [J]. Appl. Phys. Lett., 2002, 80(9): 1529.
    [89] Chen J, Shen W Z, Chen N B, The study of composition non-uniformity in ternary MgxZn1?xO thin films [J]. J. Phys.: Condens. Matter, 2003, 15, L475–L482.
    [90] W. J. Fan, J. B. Xia, P. A. Agus, et al. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells [J]. J. Appl. Phys. 2006, 99(1): 013702.
    [91] Khan M A, Shatalov M, Maruska H P, et al. Review III-Nitride UV Devices [J]. Jpn. J. Appl. Phys., 2005, 44(10): 7191-7206.
    [92] L. K. Wang, Z. G. Ju, J. Y. Zhang, et al. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett. 2009, 95(13): 131113.
    [93] I. V. Maznichenko, A. Ernst, M. Bouhassoune, et al. Structural phase transitions andfundamental band gaps of MgxZn1?xO alloys from first principles [J]. Phys. Rev. B, 2009, 80(14): 144101.
    [94] Simon J, Protasenko V, Lian C, et al. Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures [J]. Science, 2010, 327, 60-64.
    [95] Ohta H, Orita M, Hirano M, et al. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO [J]. J Appl Phys 2001, 89, 5720-5725.
    [96] Ohta H, Mizoguchi H, Hirano M, et al. Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRu2O4/n-ZnO [J]. Appl. Phys. Lett. 2003, 82, 823.
    [97] Vermenichev B M, Lisitski? O L, Kumekov M E, et al. Electrical properties of n-ZnO/p-CuO heterostructures [J]. Semiconductors, 2007, 41,288-290.
    [98] Wang J Y, Lee C Y, Chen Y T, et al. Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions [J], Appl. Phys. Lett., 2009, 95, 131117.
    [99] Alivov Ya, Van Nostrand J E, Look D C, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett. 2003, 83, 2943-2945.
    [100] Ataev B M, Alivov Ya I, Mamedov V V, et al. Fabrication and properties of an n-ZnO:Ga/p-GaN:Mg/α-Al2O3 heterojunction [J]. Semiconductors 2004, 38, 699-701.
    [101] Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2006, 88(20): 202105.
    [102] Chen C H, Chang S J, Chang S P, et al. Electroluminescence from n-ZnO nanowires p-GaN heterostructure light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95(22): 223101.
    [103] Park W Il, Yi G C, et al. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN [J]. Adv. Mater., 2004, 16(1), 87-90.
    [104] You J B, Zhang X. W, Zhang S G, et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2010, 96(20): 201102.
    [105] Nakamura S, Mukai T, Senoh M, High-Power GaN P-N Junction Blue-Light-Emitting Diodes [J]. Jpn. J. Appl. Phys. Part 2, 1991, 30, L1998.
    [106] M. Kamp, M. Mayer, A. Pelzmann, and K. J. Ebeling, Fundamentals, material properties and device performances in GaN MBE using on-surface cracking of ammonia [J]. MRS Internet J. Nitride Semicond. Res. 1997, 2, 26.
    [107] S. Nakamura, M. Senoh, S. Nagahama, et al. Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates [J]. Appl. Phys. Lett., 1998, 72(16):2014-2016.
    [108] K. Okamoto, H. Ohta, S. F. Chichibu, et al. Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes [J]. Jpn. J. Appl. Phys. Part 2 2007, 46, L187-L189.
    [109] Kayamura Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape [J]. Phys. Rev. B, 1988, 38, 9797-9805.
    [110] H. Zhu, C. X. Shan, B. H. Li,et al. Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy [J]. J. Appl. Phys., 2009, 105(10):103508.
    [111] A. L. Yang, H. P. Song, D. C. Liang, et al. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films [J]. J. Appl. Phys., 2010, 96(15): 151904.
    [112] C. H. Chia, Y. J. Lai, W. L. Hsu, et al. Biexciton emission from sol-gel ZnMgO nanopowders [J]. Appl. Phys. Lett., 2010, 96(19): 191902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700