氧化锌薄膜铜镓掺杂及其相关发光器件制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接带隙宽禁带半导体材料,室温时禁带宽度为3.37eV,激子束缚能高达60meV,这些特点使其适合制备短波长光电器件。然而,目前ZnO薄膜的研究仍存在诸多问题,未故意掺杂的ZnO的薄膜呈现n-型导电,但仍不能制备出电导率高的n-型ZnO薄膜;p-型导电的ZnO薄膜的稳定性和重复性仍不够可靠;同质结器件尤其是同质结器件的电致发光仍存在不少问题;异质结器件的研究较少,至今仍没有一种被广泛接受的载流子阻挡层。本论文针对以上难点问题,采用金属有机物化学气相沉积(MOCVD)技术在c-面蓝宝石和Si(111)衬底上制备了ZnO薄膜,研究了它们的晶体结构,表面形貌,光学和电学性质。研究的主要方面包括Ga元素掺杂,Cu元素掺杂,Cu-Ga共掺,同质结器件的制备和异质结器件的制备。
     在c-面蓝宝石衬底上制备了Ga掺杂ZnO薄膜,在其室温光致发光谱中发现了和未故意掺杂ZnO薄膜迥异的深能级发光。结合样品的电学性质和光学带隙的变化,我们推断由于Ga的掺入,ZnO薄膜中的缺陷已经发生了变化,而Ga掺杂ZnO薄膜室温光致发光谱中的深能级发光峰可能与受主补偿缺陷有关。
     研究了在Si(111)衬底上制备的Cu掺杂ZnO薄膜。在其低温光致发光谱(11.4K)中发现了具有特殊结构的绿光发光峰,对比未故意掺杂样品的低温光致发光谱,我们认为这种特殊结构的绿光发光峰是与Cu2+离子相关的。并采用类氢模型给出了合理的解释。这个工作澄清了ZnO中的绿光发光峰是否与Cu相关的争论,给出了判断的方法。
     采用Cu-Ga共掺的方法制备了p-型导电的ZnO薄膜,并通过优化生长工艺,得到的共掺薄膜的电阻为0.2499Ω·cm,迁移率为13.3cm5V-1s-1,载流子浓度为1.874×1018cm-3。并采用这一参数在ZnO单晶衬底上沉积了Cu-Ga共掺ZnO薄膜制备了ZnO基同质结器件,此器件在正向电流注入下得到了近带边室温电致发光,并成功采集到了电致发光光谱。这个工作表明Cu-Ga共掺的方法可用于制备p-型导电ZnO,为制备p-型导电ZnO提供了一个新的路径,可能会推动ZnO基同质结器件和ZnO基p-型透明导电薄膜的研究。
     分别从ZnO侧和GaN侧测试了n-ZnO/SiO2/p-GaN异质结器件室温电致发光谱,重新发现了SiO2的作用。在GaN侧发光峰在约391.3nm处,而在ZnO侧测试到的发光峰是由三个发光峰组成(372nm,380nm和390nm)。我们采用能带图对这种常被研究者忽略的差别给出了解释。
     制备了n-ZnO/Ga2O3/p-GaN异质结器件,与n-ZnO/p-GaN异质结器件比较发现,由于Ga2O3层的加入,~525nm处的深能级发光峰完全消失了,~392nm处的发光峰显著增强。结合能带图对Ga2O3载流子阻挡层在异质结器件的作用给出了解释。本工作中第一次采用Ga2O3材料作为载流子阻挡层,证明MOCVD技术生长的Ga203材料能满足光电器件的要求。这种材料的生长温度低,在ZnO薄膜的生长温度区间内。如果采用此材料作为载流子阻挡层,并采用Ga掺杂ZnO薄膜作为电子提供层,那么系统中所使用的元素种类将会减少。
The main objective of this dissertation is to study the key aspects of ZnO thin films fabricated by metal-organic chemical vapor deposition (MOCVD) for optoelectronic devices. ZnO has received attention due to its direct band gap of3.37eV at room-temperature, large exciton bonding energy of60meV, alloying and doping capabilities. In this study, ZnO thin films were grown on c-plane sapphire and Si (111) substrates by MOCVD and then, these films were mainly studied in terms of their structural, morphology, op tical and e lectrical properties. The studied key aspects include Ga-doping, Cu-doping and Cu-Ga codoping of ZnO thin films, the suggestion of micro physical mechanisms of impurity doping, fabrication of homojunction, and fabrication of heterojunction using SiO2and Ga2O3as carrier blocking layers.
     N-type ZnO:Ga thin films have been studied. It is suggested that Ga incorporation decreases the Fermi level and the formation energy of native acceptor defects.
     Cu-doped ZnO thin films grown on Si (111) substrates were studied. A characteristic green-luminescence with fine structure consisted of doublets emission peak was observed from low-temperature photo luminescence (11.4K), which was believed to be associated with Cu doping. A theoretical model based on hydrogen analogue has been proposed to explain this phenomenon
     P-type conductivity in ZnO thin films was obtained from Cu and Ga codoping. The Cu-Ga codoped ZnO thin film shows p-type conductivity with resistivity of0.2499ΩQ-cm, mobility of13.3cm2V-1s-1, and carrier concentration1.874×1018. Homojunction with Cu-Ga codoped ZnO/ZnO single crystal structure was fabricated. Near band edge electroluminescence (EL) was observed from the junction under forward-bias current under roo m temperature.
     UV-emitting n-ZnO/SiO2/p-GaN devices were fabricated. EL spectra of the devices were measured frombothn-ZnO side and p-GaN side. The role of SiO2was rediscovered.
     N-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes were fabricated. Compared with the n-ZnO/p-GaN structure, the deep level visible emission at525nm was completely suppressed while UV emission at-392nm was significantly improved in ZnO/Ga2O3/p-GaN structure. The role of Ga2O3in n-ZnO/p-GaN heterojunction LED was discussed indetail.
引文
[1]Round H J A note on carborundum [J]. Electrical world,1907,49 (6):309-314.
    [2]Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies [J]. Journal of Appllied Physics,1994,76 (3):1363-1398.
    [3]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. science,2001,292 (5523):1897-1899.
    [4]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Appllied Physics,2005,98 (4):041301-041301.
    [5]Moriyama T, Fujita S Growth behavior of nonpolar ZnO on M-plane and R-plane sapphire by metalorganic vapor phase epitaxy [J]. Japanese Journal of Appllied Physics,2005,44:7919-7923.
    [6]Yearian H J Intensity of Diffraction of Electrons by ZnO [J]. Physical Review, 1935,48 (7):631-640.
    [7]Krishnan R S Scattering of light in optical glasses [J]. Proceedings Mathematical Sciences,1936,3 (3):211-220.
    [8]Shan F K, Liu G X, Lee W J, et al. Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition [J]. Applied Physics Letters,2005,86 (22):221910-221910.
    [9]Jung Y S, Kononenko 0, Kim J S, et al. Two-dimensional growth of ZnO epitaxial films on c-A12O3 (000l) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy [J]. Journal of crystal growth,2005,274 (3):418-424.
    [10]Lorenz K, Alves E, Wendler E, et al. Damage formation and annealing at low temperatures in ion implanted ZnO [J]. Applied Physics Letters,2005,87 (19):191904-191904.
    [11]Neumark G F Defects in wide band gap Ⅱ-Ⅵ crystals [J]. Materials Science and Engineering:R:Reports,1997,21 (1):40-46.
    [12]Van de Walle C G, Laks D B, Neumark G F, et al. First-principles calculations of solubilities and doping limits:Li, Na, and N in ZnSe [J]. Physical Review B,1993,47 (15):9425-9432.
    [13]Lu J G, Ye Z Z, Zhuge F, et al. p-type conduction in N-Al co-doped ZnO thin films [J]. Applied Physics Letters,2004,85 (15):3134-3135.
    [14]Mandel G Self-compensation limited conductivity in binary semiconductors. Ⅰ. Theory [J]. Physics Review,1964,134 (4A):A1073-A1079.
    [15]Marfaing Y Fundamental studies on compensation mechanisms in Ⅱ-Ⅵ compounds [J]. Journal of crystal growth,1996,161 (1):205-213.
    [16]Chadi D J Predictor of p-type doping in Ⅱ-Ⅵ semiconductors [J]. Physical Review B,1999,59 (23):15181-15189.
    [17]Zhang S B, Wei S H, Zunger A Microscopic origin of the phenomenological equilibrium "doping limit rule" in n-type Ⅲ-Ⅴ semiconductors [J]. Physical review letters,2000,84 (6):1232-1235.
    [18]Lany S, Osorio-Guillen J, Zunger A Origins of the doping asymmetry in oxides: Hole doping in NiO versus electron doping in ZnO [J]. Physical Review B,2007, 75 (24):241203-241213.
    [19]Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO [J]. Physical Review B,2000,61 (22):15019-15027.
    [20]Look D C, Hemsky J W, Sizelove J R Residual Native Shallow Donor in ZnO [J]. Physical review letters,1999,82 (12):2552-2555.
    [21]Van de Walle C G Hydrogen as a Cause of Doping in Zinc Oxide [J]. Physical review letters,2000,85 (5):1012-1015.
    [22]Look D C, Jones R L, Sizelove J R, et al. The path to ZnO devices:donor and acceptor dynamics [J]. physica status solidi (a),2003,195 (1):171-177.
    [23]Barnes T M, Olson K, Wolden C A On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J]. Applied Physics Letters,2005, 86 (11):1012-1015
    [24]Liu J S, Shan C X, Shen H, et al. ZnO light-emitting devices with a lifetime of 6.8hours [J]. Applied Physics Letters,2012,101 (1):011106-011110.
    [25]Wolden C A, Barnes T M, Olson K On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J]. Applied Physics Letters,2005, 86 (11):020533-020534
    [26]Xiao Z Y, Liu Y C, Li B H, et al. Electrical transport properties in nitrogen-doped p-type ZnO thin film [J]. Semiconductor Science and Technology,2006,21 (12):1522-1526.
    [27]Limpijumnong S, Zhang S B, Wei S H, et al. Doping by large-size-mismatched impurities:The microscopic origin of arsenic-or antimony-doped p-type zinc oxide [J]. Physical Review Letters,2004,92 (15):789-793.
    [28]Shi Z, Xia X, Yin W, et al. Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes [J]. Applied Physics Letters,2012,100 (10):101112-101117.
    [29]Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films [J]. Journal of Crystal Growth,2000,216 (1-4):330-334.
    [30]Park S J, Hwang D K, Kim H S, et al. Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering [J]. Applied Physics Letters,2005,86 (15):101112-101116
    [31]Shih Y T, Chien J F, Chen M J, et al. P-Type Zn0:P Films Fabricated by Atomic Layer Deposition and Thermal Processing [J]. Journal of the Electrochemical Society,2011,158 (5):H516-H522.
    [32]Chen H, Gu S, Liu J, et al. Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures [J]. Applied Physics Letters,2011,99 (21):211906-211910.
    [33]Panwar N, Liriano J, Katiyar R S Structural and optical analysis of ZnBeMgO powder and thin films [J]. Journal of Alloys and Compounds,2011,509 (4):1222-1225.
    [34]Gruber T, Kirchner C, Kling R, et al. Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy [J]. Applied Physics Letters, 2003,83 (16):3290-3292.
    [35]Sadofev S, Blumstengel S, Cui J, et al. Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy [J]. Applied Physics Letters, 2006,89 (20):201907-201907.
    [36]Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO [J]. Physical Review B,2000,61 (22):15019-15030.
    [37]Van de Walle C G Defect analysis and engineering in ZnO [J]. Physica B: Condensed Matter,2001,308:899-903.
    [38]Zhang S B, Northrup J E Chemical potential dependence of defect formation energies in GaAs:Application to Ga self-diffusion [J]. Physical review letters,1991,67 (17):2339-2342.
    [39]Walukiewicz W Intrinsic limitations to the doping of wide-gap semiconductors [J]. Physica B:Condensed Matter,2001,302:123-134.
    [40]Vlasenko L S, Watkins G D Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO [J]. Physical Review B,2005,71 (12):125210-125218.
    [41]Selim F A, Weber M H, Solodovnikov D, et al. Nature of native defects in ZnO [J]. Physical review letters,2007,99 (8):85502-85506.
    [42]Look D C, Farlow G C, Reunchan P, et al. Evidence for native-defect donors in n-type ZnO [J]. Physical review letters,2005,95 (22)-.225502-225507.
    [43]Tuomisto F, Ranki V, Saarinen K, et al. Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO [J]. Physical Review Letters,2003,91 (20):205502-225506.
    [44]Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Applied Physics Letters,1997,70 (17):2230-2232.
    [45]Cao H, Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Applied Physics Letters, 1998,73 (25):3656-3658.
    [46]Minami T, Tanigawa M, Yamanishi M, et al. Observation of Ultraviolet-Luminescence from the ZnO MIS Diodes [J]. Japaneses Journal of Appllied Physics,1974,13:1475-1479.
    [47]Lee J Y, Lee J H, Kim H S, et al. A study on the origin of emission of the annealed n-Zn0/p-GaN heterostructure LED [J]. Thin Solid Films,2009,517 (17):5157-5160.
    [48]Chang S P, Chuang R W, Chang S J, et al. MBE n-Zn0/MOCVD p-GaN heterojunction light-emitting diode [J]. Thin Solid Films,2009,517 (17):5054-5056.
    [49]Alivov Y I, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Applied Physics Letters,2003,83 (23):4719-4721.
    [50]Ohta H, Kawamura K, Orita M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO [J]. Applied Physics Letters,2000,77 (4):475-477.
    [51]Kudo A, Yanagi H, Ueda K, et al. Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semiconductors [J]. Applied Physics Letters,1999,75 (18):2851-2853.
    [52]Hwang D K, Kang S H, Lim J H, et al. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes [J]. Applied Physics Letters,2005,86 (22):222101-222101.
    [53]Aoki T, Hatanaka Y, Look D C ZnO diode fabricated by excimer-laser doping [J]. Applied Physics Letters,2000,76 (22):3257-3258.
    [54]Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials, 2004,4 (1):42-46.
    [55]Alivov Y I, Bo X, Fan Q, et al. Current-transport mechanisms of isotype n-ZnO/n-GaN heterostructures-art. no.64740E [J]. Zinc Oxide Materials and Devices II,2007,6474:E4740-E4740.
    [56]Mandalapu L J, Yang Z, Chu S, et al. Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes [J]. Applied Physics Letters, 2008,92 (12):122101-122101.
    [57]Sun J C, Zhao J Z, Liang H W, et al. Realization of ultraviolet electroluminescence from ZnO homojunction with n-Zn0/p-Zn0/AsGa structure [J]. Applied Physics Letters,2007,90 (12):121128-121128.
    [58]Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition [J]. Applied Physics Letters, 2006,88 (17):173506-173506.
    [59]Du G-T, Zhao W, Wu G-G, et al. Electrically pumped lasing from p-Zn0/n-GaN heterojunction diodes [J]. Applied Physics Letters,2012,101 (5):053503-053503.
    [60]Dai J, Xu C X, Zheng K, et al. Whispering gallery-mode lasing in ZnO microrods at room temperature [J]. Applied Physics Letters,2009,95 (24):241110-241112.
    [61]Dai J, Xu C X, Ding R, et al. Combined whispering gallery mode laser from hexagonal ZnO microcavities [J]. Applied Physics Letters,2009,95 (19):191117-191117.
    [62]Dai J, Xu C X, Sun X W ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes [J]. Advanced Materials,2011,23 (35):4115-4119.
    [63]Zeng Y J, Ye Z Z, Xu W Z, et al. Dopant source choice for formation of p-type ZnO:Li acceptor [J]. Applied Physics Letters,2006,88 (6):062107-062107.
    [64]Lin S S, Ye Z Z, Lu J G, et al. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate [J]. Journal of Physics D:Applied Physics, 2008,41 (15):155114-155117.
    [65]Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials, 2004,4 (1):42-46.
    [66]Sun X W, Ling B, Zhao J L, et al. Ultraviolet emission from a ZnO rod homojunction light-emitting diode [J]. Applied Physics Letters,2009,95 (13):133124-133124.
    [67]Yang Z, Chu S, Chen W V, et al. ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy [J]. Applied Physics Express,2010,3 (3):032101-032106.
    [68]Reynolds D C, Look D C, Jogai B, et al. Valence-band ordering in ZnO [J]. Physical Review B,1999,60:2340-2344.
    [69]Bian J M, Li X M, Gao X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Applied Physics Letters,2004,84 (4):541-543.
    [70]Gu Z H, Fahidy T Z Electrochemical Deposition of ZnO Thin Films on Tin-Coated Glasses [J]. Journal of Electrochemical Society,1999,146 (1):156-159.
    [71]Kamalasanan M N, Chandra S Sol-gel synthesis of ZnO thin films [J]. Thin Solid Films,1996,288 (1)-.112-115.
    [72]Nakanishi Y, Miyake A, Kominami H, et al. Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation [J]. Applied Surface Science,1999,142 (1):233-236.
    [73]Easterling D A P a K E Phase Transformation in metals and alloys, second edition [J]. Nelson Thornes,1992:143.
    [74]Suzuki T I, Ohtomo A, Tsukazaki A, et al. Hall and Field-Effect Mobilities of Electrons Accumulated at a Lattice-Matched ZnO/ScAlMgO4 Heterointerface [J]. Advanced Materials,2004,16 (21):1887-1890.
    [75]Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO [J]. Physical Review B,2001,64 (8):085120-085125.
    [76]Haynes C L, Van Duyne R P Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J]. The Journal of Physical Chemistry B,2003,107 (30):7426-7433.
    [77]Meyer B K, Alves H, Hofmann D M, et al. Bound exciton and donor-acceptor pair recombinations in ZnO [J]. physica status solidi (b),2004,241 (2):231-260.
    [78]Gutowski J, Presser N, Broser I Acceptor-exciton complexes in ZnO:A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy [J]. Physical Review B,1988,38 (14):9746-9756.
    [79]Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters,1996,68 (3):403-405.
    [80]van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation [J]. The Journal of Physical Chemistry B,2000,104 (8):1715-1723.
    [81]Djurisic A B, Choy W C H, Roy V A L, et al. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures [J]. Advanced Functional Materials,2004,14 (9)-.856-864.
    [82]Studenikin S A, Golego N, Cocivera M Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution [J]. Journal of Applied Physics,1998,83 (4):2104-2111.
    [83]Varshni Y P Temperature dependence of the energy gap in semiconductors [J]. Physica,1967,34 (1):149-154.
    [84]Manoogian A, Woolley J C Temperature dependence of the energy gap in semiconductors [J]. Canadian journal of physics,1984,62 (3):285-287.
    [85]Schmidt T, Lischka K, Zulehner W Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Physical Review B,1992,45 (16):8989-8994.
    [86]Reshchikov M A, Korotkov R Y Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films [J]. Physical Review B,2001,64 (11):115205-115209.
    [87]Reynolds D C, Litton C W, Collins T C Zeeman effects in the edge emission and absorption of ZnO [J]. Physical Review,1965,140 (5A):A1726-A1736.
    [88]Arguello C A, Rousseau D L, Porto S P S First-order Raman effect in wurtzite-type crystals [J]. Physical Review,1969,181 (3):1351-1356.
    [89]Urbach F The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Physical Review,1953,92:1324-1324.
    [90]Look D, Leedy K, Vines L, et al. Self-compensation in semiconductors:The Zn vacancy in Ga-doped ZnO [J]. Physical Review B,2011,84 (11):1245-1249
    [91]Ko H J, Chen Y F, Hong S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy [J]. Applied Physics Letters,2000, 77 (23):3761-3763.
    [92]Huang Y C, Li Z Y, Chen H, et al. Characterizations of gallium-doped ZnO films on glass substrate prepared by atmospheric pressure metal-organic chemical vapor deposition [J]. Thin Solid Films,2009,517 (18):5537-5542.
    [93]Nishimoto N, Yamamae T, Kaku T, et al. Growth of Ga-doped ZnO by MOVPE using diisopropylzinc and tertiary butanol [J]. Journal of Crystal Growth,2008,310 (23):5003-5006.
    [94]Ma Q B, Ye Z Z, He H P, et al. Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering [J]. Journal of Crystal Growth,2007,304 (1):64-68.
    [95]Yu X, Ma J, Ji F, et al. Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering [J]. Applied Surface Science,2005,245 (1-4):310-315.
    [96]Chu S, Lim J H, Mandalapu L J, et al. Sb-doped p-Zn0/Ga-doped n-Zn0 homojunction ultraviolet light emitting diodes [J]. Applied Physics Letters, 2008,92:152103.
    [97]Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. Journal of Applied Physics, 1996,79 (10):7983-7990.
    [98]Kim J B, Byun D, Ie S Y, et al. Cu-doped ZnO-based p-n hetero-junction light emitting diode [J]. Semiconductor Science and Technology,2008,23 (9):095004-095009.
    [99]Zhou Z, Kato K, Komaki T, et al. Electrical conductivity of Cu-doped ZnO and its change with hydrogen implantation [J]. Journal of electroceramics,2003, 11 (1):73-79.
    [100]Kanai Y Admittance spectroscopy of Cu-doped ZnO crystals [J]. Japanese journal of applied physics,1991,30 (part 1):703-707.
    [101]Chakraborti D, Trichy G R, Prater J T, et al. The effect of oxygen annealing on ZnO:Cu and ZnO:(Cu, Al) diluted magnetic semiconductors [J]. Journal of Physics D:Applied Physics,2007,40 (24):7606.
    [102]Shuai M, Liao L, Lu H B, et al. Room-temperature ferromagnetism in Cu+ implanted ZnO nanowires [J]. Journal of Physics D:Applied Physics,2008,41 (13):135010.
    [103]Shi S L, Li G Q, Xu S J, et al. Green luminescence band in ZnO:Fine structures, electron-phonon coupling, and temperature effect [J]. The Journal of Physical Chemistry B,2006,110 (21):10475-10478.
    [104]Lee D Y, Choi C H, Kim S H Growth and characterization of ZnO film on Si (111) substrate by helicon wave plasma-assisted evaporation [J]. Journal of crystal growth,2004,268 (1):184-191.
    [105]Iwata K, Fons P, Niki S, et al. ZnO growth on Si by radical source MBE [J]. Journal of crystal growth,2000,214:50-54.
    [106]Kawamoto N, Fujita M, Tatsumi T, et al. Growth of ZnO on Si substrate by plasma-assisted molecular beam epitaxy [J]. Japanese Journal of Appllied Physics,2003,42:7209-7213.
    [107]Przezdziecka E, Paszkowicz W, Lusakowska E, et al. Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature [J]. Semiconductor Science and Technology,2009,24 (10):105014-105019.
    [108]Dingle R Luminescent Transitions Associated with Divalent Copper Impurities and Green Emission from Semiconducting Zinc Oxide [J]. Physical Review Letters, 1969,23 (11):579-584.
    [109]Reynolds D C, Look D C, Jogai B Fine structure on the green band in ZnO [J]. Journal of Appllied Physics,2001,89 (11):6189-6191.
    [110]Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals [J]. Applied Physics Letters,2002,81 (4):622-624.
    [111]Reshchikov M A, Avrutin V, Izyumskaya N, et al. About the Cu-related green luminescence band in ZnO [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2009,27 (3):1749-1754.
    [112]Hu J, Pan B C Formation and Dissociation of a Cu-H Complex in ZnO [J]. The Journal of Physical Chemistry C,2008,112 (48):19142-19146.
    [113]Lavrov E V, Weber J, Borrnert F Copper dihydrogen complex in ZnO [J]. Physical Review B,2008,77 (15):155209.
    [114]Limpijumnong S, Zhang S B, Wei S H, et al. Doping by large-size-mismatched impurities:the microscopic origin of arsenic-or antimony-doped p-type zinc oxide [J]. Physical Review Letters,2004,92 (15):155504.
    [115]Yamamoto T, Katayama-Yoshida H Unipolarity of ZnO with a wide-band gap and its solution using codoping method [J]. Journal of crystal growth,2000,214:552-555.
    [116]Yamamoto T, Katayama-Yoshida H Physics and control of valence states in ZnO by codoping method [J]. Physica B:Condensed Matter,2001,302:155-162.
    [117]Yamamoto T, Yoshida H K Control of Valence States in ZnO by Co-doping Method. Cambridge Univ Press, pp.223-234
    [118]Leu I C, Chou S M, Hon M H Synthesis of p-type A1-N codoped ZnO films using N(2)0 as a reactive gas by RF magnetron sputtering [J]. Applied Surface Science,2008,255 (5):2958-2962.
    [119]Ye Z Z, Zhu Q Y, Yuan G D, et al. Synthesis and characterization of Al-N codoped p-type ZnO epitaxial films using high-temperature homo-buffer layer [J]. Applied Surface Science,2006,253 (4):1903-1906.
    [120]Zhuge F, Zhu L P, Ye Z Z, et al. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO [J]. Applied Physics Letters,2005,87 (9):4144-4149.
    [121]Ye Z Z, Lu J G, Zhuge F, et al. p-type conduction in N-Al co-doped ZnO thin films [J]. Applied Physics Letters,2004,85 (15):3134-3135.
    [122]Shet S, Ahn K S, Wang H L, et al. Effect of substrate temperature on the photoelectrochemical responses of Ga and N co-doped ZnO films [J]. Journal of Materials Science,2010,45 (19):5218-5222.
    [123]Ohshima T, Ikegami T, Ebihara K, et al. Synthesis of p-type ZnO thin films using co-doping techniques based on KrF excimer laser deposition [J]. Thin Solid Films,2003,435 (1-2):49-55.
    [124]Rrtschil A, Dadgar A, Oleynik N, et al. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic [J]. Applied Physics Letters,2005, 87 (26):101674-101679
    [125]Yao B, Sui Y R, Yang J H, et al. Post-annealing influence on electrical properties and photoluminescence of B-N codoping ZnO thin films [J]. Journal of Luminescence,2010,130 (6):1101-1105.
    [126]Yao B, Sui Y R, Hua Z, et al. Fabrication and properties of B-N codoped p-type ZnO thin films [J]. Journal of Physics D-Applied Physics,2009,42 (6):2958-2962
    [127]Park S H, Minegishi T, Lee H J, et al. Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy [J]. Journal of Appllied Physics,2010,108 (9):1101-1109.
    [128]Zhang B Y, Yao B, Li Y F, et al. Evidence of cation vacancy induced room temperature ferromagnetism in Li-N codoped ZnO thin films [J]. Applied Physics Letters,2011,99 (18):182503-182506.
    [129]Kumar E S, Venkatesh S, Rao II S R Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films [J]. Applied Physics Letters,2010,96 (23):211500-211503.
    [130]Yao B, Pan H L, Yang T, et al. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu [J]. Applied Physics Letters,2010,97 (14):1241-1248
    [131]Yan Y, Shet S, Ahn K S, et al. Carrier concentration tuning of bandgap^reduced p-type ZnO films by codoping of Cu and Ga for improving photoelectrochemical response [J]. Journal of Appllied Physics,2008,103 (7):2287-2297
    [132]Kaufmann U, Kunzer M, Maier M, et al. Nature of the 2.8 eV photoluminescence band in Mg doped GaN [J]. Applied Physics Letters,1998,72 (11):1326-1328.
    [133]Zhao Q X, Klason P, Willander M, et al. Deep-level emissions influenced by 0 and Zn implantations in ZnO [J]. Applied Physics Letters,2005,87 (21):211912-211912.
    [134]Jiao S J, Lu Y M, Shen D Z, et al. Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode [J]. Physical Status Solidi C,2006, 3 (4):972-975.
    [135]You J B, Zhang X W, Zhang S G, et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes [J]. Applied Physics Letters,2010,96 (20):211200-211201
    [136]Wang H T, Kang B S, Chen J J, et al. Band-edge electroluminescence from N+-implanted bulk ZnO [J]. Applied Physics Letters,2006,88 (10):2331"2335.
    [137]Xu H Y, Liu Y C, Liu Y X, et al. Ultraviolet electroluminescence from p-GaN/i-Zn0/n-ZnO heterojunction light-emitting diodes [J]. Applied Physics B:Lasers and Optics,2005,80 (7):871-874.
    [138]Goldenberg B, Zook J D, Ulmer R J Ultraviolet and violet light-emitting GaN diodes grown by low-pressure metalorganic chemical vapor deposition [J]. Applied Physics Letters,1993,62 (4):381-383.
    [139]Nakahara K, Akasaka S, Yuji H, et al. Nitrogen doped MgxZnl-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates [J]. Applied Physics Letters,2010,97 (1):5185-5189.
    [140]Chen C P, Ke M Y, Liu C C, et al. Observation of 394 nm electroluminescence from low-temperature sputtered n-Zn0/Si02 thin films on top of the p-GaN heterostructure [J]. Applied Physics Letters,2007,91:7363-7367.
    [141]Takagi T, Tanaka H, Fujita S, et al. Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1 xO Alloys and Their Application to Solar-Blind Region Photodetectors [J]. Japanese Journal of Applied Physics,2003,42 (Part 2, No.4B):L401-L403.
    [142]Tippins H H Optical Absorption and Photoconductivity in Band Edge of Beta-Ga2O3 [J]. Physical Review,1965,140 (1A):A316-A319.
    [143]Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive beta-Ga-A thin films [J]. Applied Physics Letters,2000,77 (25):4166-4168.
    [144]Kokubun Y, Miura K, Endo F, et al. Sol-gel prepared beta-Ga203 thin films for ultraviolet photodetectors [J]. Applied Physics Letters,2007,90 (3):4166-4168.
    [145]Kudo A, Mikami I Photocatalytic activities and photophysical properties of Gaz InxO3 solid solution [J]. Journal of the Chemical Society, Faraday Transactions,1998,94 (19):2929-2932.
    [146]Lee S A, Hwang J Y, Kim J P, et al. Dielectric characterization of transparent epitaxial Ga2O3 thin film on n-GaN/A1203 prepared by pulsed laser deposition [J]. Applied Physics Letters,2006,89 (18):110221-110225.
    [147]Kim J H, Yoon K H Influence of post-deposition annealing on the microstructure and properties of Ga203:Mn thin films deposited by RF planar magnetron sputtering [J]. Journal of Material Science-Material Electronics,2009,20 (9):879-884.
    [148]Geller S Crystal Structure of Beta-Ga203 [J]. Journal of Chemical Physics,1960, 33 (3):676-684.
    [149]Roy R, Hill V G, Osborn E F POLYMORPHISM OF GA2O3 AND THE SYSTEM GA203-H20 [J]. Journal of the American Chemical Society,1952,74 (3):719-722.
    [150]Kim H W, Kim N H Annealing effects on the properties of Ga203 thin films grown on sapphire by the metal organic chemical vapor deposition [J]. Applied Surface Science,2004,230 (1-4):301-306.
    [151]Kim J H, Holloway P H Microstructural characterization of radio frequency magnetron sputter-deposited Ga203:Mn phosphor thin films [J]. Journal of Vacuum Science Technology A,2002,20 (3):928-933.
    [152]Cojocaru L N, Prodan A Electrical Conductivity and Thermogravimetric Studies of β-Ga2O3 [J]. Revue Roumaine de Physique,1974,19 (2):209-213.
    [153]Park T-Y, Choi Y-S, Kim S-M, et al. Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN [J]. Applied Physics Letters,2011,98 (25):251111-251115.
    [154]Zhao Q X, Klason P, Willander M, et al. Deep-level emissions influenced by 0 and Zn implantations in ZnO [J]. Applied Physics Letters,2005,87 (21):871-874.
    [155]Xu H Y, Liu Y C, Liu Y X, et al. Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes [J]. Applied Physics B-Lasers and Optics,2005,80 (7)-.871-874.
    [156]Lay T S, Hong M, Kwo J, et al. Energy-band parameters at the GaAs-and GaN-Ga2O3 (GdzO3) interfaces [J]. Solid-State Electronics,2001,45 (9):1679-1682.
    [157]Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Applied Physics Letters,2006,88:202105-202109.
    [158]Kong Y C, Yu D P, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Applied Physics Letters,2001,78:407-412.
    [159]Park W I, Yi G C Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Advanced Materials,2004,16 (1):87-91.
    [160]Deuk Young K, Sejoon L Characteristics of ZnO/GaN heterostructure formed on GaN substrate by sputtering deposition of ZnO [J]. Materials Science& Engineering B (Solid-State Materials for Advanced Technology),2007,137 (1-3):80-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700