GaAs纳米线轴向异质结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的相关内容主要是依据国家重点实验室承担的国家重点基础研究发展计划(973计划)项目(项目编号:2010CB327600)、国家自然科学基金项目(项目编号:61020106007和61077049)、教育部新世纪优秀人才支持计划项目(项目编号:NCET-08-0736)、高等学校学科创新引智计划(项目编号:B07005)展开的。
     近年来,半导体纳米线因为其独特的物理特性成为人们研究的热点,许多基于纳米线的电子和光电子器件如场效应管、激光器、探测器等纷纷问世,并展现出广阔的应用前景。异质结构是半导体器件的基础,基于这些异质结构已经实现了多种纳米光电子器件,几乎所有的半导体器件的新进展都与异质结相关。本文主要围绕了GaAs纳米线轴向异质结构进行了研究,主要研究内容以及取得的研究成果包括:
     1.综述了国内外半导体纳米线生长机制、测试方法和GaAs纳米线异质结构的相关研究。
     2.在GaAs(111)寸底上,使用低压金属有机化学气相沉淀(LP-MOCVD)技术,生长出了GaAs/InxGa1-xAs/GaAs纳米线双异质结构,探索了GaAs/InxGa1-xAs/GaAs双异质结中In组分对于纳米线形貌、晶体结构等的影响。实验结果表明:当In的组分升高到0.8的时候,大部分的纳米线出现了扭曲和团簇;由于Au-GaAs的界面能低于Au-InAs的界面能以及In元素更容易溶解入合金颗粒中,在InAs纳米线上可以成功外延生长GaAs纳米线,而在GaAs纳米线上不能外延生长InAs纳米线。
     3.在GaAs(111)衬底上生长出了直立的GaAs(111)和GaAs/InxGa1-xAs/InAs/GaAs(In组分渐变)纳米线异质结构,理论分析了纳米线轴向异质结构的临界半径,探讨了含有渐变缓冲层的纳米线的应变。结果表明:当插入渐变缓冲层以后,晶格常数呈现线性变化,能够极大的消除应变的影响,并且可以改善界面能对于异质外延生长的限制。
This research was mainly supported by the National Basic Research Program of China (2010CB327600), the National Natural Science Foundation of China (61020106007 and 61077049), New Century Excellent Talents in University (NCET-08-0736), and the 111 Program of China (B07005).
     In recent years, semiconductor nanowires have become the hotspot in the world due to its unique physical properties. A lot of devices based on nanowires including FETs lasers, and photodetectors have come out, which show broad application prospects. Heterostructure is the base of semiconductor devices and almost all of the new progress in semiconductor devices are associated with the heterojuncture. This paper mainly focuses on GaAs axial heterostructure nanowires. The main research content and achievements are as follows:
     1. The status and prospects of research on the growth mechanism, characterization methods and GaAs heterostructure nanowires were reviewed.
     2. GaAs/InxGa1-xAs/GaAs double-heterostructure nanowire were grown on GaAs(111) substrate by low-pressur metal organic chemical vapor deposition(LP-MOCVD). The influence of indium content on the morphology and structure of nanowires was studied. Experimental results indicated that almost all the nanowires were kinked when indium content was 0.8; GaAs nanowires can be grown on In As nanowires while InAs nanowires can not be grown on GaAs nanowires due a lower interfacial energy between Au and GaAs as well as easier incorporiton of In atoms into the Au particle.
     3. Vertical GaAs/InxGa1-xAs/InAs heterostructure nanowires and GaAs/InxGa1-xAs/InAs/GaAs heterostructure nanowires were successfully grown on GaAs(111) substrate. The critical radius of nanowireswas analysed. The strain of nanowire with a section of composition-graded buffer segment was discussed. Results indicated that by inserting a composition-graded InxGa1-xAs buffer segment between GaAs and InAs, high yield of straight GaAs/InxGa1-xAs/GaAs heterostructrue nanowires were realized. Lattice parameter varies linearly and the influence of strain on the growth of nanowires could be eliminated. In addition, the restrict of interfacial energy in epitaxial growth of nanowire heterostructures was proved.
引文
[1]白春礼.纳米科技及其发展前沿,在国际华人纳米科技会上的报告,2001.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]Wagner,R.S.Ellis,W.C.Vapor-Liquid-Solid Mechanism of Dingle Crystal Growth.Appl.Phys.Lett.4(5) 196489-90.
    [4]P.M. Petroff, A.C. Gossard, R.A. Logan et al.Appl. Phys. Lett.41 1982 635.
    [5]K. Haraguchi, T. Katsuyama, K. Hiruma et al.Appl. Phys. Lett.60 1992 745.
    [6]A. M. Morales, C. M. Lieber A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(208) 1998.
    [7]Wagner R S,Ellis WC, Vapor-liquid-silid mechanism of single crystal growth,Appl.Phys.Lett.,1964,4:89-90
    [8]L. Schubert, P.Werner, N.D. Zakharov et al.Silicon nanowhiskers grown on<111> Si substrates by molecular-beam epitaxy Appl. Phys. Lett.84 2004 4968.
    [9]M.T. Bjork, B.J. Ohlsson, T. Sass et al. One-dimensional heterostructures in semiconductor nanowhiskers Appl. Phys.Lett.80 2002 1058.
    [10]B.J. Ohlsson, M.T. Bjork, M.H. Magnusson et al. Size-, shape-, and position-controlled GaAs nano-whiskers Appl. Phys. Lett.79 2001 3335.
    [11]V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev et al. Growth of GaAs nanoscale whiskers by magnetron sputtering deposition Journal of Crystal Growth 289 2006 31-36
    [12]G.A. Bootsma, H.J. Gassen A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane J. Cryst.Growth 10 1971223.
    [13]H. Adhikari, A.F. Marshall, C.E.D. Chidsey et al. Germanium nanowire epitaxy: shape and orientation control Nano Lett.6 2006 318.
    [14]M. Lopez-Lopez, A. Guillen-Cervantes, Z. Rivera-Alearez et al. Hillocks formation during the molecular beam epitaxial growth of ZnSe on GaAs substrates J. Cryst. Growth 193 1998 528.
    [15]P. Yang, C.M. Lieber Nanorod-Superconductor Composites:A Pathway to Materials with High Critical Current Densities Science 271 1996 1836.
    [16]H.Y. Kim, J. Park, H. Yang, Chem. Phys. Lett.371 (2003) 269.
    [17]J. Bauer, V.Gottschalch, H.Paetzelt, G.Wagner. VLS growth of GaAs /(InGa)As/GaAs axial double-heterostructure nanowires by MOVPE. Journal of Crystal Growth,2008,310:5106-5110
    [18]M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, L. Samuelson. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett.,2002, 80(6):1058-1060
    [19]Michael J. Tambe, Sung Keun Lim, Matthew J. Smith, Lawrence F. Allard, Silvija Gradecak. Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire Heterostructures. Appl. Phys. Lett.,2008,93:51917
    [20]Zhixun Ma, Todd Holden, Zhiming M. Wang,Gregory J. Salamo, Lyudmila Malikova, Samuel S. Mao. Strain-induced electronic energy changes in multilayered InGaAs/GaAs quantum wire structures. J. Appl. Phys.,2007,101:044305
    [21]Dick, K. A.,Deppert, K.,Larsson, M.W. et al. Systhesis of branched'nanotrees'by Controlled seeding of multiple branching events. Nature Materials,2004,3(6):380-384
    [22]Thomas J. Kempa, Bozhi Tian, Dong Rip Kim, Jinsong Hu, Xiaolin Zheng, Charles M. Lieber. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices. Nano Lett.,2008,8(10):3456-3460
    [23]Julien Claudon, Joel Bleuse, Nitin Singh Malik, Maela Bazin, Perine Jaffrennou, Niels Gregersen, Christophe Sauvan, Philippe Lalanne, Jean-Michel Gerard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics,2010,4:174-177
    [24]Katsuhiro Tomiok, Junichi Motohisa, Shinjiroh Hara, Kenji Hiruma, Takashi Fukui. GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si. Nano Lett.,2010,10:1639-1644
    [1]Cushing B L, Kolesniehenko V L, O'Connor C J Recent advances in the liquid-phase syntheses of inorganic nanoparticles Chem Rev 104 2004 3893-3946.
    [2]Bell D C, Wu Y, Barrelet C J, Gradecak S et al. Imaging and analysis of nanowires. Microscopy Res Tech 64 2004 373-389
    [3]Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers Science 292 2001 1897-1899
    [4]Fujita S Z, Kim S W, Ueda M, et al. Artificial control of ZnO nanostructures grown by metalorganic chemical vapor deposition J. Crystal Growth 272 2004 138-142
    [5]V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirevc etal. Growth of GaAs nanoscale whiskers bymagnetron sputtering deposition J. Crystal Growth 289 2006 31-36
    [6]K.A.Dick, K.Deppert, T.Martensson, etal. Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires. Nano Lett.52005 761
    [7]Wu J J, Liu S C, Wu C T et al. Heterstructures of ZnO-Zn coaxial nanocables and ZnO nanotubes Appl. Phys. Lett.81 2002 1312-1314
    [8]N. Wang, Y. Cai, R.Q. Zhang Growth of nanowires Materials Science and Engineering R 60 2008 1-51
    [9]左演声,陈文哲,梁伟 材料现代分析方法 北京,北京工业大学出版社,2000
    [10]黄孝瑛 材料微观结构的电子显微学分析 冶金工业出版社 2008[11]Horiba荧光光谱仪使用手册 J.Y公司日本
    [I]Hayashi I, Panish M B, FoyP W. A low threshold room temperature injection laser. IEEE J. Quantum Electron.,1969, QE-5:211
    [2]Hayashi I, Panish MB, Reinhart F K. GaAs-GaxAll-xAs double heterostructure injection lasers. J Appl. Phys.,1971,42:1929
    [3]刘恩科,朱秉升,罗晋生等.半导体物理学.西安:西安交通大学出版社.2005.
    [4]Martin Hei, Anders Gustafsson, Sonia Conesa-Boj,Francesca Peir, Joan Ramon Morante, G Abstreiter,Jordi Arbiol, Lars Samuelson and Anna Fontcuberta i Morral, Nanotechnology 20 (2009) 075603 (6pp)
    [5]Yong Kim, Hannah J. Joyce, Qiang Gao, H. Hoe Tan, Chennupati Jagadish,Mohan-chand Paladugu, Jin Zou, and Alexandra A. Suvorova, Influence of Nanowire Density on the Shape and Optical Properties of Ternary InGaAs Nanowires, nanoletter,2006 Vol.6, No.4599-604
    [6]J. Bauer, V.Gottschalch, H.Paetzelt, G.Wagner,VLSgrowth of GaAs/(InGa)As/Ga-As axial double-heterostructure nanowires byMOVPE, Journal of Crystal Growth 310 (2008)5106-5110
    [7]叶显,Ⅲ-Ⅴ族半导体纳米线及相关异质结构的理论和实验研究,[学位论文],北京邮电大学,2010
    [8]Mohanchand Paladugu, Jin Zou,* Ya-Nan Guo,Graeme J. Auchterlonie, Hannah J.Joyce, Qiang Gao,H. Hoe Tan, Chennupati Jagadish,* and Yong Kim, Novel Growth Phenomena Observed in Axial InAs/GaAs Nanowire Heterostructures,Nano Micro,200700222
    [9]T. S. Yeoh, R. B. Swint, A. Gaur, V. C. Elarde, J. J. Coleman, IEEE J.Sel. Top. Quantum Electron.2002,8,833-838.
    [10]J. J. Russell-Harriott, J. Zou, A. R. Moon, D. J. H. Cockayne, B. F.Usher, Appl. Phys. Lett.1998,73,3899-3901.
    [11]J. Zou, M. Paladugu, H. Wang, G. J. Auchterlonie, Y. N. Guo, Y.Kim, Q. Gao, H. J. Joyce, H. H. Tan, C. Jagadish, Small 2007,3,389-393.
    [1]H. N. G. Wadley, X. Zhou, R. A. Johnson, et al. Models and Methods of Vapor Deposition Prog.Mater. Sci.46 2001 329
    [2]Rienk E. Algra, Marcel A. Verheijen, Magnus T. Borgstrom, et al. Twinning superlattices in indium phosphide nanowires Nature 456 2008 20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700