Nrf2在病毒性心肌炎小鼠中的作用及葛根素干预的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性心肌炎(Viral myocarditis,VMC)是小儿心血管系统中最常见疾病,临床表现轻重不一,大多病人临床表现较轻,治疗效果较好,但有部分患儿发展成为慢性心肌炎,甚至进展为扩张型心肌病,病死率高,VMC是儿童后天性心脏病的主要病因之一,严重威胁着少年儿童的身体健康。近年来,VMC的发病呈现增高趋势,因此,引起学术界的普遍关注。VMC的发病机制至今尚未完全清楚,但普遍认为与病毒的直接损害、免疫机制、脂质过氧化介导的心肌损伤、心肌细胞凋亡及心肌纤维化有关,其中细胞因子起了非常重要的作用。目前对VMC的治疗没有特异性的治疗药物。核因子相关因子2(NF-E2-related factor2, Nrf2)是近年来新发现的一个转录因子,在心血管系统中表达稳定,研究表明Nrf2的目的基因在心血管系统疾病中具有保护作用。因此,我们推测,Nrf2可能参与了VMC的发生、发展过程。中药在VMC中越来越受到重视,葛根素(puerarin, Pue)普遍应用于成人心血管疾病的治疗,但它对心血管起保护作用机理尚不完全清楚,在儿童VMC中的临床应用经验相对较少,剂量也没有统一的规定。
     本研究主要针对Nrf2在VMC中抗氧化、抗凋亡、抗纤维化方面进行研究,并探索Pue在这些方面所起的作用,以及大剂量应用导致的不良反应。将250只BALB/c纯种4周龄雄性小鼠,体重15±2g,随机分组对照组(20只),VMC组(30只),Nrf2激活剂5,6-二氢-1,2-二硫杂环戊烯-3-硫酮(5,6-dihydrocyclopenta-1,2-dithiole-3-thione,CPDT)25μM组(20只)、50μM组(20只)、75μM组(20只),不同剂量Pue组:5mg.kg-1(20只)、15mg.kg-1组(20只)、45mg.kg-1组(20只)、30mg.kg-1组(20只)、100mg.kg-1组(30只)、300mg.kg-1组(30只),用柯萨奇B3型病毒(CVB3),通过VMC经典造模方法进行造模。分别在实验第0、4、7、14、28天采血、杀鼠,留取心肌组织。采用流细胞术检测小鼠心肌细胞的凋亡情况,应用Real-Time PCR法检测Nrf2mRNA、HO-1mRNA、Fas mRNA、TGF-β1mRNA的水平及用Western blot法检测Nrf2、 HO-1、Fas、TGF-β1的蛋白表达情况。
     结果发现,Nrf2mRNA及其蛋白在各组均有表达,随着激活剂CPDT浓度及Pue给药剂量的增加,表达增强,在一定范围内呈浓度或剂量依赖性。给予大剂量Pue(≥100mg.kg-1)时,剂量依赖关系被打破,Nrf2呈现持续升高或不降低状态;CPDT及Pue组HO-1的转录及蛋白表达明显升高,且与Nrf2呈正相关。在一定Pue剂量梯度(≤45mg.kg-1)下,HO-1的转录及蛋白表达呈剂量依赖性,给予大剂量Pue(≥100mg.kg-1)时,剂量依赖关系被打破;CPDT及Pue组心肌细胞凋亡数减少,Nrf2与Fas呈负相关;Pue100mg.kg-1组、Pue300mg.kg-1组与VMC组比较无明显差异(P>0.05),提示给药剂量增加,治疗作用并没有相应增强;CPDT及Pue组中TGF-β1在一定的浓度或剂量梯度下,随着浓度/剂量的增大,TGF-β1表达降低,Nrf2与TGF-β1呈负相关;当Pue剂量增大到一定程度(≥100mg.kg-1)时,TGF-β1表达不降反而升高。对应用大剂量葛根素的研究发现,小鼠出现了明显的腹泻症状,小鼠死亡率明显升高,CK-MB水平显著增高、心肌病理变化严重,Nrf2、HO-1、Fas、TGF-β1mRNA及蛋白表达水平出现变化;Nrf2与HO-1间、Nrf2与Fas间、Nrf2与TGF-β1无相关性。
     因此我们得出:Nrf2在VMC中表达增高,参与了VMC的发生、发展过程;Nrf2在VMC中具有抗氧化、抗心肌细胞凋亡、抗心肌纤维化的作用;Pue对VMC的治疗作用可能是通过激活Nrf2起作用,但同时可能存在其他途径发挥抗氧化、抗凋亡、抗纤维化作用;大剂量应用Pue时,治疗作用无相应增加,反而出现腹泻不良反应。
Viral myocarditis (Viral myocarditis, VMC) is the most common disease in thepediatric cardiovascular system, severity of its clinical manifestations is different, mostpatients are lighter, The therapeutic effect is better, but some children develop into chronicmyocarditis, or even progress dilated cardiomyopathy, high mortality. VMC is one of themajor cause of acquired heart disease in children, a serious threat to the physical health ofthe children. In recent years, VMC incidence show a higher trend, therefore, causedwidespread concerned. VMC pathogenesis has not yet fully clear, but generally agreed thatthe presence of the virus in the direct damage, myocardial injury, immune mechanisms anddamage of lipid peroxidation mediated, myocardial apoptosis and myocardial fibrosis. Cytokineplays a very important role in these processes. Currently there is not specific drug for VMCtreatment. Nuclear factor-related factor2(NF-E2-related factor2, Nrf2) is a newlydiscovered transcription factor that express stable in the cardiovascular system, studies haveshown that its target gene has a protective effect in cardiovascular diseases. Therefore, wehypothesized that Nrf2may be involved in the occurrence and development process of VMC.Traditional Chinese medicine was attentioned more and more in the VMC, the pueraringenerally applied to the treatment of adult cardiovascular disease, but its cardiovascularprotective mechanism of action is not fully understood, relatively few clinical experience forVMC in children, the dose also no unified requirements.
     The study focuses on antioxidant, anti-apoptotic, anti-fibrotic of Nrf2in VMC andexplore the role of puerarin in these areas, and high-dose applications led to the adversereaction.250BALB/c purebred4-week-old male mice weighing15±2g, randomized to thecontrol group (20), VMC group (30), the Nrf2activator CPDT of25μM groups (20),50μM(20),75μM (20), different doses of puerarin(Pue)5mg.kg-1group (20),15mg.kg-1group (20),45mg.kg-1group (20),30mg.kg-1group (20),100mg.kg-1group (30),300mg.kg-1group (30).We made model with Coxsackie B3virus (CVB3) isolates by the method of the VMCclassical. Experimental day0,4,7,14,28, we blooded, killed mice and specimens frommyocardial tissue for subsequent experiments. Myocardial cell apoptosis of mice wasdetected with flow cytometry in each group, the application of the Real-Time PCR assayNrf2mRNA, HO-1mRNA, Fas mRNA and TGF-β1mRNA level of transcription and detected protein expression of Nrf2, HO-1, Fas and TGF-β1by Western blot.
     We found that Nrf2mRNA and Nrf2protein expression increased with concentration of CPDT (Nrf2activator) and Pue dose increase in each group, showed a concentration or dose-dependent mannerwithin a certain range. Given large doses of Pue (≥100mg.kg-1), a dose-dependentrelationship is broken, Nrf2showing persistently elevated or no reduced state,that HO-1mRNA and protein expression was significantly increased in CPDT and Pue groups, HO-1and Nrf2were positively correlated. Within a certain range (≤45mg.kg-1), HO-1transcription and protein expression showed a concentration or dose-dependent manner.Given large doses of Pue (≥100mg.kg-1), a dose-dependent relationship was broken, that thenumber of apoptotic cells was decrease in CPDT and Pue group from the cells, mRNA andprotein levels. Nrf2and Fas was negatively correlated. Compared Pue100mg.kg-1groupand Pue300mg·kg-1with VMC group, it showed no significant difference (P>0.05),Which suggested therapeutic effect of the drug was not increase accordingly with the doseincreasing, that TGF-beta1mRNA and protein expression decreased in a certainconcentration or dose gradient in CPDT and Pue groups. Nrf2and TGF-beta1was negativelycorrelated. When Pue dose increased to a certain extent (≥100mg.kg-1), TGF-beta1expression did not fall but rise. We observed that high-dose Pue does not increase the role ofdrug treatment, but there is a clear diarrhea in mice, significantly increased mortality in mice,CK-MB level was significantly higher, myocardial pathological changes serious. Nrf2, HO-1,Fas, TGF-beta1mRNA and protein expression levels were change, Nrf2and HO-1, Nrf2andFas, Nrf2and TGF-beta1was no correlation.
     Therefore, we concluded that Nrf2expression was elevated in VMC mice, and involvedin the occurrence and development of the VMC. Nrf2had effects of antioxidant, inhibittingmyocardial apoptosis and myocardial fibrosis in the VMC. Puerarin may be antioxidativedamage, anti-cardiomyocyte apoptosis and anti-myocardial fibrosis through activating Nrf2in VMC. But It may be has other ways to play these role at the same time. Large dosepuerarin increased adverse drug reactions of diarrhea.
引文
[1] Lindenfeld J, Albert NM, Boehmer JP. Hfsa2010comprehensive heart failure practiceguideline [J]. J Card Fail,2010,16: e1-194.
    [2] Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and celldeath: learning from the past for the future [J]. Circulation,1999,99:1091-1000.
    [3] Limas CJ. Cardiac autoantibodies in dilated cardiomyopathy: a pathogenetic role?[J].Circulation,1997,95(8):1979-1980.
    [4]王春勇,史洁萍,何钟勤,等.儿童暴发性心肌炎流行病学调查[J].中国公共卫生,2001,17(9):72.
    [5] Bowles NE, Richardson PJ, Olsen EG, Archard LC. Detection of coxsackie-b-virus-specific rna sequences in myocardial biopsy samples from patients with myocarditisand dilated cardiomyopathy [J]. Lancet,1986, i:1120-1123.
    [6] D’Ambrosio A, Patti G, Manzoli A, et al. The fate of acute myocarditis betweenspontaneous improvement and evolution to dilated cardiomyopathy: a review [J]. Heart,2001,85:499-504.
    [7] Why HJ, Meany BT, Richardson PJ, et al. Clinical and prognostic significance ofdetection of enteroviral RNA in the myocardium of patients with myocarditis or dilatedcardiomyopathy [J]. Circulation,1994,89:2582-2589.
    [8] Maisch B,Risti AD,Hufnagel G, et al. Pathophysiology of viral myocarditis:The roleof humoral irnrnune response[J].Cardiovase Pathol,2002,11(2):112-122.
    [9]幸建华,杨秋.柯萨奇病毒与病毒性心肌炎[J].数理医药学杂志,2004,17(3):260-262.
    [10] Aly M, Wiltshire S, Chahrour G, et al. Complex genetic control of host susceptibilityto coxsackievirus B3-induced myocarditis[J]. Genes Immun,2007,8(3):193-204.
    [11] Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor forcoxsackie B viruses and adenoviruses2and5[J]. Science,1997,275(5304):1320-1323.
    [12] Bowles NE, Ni J, Kearney DL, et al. Detection of viruses in myocardial tissues bypolymerase chain reaction. Evidence of adenovirus as a common cause of myocarditisin children and adults [J]. J Am Coll Cardiol,2003,42:466-472.
    [13] Kuhl U, Pauschinger M, Noutsias M, et al. High prevalence of viral genomes andmultiple viral infections in the myocardium of adults with idiopathic left ventriculardysfunction [J]. Circulation,2005,111:887-893.
    [14] Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonanceassessment of human myocarditis: a comparison to histology and molecular pathology[J]. Circulation,2004,109:1250-1258.
    [15] Kuhl U, Pauschinger M, Bock T, et al. Parvovirus B19infection mimicking acutemyocardial infarction [J]. Circulation,2003,108:945-950.
    [16] Shauer A, Gotsman I, Keren A, et al. Acute viral myocarditis: current concepts indiagnosis and treatment [J]. Isr Med Assoc J,2013,15(3):180-185.
    [17] Bock CT, Klingel K, Kandolf R. Human parvovirus B19-associated myocarditis [J]. NEngl J Med,2010,362:1248-1249.
    [18] Cooper LT Jr. Myocarditis [J]. N Engl J Med,2009,360:1526-38.
    [19] Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS. Diagnosis and treatment of viralmyocarditis [J]. Mayo Clin Proc,2009,84(11):1001-1009.
    [20] Clapham PR, Weiss RA. Spoilt for choice of co-receptors [J]. Nature,1997,388(6639):230-231.
    [21] Martino TA, Petric M, Brown M, et al. Cardiovirulent coxsackieviruses and thedecay-accelerating factor (CD55) receptor [J]. Virology,1998,244(2):302-314.
    [22] Haberbosch W, Roerich N, N euzner J. Cold pressure test producing coronary spasm,coronary thrombosis and myocardial infarction in a patient with IgM antibodiesagainst Coxsackie virus B3[J]. Cardiology,1999,92(4):278-281.
    [23] Konishi K, Kawabata M, Ohtaki k. Nentralization activity of some Coxsackie virusB3antibodies is compromised by protein factor secreted by vero cells [J]. Arch Virol,1991,116(1-4):197-207.
    [24] Herzu M, Ruppert V, Kuyte B, et al. Coxsackie virus B3infection lead to death ofcardiac myocytes [J].J Mol Cell Cardiol,1994,26(7):907-913.
    [25] Goden EK, Geuntt CJ. Involvement of killer nature cells in coxsackievirus B3inducedmurine myocarditis [J]. J Immunol,1986,137(5):1695-1704.
    [26] Seko Y, Shinkai Y, Kawasaki A, et al. Expression of perforin in infiltrating cells inmurine hearts with acute myocarditis caused by coxsackie virua B3[J]. Circulation,1991,84(2):788-795.
    [27] Young LH, Joag SV, Zheng LM, et, al. Perforin-mediated myocardial damage in acutemyocarditis [J]. Lancet,1990,336(8722):1019-1021.
    [28] Hayashi T, Rani P JA, Fukatsu A, et al. A new HMG-CoA reductase inhibitor,pitavastatin remarkably retards the progression of high cholesterol inducedatherosclerosis in rabbits [J]. Atherosclerosis,2004,176(2):255-263.
    [29] Reddy J, Massilamany C, Buskiewicz I, Huber SA. Autoimmunity in viralmyocarditis [J]. Curr Opin Rheumatol,2013,25(4):502-508.
    [30] Bevan AL, Zhang H, Li Y, et al. Nitric oxide and coxsackievirus B3myocardirtis:differential expression of inducible nitric oxide synthase in mouse heart after infectionwith virulent or attenuated virus [J]. J Med Virol,2001,64(2):175-182.
    [31] Zaragoza C, Ocampo C, Saura M, et al. The role of inducible nitric oxide synthase inthe host response to coxsackievirus myocarditis [J]. Proc Natl Acad Sci USA,1998,95(5):2469-2474.
    [32] Porwol T, Ehleben W, Brand V, Acker H. Tissue oxygen sensor function of NADPHoxidase isoforms, an unusual cytochrome aa3and reactive oxygen species [J]. RespirPhysiol,2001,128(3):331-348.
    [33] Hiraska Y,Kiohineoto C,Thnaka H,et al. Role of oxygen derived free Redicals in thePathogenesis of coxsaekie virus B3myoearditis in the mice[J].Cardiovascular Res,1999,27:957-961.
    [34] Seko Y, Takahashi N, Yagita H, et al. Expression of cytokine mRAN in murine heartswith acute myocarditis caused by coxsackievirus B3[J]. J Pathol,1997,183(1):105-108.
    [35] Liu YL, Wu W, Xue Y, et al. MicroRNA-21and-146b are involved in thepathogenesis of murine viral myocarditis by regulating TH-17differentiation [J]. ArchVirol,2013, doi:10.1007/s00705-013-1695-6[Epub ahead of print]
    [36] Kyto V, Saraste A, Saukko P, et al. Apoptotic cardiomyocyte death in fatal myocarditis[J]. Am J Cardiol,2004,94(6):746-750.
    [37] Devireddy LR, Jones CJ. Activation of caspases and p53by bovine herpes-virus1infection results in programmed cell death and efficient virus release [J]. J Virol,1999,73(5):3778-3788.
    [38] Ishiyama S, Hiroe M, Nishikawa T, et al. The Fas/FasL system is involved in thepathogenesis of autoimmune myocarditis in rats [J]. J Immunol,1998,161(9):4695-4701.
    [39] Yamada T, Matsumori A, Wang WZ, et al. Apoptosis in congestive heart failureinduced by viral myocarditis in mice[J]. Heart Vessels,1999,14(1):29-37.
    [40] James T C, Bysan i C, GreGory L. E xpression of apoptosis-related proteins inexperimental Coxsackie virus myocarditis [J]. Cardiovasc Res,1999,38(4):158-168.
    [41] Li X, Zhang J, Chen Z, et al. Both PI3K-and mTOR-Signaling Pathways Take Part inCVB3-Induced Apoptosis of HeLa Cells [J]. DNA Cell Biol,2013, DOI:10.1089/dna.2013.2003[Epub ahead of print]
    [42]荆志成,程显声,杨英珍.氯沙坦干预病毒性心肌炎恢复期、慢性期心脏胶原表达及心功能的实验研究[J].中华心血管病杂志,1999,27(2):140-143.
    [43] Kawai C. From myocarditis to cardiomyopathy: Mechanisms of inflammation and celldeath: Learning from the past for the future [J]. Circulation,1999,99(8):1091-1100.
    [44] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor2(Nrf2), aNF-E2-like basic leucine zipper transcriptional activator that binds to the tandemNF-E2P AP1repeat of the beta-globin locus control region[J]. ProcNatl Acad SciUSA,1994,91(21):9926-9930.
    [45] Itoh K, Igarashi K, Hayashi N, et al. Cloning and characterization of a novel erythroidcell-derived CNC family transcription factor heterodimerizing with the small Maffamily proteins[J]. Mol Cell Biol,1995,15(8):4184-4193.
    [46] Itoh K, Chiba T, Takahashi S, et al. An Nrf2Psmall Maf heterodimer mediates theinduction of phase ò detox ifying enzyme genes through antioxidant responseelements [J]. Biochem Biophys Res Commun,1997,236(2):3213-3221.
    [47] Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2coordinately regulates agroup of oxidative stress-inducible genes in macrophages [J]. J Biol Chem,2000,275(21):16023-16029.
    [48] Venugopal R, Jaiswal AK. Nrf1and Nrf2positively and c-Fos and Fra1negativelyregulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1gene[J].Proc Natl Acad Sci USA,1996,93(25):14960-14965.
    [49] Motohashi H, O. ConnorT, Katsuoka F, et al. Integration and diversity of theregulatory network composed of Maf and CNC families of transcription factors [J].Gene,2002,294(1-2):1-12.
    [50] McMahon M, Thomas N, ltoh K, et al. Redox-regulated turnover of Nrf2isdetermined by at least two spearat e prot ein domains, the redox-sensitive Neh2degronand the redox-insensit ive Neh6degron [J]. Biol Chem,2004,279(30):31556-31567.
    [51] Zhao CR, Gao ZH, Qu XJ. Nrf2-ARE signaling pathway and natural pro ducts forcancer chemo pr evention [J]. Cancer Epidemiol,2010,34(5):523-533.
    [52] Itoh K,Tong K I,Yamamoto M. Molecular mechanism activating Nrf2-Keap1pathway in regulation of adaptive response to electrophiles[J].Free Radic Biol Med,2004,36:1208-1213.
    [53] Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcriptionfactor A gene by nuclear respiratory factors: a potential regulatory link betweennuclear and mitochondrial gene expression in organelle biogenesis [J]. Proc N atl Acad Sci USA,1994,91(4):1309-1313.
    [54] Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase results inNRF-1activation and mitochondrial biogenesis [J]. Am J P hysiol Endocrinol Metab,2001,281(6): E1340-E1346.
    [55] KobayashiM, ltoh K, Suzuki T, et al. Identificat ion of the interactive interface andphylogenic conservation of the Nrf2-Keap1system [J].Genes Cells,2002,7(8):807-820.
    [56] Kang Ml, Kobayashi A, Wakabayashi N, et al. Scaff olding of Keap1to the actincytoskeleton controls the function of Nrf2as key regulator of cytoprotective phase2genes [J]. Proc Natl Acad Sci USA,2004,101(7):2046-2051.
    [57] Zipper LM, Mulcahy RT. The Keap1BTB/POZ dimerization function is required tosequester Nrf2in cytoplasm [J]. Biol Chem,2002,277(39):36544-36552.
    [58] Jain AK, Bloom DA, Jaiswal AK. Nuclear import and export signals in control ofNrf2[J]. J B iol Chem,2005,280(32):29158-29168.
    [59] Padman abh an B, T ong KI, Kobayashi A, et al. St ructural in sights into the similarmodes of Nrf2transcription factor recognition by the cytoplasmic repressor Keap1[J]. J Synchrotron Radiat,2008,15(3):273-276.
    [60] Wang W, Jaiswal AK. Nuclear fact or Nrf2and antioxidant response element regulateNRH: quinine oxidoreductase2(NQO2) gene expression and anioxidant induction [J].Free Radic Biol Med,2006,40(7):1119-1130.
    [61] Lee J M,Calkins M J,Chan K,et al. Identification of the NF-E2-relatedfactor-2-dependent genes conferring protection against oxidative stress in primarycortical astrocytes using oligonucleotidemicroarray analysis[J].J Biol Chem,2003,278:12029-12038.
    [62] Dinkova Kostova AT, Holtzclaw WD, Cole RN, et al. Direct evidence that sulfhydrylgroups of Keap1are the sensors regulat ing induct ion of phase2enzymes that protectagainst carcinogens and oxidants [J]. Proc Natl Acad Sci USA,2002,99(18):11908-11913.
    [63] Ltoh K, Wakabayashi N, Katoh Y, et al. keap1regulates both cytoplasmic nuclearshutt ling and degradation of Nrf2in response to electrophiles [J].Genes Cells,2003,8(4):379-391.
    [64] Li Y, Paonessa JD, Zhang Y. Mechanism of Chemical Activation of Nrf2[J]. PLoSONE,2012,7(4): e35122.
    [65] McMahon M, Thomas N, Itoh K, et al. Dimerization of substrate adaptors canfacilitate cullin-mediated ubiquitylation of proteins by a ‘‘tethering’’ mechanism: atwo-site interaction model for the Nrf2-Keap1complex [J]. J Biol Chem,2006,281:24756-24768.
    [66] Kobayashi A, Okawa Ml,Okawa H, et al. Oxidative stress sensor Keap1functions asan adaptor for Cul3-based E3ligase to regulate proteasomal degradation ofNrf2[J].Mol Cell Biol,2004,24(16):7130-7139.
    [67] Zhang DD, Lo SC, Cross JV, et al. Keap1is a redox-regulated substrate adaptorprotein for a Cul3-dependent ubiquit in ligase complex [J]. Mol Cell Biol,2004,24(24):10941-10953.
    [68] Li W, Jain MR, Chen C, et al. Nrf2Possesses a redox-in sensitive nuclear exportsignal overlapping with the leucine zipper motif [J]. J Biol Chem,2005,280(31):28430-28438.
    [69] Nguyen T, Sherratt PJ, Nioi P, et al. Nrf2controls constitutive and inducibleexpression of ARE-driven genes through a dynamic pathway involvingnucleocytoplasmic shuttling by Keap1[J]. J Biol Chem,2005,280(37):32485-32492.
    [70] Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2at Ser-40by proteinkinase C regulates antioxidant response element-mediated transcription [J]. J BiolChem,2002,277(45):42769-42274.
    [71] Park EJ, Lim JH, Nam SI, et al. Rottlerin induces heme oxygenase-1(HO-1)up-regulation through reactive oxygen species (ROS) dependent and PKCdelta-independent pathway in human colon cancer HT29cells [J]. Biochimie,2010,92(1):110-115.
    [72] Motohashi H, O. Connor T, Katsuoka F, et al. Integration and diversity of theregulatory network composed of Maf and CNC families of transcription Factors [J].Gene,2002,294(1-2):1-12.
    [73] Kwak MK, Wakabayashi N, Kensler TW. Chemo prevention through the Keap1-Nrf2signaling pathway by phase2enzyme inducers [J]. Mutation Res,2004,555(1/2):133-148.
    [74] Min KJ, Kim JH, Jou I, et al. A denosine induces hemeoxygenase-1expressioninmicroglia through the activation of phosphatidylinositol3-kinase and nucler factorE2-related factor2[J]. Glia,2008,56(9):1028-1037.
    [75] Zipper LM, Mulcahy RT. Erk activation is required for Nrf2nuclear localizationduring pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatorygene expression in HepG2cells [J]. Toxicol Sci,2003,73(1):124-134.
    [76] Li MH, Cha YN, Surh YJ. Peroxynitrite induces HO-1expression viaPI3K/Akt-dependent activation of NF-E2-related factor2in PC12cells [J]. FreeRadic Biol Med,2006,41(7):1079-1091.
    [77] Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospholipids regulateexpression of ATF4and VEGF in endothelial cells via NRF2-dependent mechanism:novel point of convergence between electrophilic and unfolded protein stresspathways [J]. Arterioscler Thromb Vasc Biol,2010,30:1007-1013.
    [78] Hosoya T, Maruyama A, Kang MI, et al. Differential responses of the Nrf2-Keap1system to laminar and oscillatory shear stresses in endothelial cells [J]. J Biol Chem,2005;280:27244-27250.
    [79] Jyrkkanen HK, Kansanen E, Inkala M, et al. Nrf2regulates antioxidant geneexpression evoked by oxidized phospholipids in endothelial cells and murine arteriesin vivo [J]. Circ Res,2008,103: e1-e9.
    [80] Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection viaactivation of the antioxidant transcription factor Nrf2[J]. Am J Physiol Heart CircPhysiol,2010,299: H18-H24.
    [81] Ungvari ZI, Bailey-Downs L, Gautam T, et al. Adaptive induction of NF-E2-relatedfactor-2-driven antioxidant genes in endothelial cells inresponse to hyperglycemia [J].Am J Physiol Heart Circ Physiol,2011,300: H1133-H1140.
    [82] Zakkar M, Van der Heiden K, Luong LA, et al. Activation of Nrf2in endothelialcells protects arteries from exhibiting a proinfl amatory state [J]. Arterioscler ThrombVasc Biol,2009,29(11):1851-1857.
    [83] Dai G, Vaughn S, Zhang Y, et al. Biomechanical forces in atherosclerosis-resistantvascular regions regulate endothelial redox balance via phosphoinositol3-kinase/Akt-dependent activation of Nrf2[J]. Circ Res,2007,101:723-733.
    [84] Bailey-Downs LC, Mitschelen M, Sosnowska D, et al. Liver-specific knockdown ofIGF-1decreases vascular oxidative stress resistance by impairing the Nrf2-dependentantioxidant response: a novel model of vascular aging [J]. J Gerontol A Biol Sci MedSci,2012,67(4):313-29.
    [85] Ungvari Z, Bailey-Downs L, Gautam T, et al. Age-associated vascular oxidative stress,Nrf2dysfunction and NF-kB activation in the non-human primate Macaca mulatta [J].J Gerontol A Biol Sci Med Sci,2011,66:866-875.
    [86] Ungvari Z, Bailey-Downs L, Sosnowska D, et al. Vascular oxidative stress in aging:ahomeostatic failure due to dysregulation of Nrf2-mediated antioxidant response [J].Am J Physiol,2011,301: H363-H372.
    [87] Collins AR, Lyon CJ, Xia X, et al. Age-accelerated atherosclerosis correlates withfailure to upregulate antioxidant genes [J]. Circ Res,2009,104: e42-e54.
    [88] Ungvari ZI, Bailey-Downs L, Gautam T, et al. Adaptive induction of NF-E2-relatedfactor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia[J]. Am J Physiol Heart Circ Physiol,2011,300: H1133-H1140.
    [89] Ungvari Z, Bailey-Downs L, Gautam T, et al. Age-associated vascular oxidative stress,Nrf2dysfunction and NF-kB activation in the non-human primate Macaca mulatta [J].J Gerontol A Biol Sci Med Sci,2011,66:866-875.
    [90] Collins AR, Lyon CJ, Xia X, et al. Age-accelerated atherosclerosis correlates withfailure to upregulate antioxidant genes [J]. Circ Res,2009,104: e42-e54.
    [91] Gao P, Shen F, Gabriel RA, et al. Attenuation of brain response to vascular endothelialgrowth factor-mediated angiogenesis and neurogenesis in aged mice [J]. Stroke,2009,40:3596-3600.
    [92] Facchetti F, Monzani E, Cavallini G, et al. Effect of a caloric restriction regimen onthe angiogenic capacity of aorta and on the expression of endothelin-1during ageing[J]. Exp Gerontol,2007,42:662-667.
    [93] Ungvari Z, Kaley G, de Cabo R, et al. Mechanisms of vascular aging: newperspectives [J]. J Gerontol A Biol Sci Med Sci,2010,65:1028-1041.
    [94] Valcarcel-Ares MN, Gautam T, Warrington JP, et al. Disruption of Nrf2signalingimpairs angiogenic capacity of endothelial cells: implications for microvascularaging[J]. J Gerontol A Biol Sci Med Sci,2012,67(8):821-829.
    [95] Alexander RW. Atherosclerosis as disease of redox-sensitive genes [J]. Trans Am ClinClimatol Assoc,1998,109:129-145.
    [96] Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflame-mation in atherosclerosis[J]. J Cell Mol Med,2010,14:70-78.
    [97] Cho CG, Kim HJ, Chung SW, et al. Modulation of glutathione and thioredoxinsystems by calorie restriction during the aging process [J]. Exp Gerontol,2003,38:539-548.
    [98] Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2causes age-related loss of glutathione synthesis, which is reversible with lipoic acid[J]. Proc Natl Acad Sci USA,2004,101:3381-3386.
    [99] Ungvari Z, Bailey-Downs L, Gautam T, et al. Age-associated vascular oxidativestress, Nrf2dysfunction, and NF-{kappa}B activation in the nonhuman primateMacaca mulatta[J]. J Gerontol A Biol Sci Med Sci,2011,66:866-875.
    [100] Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associatedwith a reduced risk of total and cardiovascular disease mortality [J]. Am J Clin Nutr,2011,94:240-246.
    [101] Moore MC, Guzman MA, Schilling PE, Strong JP. Dietary-atherosclerosis study ondeceased persons [J]. J Am Diet Assoc,1981,79(6):668-672.
    [102] Dyntar D, Eppenberger-Eberhardt M, Maedler K, et al. Glucose and palmitic acidinduce degeneration of myofibrils and modulate apoptosis in rat adultcardiomyocytes [J]. Diabetes,2001,50:2105-2113.
    [103] Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occurthrough a ceramide-independent pathway [J]. J Biol Chem,2001,276:14890-14895.
    [104] Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53andp53-regulated genes leading to myocyte cell death [J]. Diabetes,2001,50:2363-2375.
    [105] Wang S, Leonard SS, Ye J, et al. The role of hydroxyl radical as a messenger in Cr(VI)-induced p53activation [J]. Am J Physiol Cell Physiol,2000,279: C868-C875.
    [106] Qiu T, Xie P, Liu Y, et al. The profound effects of microcystin on cardiac antioxidantenzymes, mitochondrial function and cardiac toxicity in rat [J]. Toxicology,2009,257:86-94.
    [107] Faraonio R, Vergara P, Di Marzo D, et al. p53suppresses the Nrf2-dependenttranscription of antioxidant response genes [J]. J Biol Chem,2006,281:39776-39784.
    [108] Hye Jin Wang, Eun Young Lee, Seung Jin Han,et al. Dual pathways of p53mediatedglucolipotoxicity-induced apoptosis of rat cardiomyoblast cell: activation of p53proapoptosis and inhibition of Nrf2-NQO1antiapoptosis [J]. Metabolism Clinicaland Experimengtal,2012,61:496-503.
    [109] Tsai CY, Wang CC, Lai TY, et al. Antioxidant effects of diallyl trisulfide on highglucose-induced apoptosis are mediated by the PI3K/Akt dependent Activation ofNrf2in cardiomyocytes [J]. Int J Cardiol,2013, pii: S0167-5273(12)01632-01644.
    [110] Roe, M. T., Halabi, A. R., Mehta, R. H., et al. Documented traditional cardiovascularrisk factors and mortality in non-ST-segment elevation myocardial infarction [J]. AmHeart J,2007,153(4),507-514.
    [111] Ram′on RODRIGO, Juan C. PRIETO, and Rodrigo CASTILLO. Cardioprotectionagainst ischaemia/reperfusion by vitamins C and E plus n-3fatty acids: molecularmechanisms and potential clinical applications [J]. Clinical Science,2013,124,1-15.
    [112] Zhang Y, SanoM, Sh inmuraK, et al.4-hydroxy-2-nonenal protects against cardiacischemia-reperfusion injury via the Nrf2-dependent pathway [J]. JMol Cell Cardiol,2010,49(4):576-586.
    [113] Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiacresponses to hemodynamic stress [J]. Arterioscler Thromb Vasc Biol,2009,29:1843-1850.
    [114] Li J, Zhang C, Xing Y, et al. Up-regulation of p27(kip1) contributes toNrf2-mediated protection against angiotensin II induced cardiac hypertrophy [J].Cardiovasc Res,2011,90:315-324.
    [115] Xing Y, Niu T, Wang W, et al. Triterpenoid Dihydro-CDDO-Trifluoroethyl AmideProtects against Maladaptive Cardiac Remodeling and Dysfunction in Mice: ACritical Role of Nrf2[J]. PLoS ONE,2012,7(9): e44899.
    [116] Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiacresponses to hemodynamic stress [J]. Arterioscler Thromb Vasc Biol,2009,29(11):1843-1850.
    [117] Wei Wu, Quan Qiu, Huihui Wang, et al. Nrf2Is Crucial to Graft Survival in a RodentModel of Heart Transplantation [J]. Oxid Med Cell Longev,2013,2013:919313
    [118] Liu B, Zhao J, Liu Y, et al. Physicochemical properties of the inclusion complex ofpuerarin and glucosyl-β-cyclodextrin [J]. J Agric Food Chem,2012,60(51):12501-12507.
    [119] Guerra MC, Speroni E, Broccoli M, et al. Comparison between chinese medical herbPueraria lobata crude extract and its main isoflavone puerarin antioxidant propertiesand effects on rat liver CYP-catalysed drug metabolism [J]. Life Sci,2000,67(24):2997-3006.
    [120] Yeung DK, Leung SW, Xu YC, et al. Puerarin, an isoflavonoid derived from Radixpuerariae, potentiates endothelium-independent relaxation via the cyclic AMPpathway in porcine coronary artery [J]. Eur J Pharmacol,2006,552(1-3):105-11.
    [121] Hsu FL, Liu IM, Kuo DH, et al. Antihyperglycemic effect of puerarin instreptozotocin-induced diabetic rats [J]. J Nat Prod,2003,66(6):788-792.
    [122] Yan LP, Chan SW, Chan AS, et al. Puerarin decreases serum total cholesterol andenhances thoracic aorta endothelial nitric oxide synthase expression in diet-inducedhypercholesterolemic rats [J]. Life Sci,2006,79(4):324-330.
    [123] Kim KM, Jung DH, Jang DS, et al. Puerarin suppresses AGEs-induced inflammationin mouse mesangial cells: a possible pathway through the induction of hemeoxygenase-1expression [J]. Toxicol Appl Pharmacol,2010,244(2):106-113.
    [124] Yu Z, Li W. Induction of apoptosis by puerarin in colon cancer HT-29cells [J].Cancer Lett,2006,238(1):53-60.
    [125] Liu B, Zhao J, Liu Y, et al. Physicochemical properties of the inclusion complex ofpuerarin and glucosyl-β-cyclodextrin [J]. J Agric Food Chem,2012,60(51):12501-12507.
    [126] Michihara S, Tanaka T, Uzawa Y, et al. Puerarin exerted anti-osteoporotic actionindependent of estrogen receptor-mediated pathway [J]. J Nutr Sci Vitaminol (Tokyo),2012,58(3):202-209.
    [127] Xiong FL, Sun XH, Gan L, et al. Puerarin protects rat pancreatic islets from damageby hydrogen peroxide [J]. Eur J Pharmacol,2006,529(1-3):1-7.
    [128] Xuan B, Zhou YH, Yang RL,et al. Improvement of ocular blood flow and retinalfunctions with puerarin analogs [J]. J Ocul Pharmacol Ther,1999,15(3):207-216.
    [129] Hao LN, Zhang YQ, Shen YH, et al. Effect of puerarin on retinal pigment epithelialcells apoptosis induced partly by peroxynitrite via Fas/FasL pathway [J]. Int JOphthalmol,2010,3(4):283-287.
    [130] Song, X.P., Chen, P.P., Chai, X.S. Effects of puerarin on blood pressure and plasmarenin activity in spontaneously hypertensive rats [J]. Acta Pharmacol,1988, Sinica9,55-58.
    [131] Gao, L., Ji, X., Song, J., et al. Puerarin protects against ischemic brain injury in a ratmodel of transient focal ischemia [J]. Neurol Res,2009,31:402-406.
    [132] Zhang, S., Chen, S., Shen, Y., et al. Puerarin induces angiogenesis in myocardium ofrat with myocardial infarction [J]. Biol Pharm Bull,2006,29(5),945-950.
    [133] Yan, L.P., Chan, S.W., Chan, A.S.C., et al. Puerarin decreases serum total cholesteroland enhances thoracic aorta endothelial nitric oxide synthase expression indiet-induced hypercholesterolemic rats [J]. Life Sci,2006,79,324-330.
    [134] Han, R.M., Tian, Y.X., Becker, E.M., et al. Puerarin and conjugate bases as radicalscavengers and antioxidants: molecular mechanism and synergism with beta-carotene[J]. J Agric Food Chem,2007,55(6),2384-2391.
    [135] Bai QH,Li WM,Liu HT, et al. Puerarin antagonizes activation effect of LPS on N9microglia cells [J].Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010,26(3):227-230.
    [136] Lu, X.R., Gao, E., Xu, L.Z., et al. Puerarin beta-adrenergic receptor blocking effect[J]. Chinese Medical Journal,1987,100:25-28.
    [137] Song, X.P., Chen, P.P., Chai, X.S. Effects of puerarin on blood pressure and plasmarenin activity in spontaneously hypertensive rats [J]. Acta Pharmacologica Sinica,1988,9:55-58.
    [138] Ye, X.Y., Song, H., Lu, C.Z. Effect of puerarin injection on the mRNA expressionsof AT1and ACE2in spontaneous hypertension rats [J]. Chinese Journal of IntegratedTraditional and Western Medicine,2008,28,824-827.
    [139] Attisano, L., Wrana, J.L. Signal transduction by the TGF-beta superfamily [J].Science,2002,296:1646-1647.
    [140] Divakaran, V., Adrogue, J., Ishiyama, M., et al. Adaptive and maladaptive effects ofSMAD3signaling in the adult heart after hemodynamic pressure overloading [J].Circ Heart Fail,2009,2(6):633-642.
    [141] Euler-Taimor, G., Heger, J. The complex pattern of SMAD signaling in thecardiovascular system [J]. Cardiovascular Research,2006,69:15-25.
    [142] Wang, B., Omar, A., Angelovska, T., et al. Regulation of collagen synthesis byinhibitory Smad7in cardiac myofibroblasts [J]. American Journal of Physiology,2007,293:H1282-H1290.
    [143] Liu XJ,Zhao J,Gu XY. The effects of genistein and puerarin on the activation ofnuclear factor-kappaB and the production of tumor necrosis factor-alpha in asthmapatients [J]. Pharmazie,2010,65(2):127-131.
    [144] Miao, W.N., Shen, Y.J., Zhen, X.R. Effect of puerarin on K+channel of isolatedventricular myocytes in guinea pig [J]. Zhongguo Ying Yong Sheng Li Xue ZaZhi/Chinese Journal of Applied Physiology,2002,8:155-158.
    [145] Hua Zhang, Li Zhang, Qing Zhang. et al. Puerarin: a novel antagonist to inwardrectifier potassium channel (IK1)[J]. Mol Cell Biochem,2011,352(1-2):117-123.
    [146] Halliwell, B. and Gutteridge, J. M. C. Free Radicals in Biology and Medicine [J].Oxford University Press,2002,3:617-783.
    [147] Conner, E. M. and Grisham, M. B., Inflammation, free radicals and antioxidants [J].Nutrition,1996,12:274-277.
    [148] Zheng P,Ji G,Ma Z,et al.Therapeutic effect of puerarin on non-alcoholicrat fattyliver by improving leptin signal transduction through JAK2/STAT3pathways [J].Am J Chin Med,2009,37(1):69-83.
    [149] Ohmanjin. Antioxidative eomponents of kudzu root [J]. Nongop kwahak yougu,1990,17(l):52-64.
    [150] Feng YP,Zhang JY,Zeng GY. Effeet of puera daidreino adrenoeeptors [J]. AetaPharmaeol Sin,1984,5(4):238-241.
    [151] Zhu LH,Wang L,Wang D,et al.Puerarin attenuates high-glucoseand diabetes-induced vascular smooth muscle cell proliferation by blocking PKCbeta2/Rac1-depen-dent signaling [J]. Free Radic Biol Med,2010,48(4):471-482.
    [152] Gao, Q., Pan, H.Y., Qiu, S., et al. Atractyloside and5-hydroxydecanoate block theprotective effect of puerarin in isolated rat heart [J]. Life Sciences,2006,79,217-224.
    [153] Fan, L., Dennis, D.O., Wand, W.J.P. Pharmacologic studies on Radix Puerariae:effectof puerarin on regional myocardial blood flow and cardiac hemodynamics in dogswith acute myocardial ischaemia [J]. Chinese Medical Journa,1985:l98,821-832.
    [154] Liu, Q., Lu, Z., Wang, L. Restrictive effect of puerarin on myocardial infarct area indogs and its possible mechanism [J]. Journal of Tongji Medical University,2000,20:43-45.
    [155] Zhang, S., Chen, S., Shen, Y., et al. Puerarin induces angiogenesis in myocardium ofrat with myocardial infarction [J]. Biological&Pharmaceutical Bulletin,2006,29:945-950.
    [156] Lambert, J.M., Lopez, E.F., Lindsey, M.L. Macrophage roles following myocardialinfarction [J]. International Journal of Cardiology,2008,130:147-158.
    [157] Zhang, S.Y., Chen, G., Wei, P.F., et al. The effect of puerarin on serum nitric oxideconcentration and myocardial eNOS expression in rats with myocaridal infarction [J].Journal of Asian Natural Products Research,2008,10:323-328.
    [158] Hemmings, DG. Signal transduction underlying the vascular effects ofsphingosine1-phosphate and sphingosylphosphorylcholine [J]. Naunyn Schmiedebergs ArchPharmacol,2006,373(1):18-29.
    [159] Pan ZY,Bao ZS,Wu ZM,et al.The myocardial protective effects of puerarin onSTZ-induced diabetic rats [J]. Fen Zi Xi Bao Sheng Wu Xue Bao,2009,42(2):137-144.
    [160] Ying-Ying Chen, Jie Chen, Xin-Mei Zhou,et al. Puerarin protects human umbilicalvein endothelial cells against high glucoseinduced apoptosis by upregulating hemeoxygenase-1and inhibiting calpain activation [J]. Fundamental&ClinicalPharmacology,2012,26:322-331.
    [161] Dong, K., Tao, Q.M., Xia, Q., et al. Endothelium-independent vasorelaxant effect ofpuerarin on rat thoracic aorta [J]. Zhongguo Zhong Yao Za Zhi/China Journal ofChinese Materia,2004,29:981-984.
    [162] Yeung, D.K., Leung, S.W., Xu, Y.C., et al. Puerarin, an isoflavonoid derived fromRadix puerariae, potentiates endotheliumindependent relaxation via the cyclic AMPpathway in porcine coronary artery [J]. European Journal of Pharmacology,2006,552:105-111.
    [163] Hwang YP,Choi CY,Chung YC,et al. Protective effects of puerarin on carbontetrachloride-induced hepatotoxicity [J]. Arch Pharm Res,2007,30(10):1309-1317.
    [164] Quan, D.Q., Xu, G.X., Wu, X.G. Studies on preparation and absolute bioavailabilityof a self-emulsifying system containing puerarin [J]. Chem Pharm Bull,2007,55,800-803.
    [165] Souto, E.B., Muller, R.H. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes [J]. Handb Exp Pharmacol,2010,115-141.
    [166] Li, Z., Yu, L., Zheng, L., Geng, F. Studies on crystallinity state of puerarin loadedsolid lipid nanoparticles prepared by double emulsion method [J]. J Therm AnalCalorim,2010,99,689-693.
    [167] Moy SS, Nadler JJ, Young NB, et al. Mouse behavioral tasks relevant toautism:phenotypes of10in bred strains [J]. Behav Brain Res,2007,176(1):4-20.
    [168]张俭,黄星群,刘建军.BALB/c小鼠繁殖性能的观察及分析[J].四川动物,2006,25(1):179-181.
    [169]崔小岱,马连华,许峥,等.制造病毒性心肌炎动物模型毒株的比较[J].中华儿科杂志,2000,38(2):83-85.
    [170]杨秋,余宏.临床病毒学[M].北京:中国医药科技出版社,2000,265-267.
    [171] Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates theinduction of phase II detoxifying enzyme genes through antioxidant responseelements [J]. Biochem Biophys Res Commun,1997,236(2):313-22.
    [172] Chan K, Kan YW. Nrf2is essential for protection against acute pulmonary injury inmice [J]. Proc Natl Acad Sci USA,1999,12731-12736.
    [173] Ishii T, Itoh K, Takahashi S, et al.Transcription factor Nrf2coordinately regulates agroup of oxidative stress-inducible genes in macrophages [J]. J Biol Chem,2000,275(21):16023-16029.
    [174] Moinova HR, Mulcahy RT. Up-regulation of the human gamma-glutamylcysteinesynthetase regulatory subunit gene involves binding of Nrf-2to an electrophileresponsive element [J]. Biochem Biophys Res Commun,1999,261(3):661-668.
    [175] Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in thepathogenesis of pulmonary fibrosis: a potential role for Nrf2[J]. Antioxid RedoxSignal,2008,10(2):321-332.
    [176] Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do westand?[J]. Mol Cancer Ther,2008,7:3470–3479.
    [177] Zhang Y, Tang L. Discovery and development of sulforaphane as a cancerchemopreventive phytochemical [J]. Acta Pharmacol Sin,2007,28:1343–1354.
    [178] Paonessa JD, Ding Y, Randall KL, et al. Identification of an unintended consequenceof Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteractingchemopreventive intervention [J]. Cancer Res,2011,71:3904–3911.
    [179] Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubinby microsomal heme oxygenase [J]. Proc Natl Acad Sci USA,1968,61(2):748-755.
    [180] Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase. Characterizationof the enzyme [J]. J Biol Chem,1969,244(23):6388-6394.
    [181] Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin:stimulation of microsomal heme oxygenase by hemin [J]. J Lab Clin Med,1970,75(3):410-421.
    [182] Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel targetfor the modulation of the inflammatory response [J]. Nat Med,1996,2(1):87-90.
    [183] Hangaishi M, Ishizaka N, Aizawa T, et al. Induction of heme oxygenase-1can actprotectively against cardiac ischemia/reperfusion in vivo [J]. Biochem Biophys ResCommun,2000,279(2):582-588.
    [184] Nagata S. Apoptosis by death factor [J]. Cell,1997,88(3):355-365.
    [185] Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95(APO-1/Fas) signaling pathways[J]. EMBO J,1998,17(6):1675-1687.
    [186] Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors [J]. CurrOpin Cell Biol,1999,11(2):255-260.
    [187] Pinkoski MJ, Green DR. Fas ligand, death gene [J]. Cell Death Differ,1999,6(12):1174-1181.
    [188] Kotlo KU, Yehiely F, Efimova E, et al. Nrf2is an inhibitor of the Fas pathway asidentified by Achilles' Heel Method, a new function-based approach to geneidentification in human cells [J]. Oncogene,2003,22(6):797-806.
    [189] Eghbali M, Tomek R, Sukhatme VP, et al. Differential effects of transforminggrowth factor-beta1and phorbol myristate acetate on cardiac fibroblasts. Regulationof fibrillar collagen mRNAs and expression of early transcription factors [J]. CircRes,1991,69(2):483-490.
    [190] Waltenberger J, Usuki K, Fellstrom B, et al. Platelet-derived endothelial cell growthfactor. Pharmacokinetics, organ distribution and degradation after intravenousadministration in rats [J]. FEBS Lett,1992,313(2):129-132.
    [191] Lijnen PJ, Petrov VV, Fargard RH. Induction of cardiac fibrosis by transforminggrowth factor-beta(1)[J]. Mol Genet Metab,2000,71(1-2):418-435.
    [192] Hai-quan Tao. Qingfeng Meng. Ming-hui Li, et al. HP-β-CD-PLGA nanoparticlesimprove the penetration and bioavailability of puerarin and enhance the therapeuticeffects on brain ischemia–reperfusion injury in rats [J]. Naunyn-Schmiedeberg's ArchPharmacol,2013,386:61-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700