牡丹花芽内休眠解除相关基因的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹是中国传统十大名花之一,正如许多多年生木本植物一样,每年冬季其花芽都将进入休眠状态,而且必须经过一定时期的低温处理才能彻底解除休眠,保证来年正常的开花展叶。牡丹花芽的休眠是典型的内休眠,迄今为止,对于内休眠调控的分子机理还知之甚少。以牡丹为材料,分离芽休眠调控的相关基因,研究其分子功能,对于揭示芽内休眠机理,人为调控花期,保证反季节催花的成功,具有重要的理论意义和实践价值。
     本研究以牡丹品种‘鲁荷红’为试材,通过观察自然低温条件下花芽的形态解剖变化,确定了花芽休眠解除的进程,认为冬季自然低温条件下(日平均气温为0-10℃)处理30-35d可彻底解除休眠。利用抑制性差减杂交(SSH)技术,以休眠解除芽的RNA为“tester”,休眠芽的RNA为“driver”,构建花芽休眠解除相关基因的差减cDNA文库,共筛选到31个与内休眠解除相关的差异基因,根据blast分析结果进行其分子功能预测,可将这31个基因分为9类:(1)结构功能:PsRPS7A,PsRPSL21,PsRPS,PsRPSL10,PsRPS7B,PsEDR,PsRPSL37,PsRPSL19,PsRPSL1,PsRPSL15,PsTUB;(2)激酶活性:PsSERK1;(3)蛋白质结合活性:PsXRCC1和PsPOB;(4)其他物质结合活性:PsMPT;(5)转运子活性:PsAEP;(6)其他酶活性:PsGA20和PsSAMT;(7)其他分子功能:PsPII;(8)未知功能基因:PsBDR1,PsBDR2,PsARP,PsFB2,PsCXE,PsDHN;(9)无blast匹配序列:PsBDR3-8。
     根据候选基因的功能推测和前人关于植物休眠调控的研究结果,选取了8个可能与内休眠解除相关的基因(PsPII,PsDHN,PsGA20,PsARP,PsMPT,PsCXE,PsSERK1和PsPOB),采用northern blot和RT-PCR技术分析了它们在花芽内休眠解除不同时期的表达模式变化,认为牡丹花芽内休眠解除的过程伴随着复杂物质代谢和能量消耗,差异基因主要参与植物生长发育及抗性胁迫等方面的调控,而且低温诱导的核糖体蛋白的表达可能也与花芽内休眠解除有关。
     为了深入研究生长素抑制蛋白基因(PsARP)在花芽内休眠解除过程中的分子作用,通过RACE-PCR技术扩增了其cDNA全长,对其编码的蛋白质氨基酸序列进行生物信息学分析,认为牡丹中该基因属于ARP/DRM基因家族,含有两个保守结构域,无信号肽及跨膜结构域。PsARP基因的亚细胞定位研究进一步证明该基因编码的蛋白为一细胞质蛋白。不同低温处理条件下,PsARP的表达模式变化的研究表明,该基因在低温诱导牡丹花芽内休眠解除过程中的表达量逐渐升高,高表达的PsARP mRNA可在正常生长条件下被恢复,表明该基因在花芽内休眠解除过程中可能起促进作用,但对正常生长条件下花芽发育的作用不大,推测PsARP的表达变化与花芽内束缚生长素和自由生长素之间的转变有关,自由生长素通过与生长素抑制蛋白(PsARP)基因相互作用,从而在转录后水平上调控花芽内休眠的进程,间接说明了生长素在调控花芽内休眠解除过程中也起一定的作用。PsARP在拟南芥中的超表达研究表明,转基因植株与野生型植株的表型差异不大,进一步说明该基因在植物生长发育过程中的作用不大。
     线粒体磷酸转移子基因(PsMPT)是从差减cDNA文库筛选到的另一在低温诱导花芽内休眠解除过程中表达量明显升高的克隆。通过RACE-PCR技术扩增PsMPT的全长cDNA序列,对其编码的蛋白质氨基酸序列进行生物信息学分析,发现PsMPT与其他物种中分离到的线粒体磷酸转移子(MPTs)的氨基酸序列相似性很高,均具有六个保守的跨膜结构域,而且其活性中心含有一个保守的半胱氨酸(Cys)残基。采用northern blot技术进一步分析PsMPT在不同低温处理条件下的表达模式变化,发现PsMPT的表达模式变化与花芽内休眠解除的进程及花芽内ATP含量的变化相吻合,推测PsMPT为一冷诱导表达基因,在花芽内休眠解除过程中,高表达的PsMPT促进ATP的合成,提高植物体内ATP/ADP的比值,从而使花芽内休眠解除所需的相关蛋白大量合成,彻底解除花芽内休眠。迄今为止,本研究首次证明了线粒体磷酸转移子参与花芽内休眠解除的过程,初步揭示了休眠解除过程伴随着ATP含量显著增加的分子机理。另外,PsMPT在拟南芥中的超表达研究表明,转基因拟南芥不同发育阶段的植株鲜重、叶片长度及叶片中ATP含量均比野生型植株的相应指标高,而且开花期提前4-5天,进一步说明了该基因的超表达增加了ATP的合成,促进了植株的生长发育。
Tree peony (Paeonia suffruticosa Andr.) is one of ten famous traditional landscape flowers in China. Like many perennial woody plants, the floral buds will enter the“dormant”state every winter and must go through a period of chilling treatment to break dormancy before flowering well and developing normal leaves next year. The dormancy of tree peony floral buds is endo-dormancy. Until now, the molecular mechanism of endo-dormancy is not clear. It is helpful to explain the mechanism of endo-dormancy and further control the flowering time by isolating different expression genes from tree peony floral buds and studying their molecular functions. These kinds of studies have important academic significances and practical values.
     In our study, tree peony (Paeonia suffruticosa)‘Lu He Hong’was used as plant materials. By observing the floral buds anatomical changes under natural chilling treatment in winter to determine the progress of dormancy releasing, we regarded that about 30-35 d under the average temperature of about 0-10℃is required to break floral buds dormancy completely. A subtractive cDNA library was developed to study genes associated with the release of dormant floral buds in tree peony by using the RNA from burst floral buds as“tester”and that from dormant floral buds as“driver”. By differential screening, 31 genes which were associated with bud dormancy release were obtained. According to their blast results, the molecular functions of them were presumed as following: (1) structural molecular activity group which included PsRPS7A, PsRPSL21, PsRPS, PsRPSL10, PsRPS7B, PsEDR, PsRPSL37, PsRPSL19, PsRPSL1, PsRPSL15, PsTUB. (2) PsSERK1 was in kinase activity group. (3) PsXRCC1 and PsPOB in protein binding group. (4) PsMPT in other binding group. (5) PsAEP in transporter activity group. (6) PsGA20 and PsSAMT in other enzyme activity group. (7) PsPII in other molecular functions group. (8) PsBDR1, PsBDR2, PsARP, PsFB2, PsCXE, PsDHN in unknown molecular functions group. (9) The other six unmatched sequences (PsBDR 3-8) were classified into‘no matches’group.
     According to their putative function and literatures previously reporting an association with dormancy changes, eight cDNA clones, PsPII, PsDHN, PsGA20, PsARP, PsMPT, PsCXE, PsSERK1 and PsPOB were chosen from different molecular functional groups for further analysis by northern blot and semi-quantitative RT-PCR. The expression profiles of them during floral bud dormancy release indicated that bud breaking is a high energy and nutrition-consuming process. The transcriptional expressions of the isolated genes are related to growth regulation and stress response. Moreover, low-temperature-induced ribosomal proteins may be involved in floral bud breaking.
     In order to determine the molecular roles of auxin-repressed protein (PsARP) in bud dormancy release of tree peony, the full-length cDNA sequence was amplified by RACE-PCR and the deduced amino acid sequence were analyzed with the ExPASy Molecular Biology Sever (http://expasy.org/tools/). The results suggested that PsARP belongs to ARP/DRM gene family. And the putative protein contains two conserve domains without signal peptide and transmembrane domains. The subcellular localization of PsARP was further proved that putative PsARP is cytosolic protein. The expression pattern of PsARP under different chilling treatments showed up-regulated PsARP mRNA would accelerate bud dormancy release but not control bud development under normal conditions. So we presumed that the expression level of PsARP maybe relate to the interconversion between conjugated IAA and free IAA in floral buds. The free IAA probably affects floral bud dormancy process on post-transcriptal level by reacting with auxin-repressed protein (PsARP), implying indirectly that IAA also play a certain role in controlling floral bud dormancy release in tree peony. The characteristics of PsMPT-overexpression Arabidopsis plants by comparing to wild-type ones further indicated that PsARP maybe not control the normal growth.
     A putative mitochondrial phosphate transporter (PsMPT) gene is another clone from the subtractive cDNA library, which showed higher expression by chilling treatment during floral bud dormancy. By RACE-PCR, the full-length cDNA of PsMPT was obtained and the putative protein was also analyzed. The deduced amino acid sequence of PsMPT showed high identities with mitochondrial phosphate transporters in various organisms. The PsMPT protein also has the common six transmembrane domains while the conserved Cys residue exists in catalytic center. Northern bolt results and the characteristics of PsMPT-overexpression Arabidopsis plants indicated that the changes of the expression profile of PsMPT were correlated well with the process of floral bud dormancy release and the changes of the ATP content in floral buds under different chilling treatments, suggesting that PsMPT is a cold-responsive gene in tree peony and higher expressed PsMPT would promote the ATP synthesis and then directly increase the ATP/ADP ratio which regulates significant proteins synthesis to break floral bud dormancy release completely. To our knowledge, it is the first time to show the involvement of MPT in bud dormancy release and elucidate primarily the molecular mechanism of ATP content increasing in dormancy release.
引文
1. 高东升,束怀瑞,李宪利.几种落叶果树 H2O2 含量变化与自然休眠关系的研究. 园艺学报, 2002,29:20-23
    2. 高东升,夏宁.休眠桃树枝条中碳水化合物的含量变化和外源生长调节剂对打破休眠的效应.植物生理学通讯. 1999,35:10-12
    3. 高志民,王莲英.植物生长延缓剂在牡丹上的应用. 北京林业大学学报.1997,19:99-102
    4. 高志民,王莲英.有效积温与牡丹催花研究初报.中国园林.2002,18:86-88
    5. 顾克余,袁自强,翟虎渠.抑制差减杂交技术研究进展.生物技术通讯.1999,2:13-16
    6. 黎云祥.珍稀濒危植物珙桐(Davidia involucrate)苞片差异表达基因的克隆与分析.博士学位论文.2002
    7. 李宪利,闫田力,高东升,等.低温在诱导油桃芽解除休眠过程中对代谢的影响.中国生态农业学报.2002,10:27-29
    8. 刘波,郑国生,闫志佩,等.低温处理对牡丹春节催花及营养类物质变化的影响.西北植物学报.2004b,24:1635-1639.
    9. 刘波,郑国生,赵海军.不同低温时数对花芽解除休眠的影响.山东农业科学.2004,2:41-42
    10. 刘克长,刘怀屺,张继祥.牡丹花前温度指标的确定与花期预报.山东农业大学学报.1991,22:
    397-402
    11. 罗文波,于淑娟,高大维.抑制性扣除杂交技术(SSH)及其研究进展.生物技术.2000,10:
    37-40
    12. 罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定.生物化学与生物物理学报.2003,35:554-560
    13. 马旭俊,朱大海.植物超氧化物岐化酶(SOD)的研究进展.遗传.2003,25:225-231
    14. 任小林,李海峰,弓德强.秋施乙烯利和赤霉素对牡丹萌芽及开花的影响.西北植物学报. 2004,24:895-898
    15. 王莲英.牡丹品种花芽形态分化观察及花型成因分析.园艺学报. 1986,13:203-208
    16. 汪德娥,王宗海.牡丹南移栽培与催花技术研究.江西林业科技. 1999,6:9-13
    17. 王宗正,韩莉,孔兰静.低温处理对牡丹开花和展叶的影响.园艺学报. 1996,23:307-308
    18. 韦军. 苹果叶芽和花芽在生长期和休眠期内源多胺的变化.园艺学报,1995,22:99-101
    19. 魏小勇.应用抑制性差减杂交技术构建铁皮石斛差减 cDNA 文库的探讨.广州中医药大学学报. 2005,22:320-326
    20. 喻衡.牡丹.上海:上海科技出版社.1998
    21. 曾日中,段翠芳,黎瑜,等.茉莉酸刺激的橡胶树乳胶 cDNA 消减文库的构建及其序列分析. 热带作物学报. 2003,24:1-6
    22. 张银东,刘艳鸣,冯仁军,等.玉米温敏型核雄性不育基因差异表达分析.热带作物学报. 2004,25:66-71
    23. 张祖新,唐万虎,郑用琏.玉米 S 型细胞质雄性不育与恢复花粉中基因表达差异分析.长江大学学报(自科版). 2005,2:59-65
    24. 赵海军,张万堂,郑国生,等.牡丹深休眠特性和解除方法.山东林业科技. 2000,5:44-46
    25. 赵潜龙,陈云,崔映平.甘肃紫斑牡丹大田催花实验初报.甘肃林业科技.1996,2:62-65
    26. 赵孝如.菏泽牡丹栽培技术.天津.天津科学技术出版社.1996
    27. 郑国生.牡丹开花生理特性与冬季成花机理的研究.山西农业大学博士研究生毕业论文.2003
    28. 郑国生,盖树鹏,孟丽,等.低温解除牡丹芽休眠过程中内源激素的变化.林业科学,2008(已接收)
    29. Abel S and Theologis A. Early genes and auxin action. Plant Physiol. 1996, 111: 9-17
    30. Agarwal S and Grover A. Isolation and transcription profiling of low-O2 stress-associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype. Ann. Bot. 2005, 96: 831-844
    31. Anderson J V, Chao W S and Horvath D P. A current review on the regulation of dormancy in vegetative buds. Weed Sci. 2002, 49: 581-589
    32. Arora R, Rowland L J, Tanino K. Induction and release of bud dormancy in woody perennials: A science comes of age. HortSci. 2003, 38: 911-921
    33. Arora R M, Wisniewski E, Scorza R. Cold accilimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica L. Batch). Plant Physiol. 1992, 99: 1562~1568
    34. Bartel B. Auxin biosynthesis. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 1997, 48: 51-56
    35. Bassani M, Neumann P M, Gepstein S. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Mol. Bio. 2004, 56: 367-380
    36. Beveridge C A, Symons G M, Turnbull C G. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol. 2000, 123: 689–697
    37. Bigras F J and D’Aoust A L. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings. Can. J. For. Res. 1993, 23: 219-228
    38. Bodson M. Changes in adenine-nucleotide content in the apical bud of Sinapis alba L. during floral transition. Planta. 1985, 163: 34-37
    39. Bonhomme M, Rageau R, Gendraud M. Influence of temperature on the dynamics of ATP, ADP and non-adenylic triphosphate nucleotides in vegetative and floral peach buds during dormancy. Tree Physiol. 2000, 20: 615-621
    40. Bonzon M, Hug M, Wagner E, et al. Adenine nucleotides and energy charge evolution during the induction of flowering in spinach leaves. Planta. 1981, 152: 189-194
    41. Borras-Hidalgo O, Thomma B P, Collzao C, et al. EIL2 transcription factor and glutathionesynthetase are required for defense of tobacco against tobacco blue mold. Mol. Plant Microbe Interact. 2006, 19: 399-406
    42. Brunel N, Leduc N, Poupard P, et al. KNAP2, a class I KN1-like gene is a negative marker of bud growth potential in apple trees (Malus domestica [L.] Borkh.). J. Exp. Bot. 2002, 53: 2143–2149
    43. Campbell M A, Suttle J C, Sell T W. Changes in cell cycle status and expression of p34cdc2 kinase during potato tuber meristem dormancy. Physiol. Plant. 1996, 98: 743-752
    44. Caprio J M and Quamme H A. Weather conditions association with apple production in the Okanagan Valley of British Columbia. Can. J. Plant Sci. 1999, 79:129-137
    45. Champagnat P. Rest and activity in vegetative buds of trees. Ann. Sci. For. 1997, 46 (suppl.): 9-26
    46. Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The ClAVATA and shoot meristemless loci competitively regulate meristem activity in Arabidopsis. Development 1996, 122: 1567–1575
    47. Cline M G. Apical dominance. Bot. Rev. 1991, 57: 318–358
    48. Cline M G. The role of hormones in apical dominance: new approaches to an old problem in plant development. Physiol. Plant. 1994, 90: 230–237
    49. Cline M G. Concepts and terminology of apical dominance. Am. J. Bot. 1997, 84: 1064-1069
    50. Clough S J and Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743
    51. Corbineau F. and Come D. Dormancy of cereal seeds as related to embryo sensitivity to ABA and water potential. In: Viemont JD, Grabbe J (eds). Dormancy in plants-from whole plant behavior to cellular control. Wallingford UK. CABI Press. 2000, pp.183-191
    52. D’ Agostino I B and Kieber J J. Molecular mechanisms of cytokinin action. Curr. Opin. Plant Biol. 1999, 2: 359-364
    53. Davies R T, Goetz D H, Lasswell J, et al. IAR3 encodes an auxin conjugate hyrolase from Arabidopsis. Plant Cell. 1999, 11: 365-376
    54. De Croos J N, McNally J D, Palmieri F, et al. Upregulation of the mitochondrial phosphate carrier during freezing in the wood frog Rana sylvatica: Potential roles of transporters in freeze tolerance. J Bioenerg. Biomembr. 2004, 36: 229-235
    55. den Boer B.G.W. and Murray J.A.H. Control of plant growth and development through manipulation of cell-cycle genes. Curr. Opin. Biotechnol. 2000, 11: 138-145
    56. Devitt M L and Stafstrom J P. Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Plant Mol. Biol. 1995, 29: 255-265
    57. Diatchenko L, Chenchik A, Sietert P. Suppression subtractive hybridization: A method for generating subtracted cDNA libraries starting from poly (A+) or total RNA. In RT-PCR Method for gene cloning and analysis. Eds. Siebert, P. & Larrick, J. (BioTechniques Books, MA), 1998, pp. 213-239
    58. Diatchenco L, Lau Y C, Campbell A P. et al, Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. PNAS. 1996, 93: 6025-6030
    59. Dolce V, Fiermonte G, Messina A, et al. Nucleotide sequence of a human heart cDNA encoding the mitochondrial phosphate carrier. DNA Seq. 1991, 2: 133-135
    60. Duggan D J, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nat. Genet. 1999, 21(1 Suppl.): 10-14
    61. Erez A, Faust M, Line M J. Changes in water status in peach buds on induction, development and release from dormancy. Hort. Sci. 1998, 73: 111-123
    62. Fabian-Marwedel T, Umeda M and Sauter M. The rice cyclin-dependent kinase-activating kinase R2 regulates S-phase progression. Plant Cell. 2002, 14: 197-210
    63. Faivre-Rampant O, Cardle L, Marshall D, et al. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J. Exp. Bot. 2004, 55: 613-622
    64. Falvre-Rampant O, Cardle L, Marshall D, et al. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J. Experi. Bot. 2004, 55: 603-612.
    65. Fan X D and Harberd N P. Auxin promote Arabidopsis root growth by modulating gibberellin response. Nature. 2003, 421: 740–743
    66. Fedoroff N V. Cross-talk in abscisic acid signaling. Sci. STKE. 2002, 9(140): RE10
    67. Ferreira G C and Pedersen P L. Phosphate transporter in mitochondria: Past accomplishments, present problems, and future challenges. J Bioenerg. Biomembr. 1983, 25: 483–492.
    68. Ferreira G C, Pratt R D, Pedersen P L. Energy-linked anion transport. Cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J. Biol. Chem. 1989, 264: 15628-15633
    69. Foyer C, Lopez-Delgado H, Dat J, et al. Hydrogen peroxide- and glutathione-associated mechanism of acclimatoury stress tolerance and signaling. Physiol. Plant. 1997, 100: 241-254
    70. Francis D and Sorrell D A. The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul. 2001, 33: 1–12
    71. Freeman D, Riou-khamlichi C, Oakenfull E A, et al., Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). J. Exp. Bot. 2003, 54: 303-308
    72. Frewen B E, Chen H H, Howe G T, et al. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics. 2000, 154: 837-845
    73. Freyre R, Warnke S, Sosinski B, et al. Quantitative trait locus analysis of tuber dormancy in diploidpotato (Solanum spp.). Theor. Appl. Genet. 1994, 89: 474-480
    74. Fuchigami L H and Wisniewski M. Quantifying bud dormancy: physiological approaches. HortSci. 1997, 32: 618~629
    75. Gepstein S, Sabehi G., Carp M J, et al. Large-scale identification of leaf senescence-associated genes. Plant J. 2003, 36: 629-642
    76. Gévaudant F, Pétel G, Guilliot A. Differential expression of four members of the H+-ATPase gene family during dormancy of vegetative buds of peach trees. Planta. 2001, 212: 619-626
    77. Gilmour S J and Thomashow M F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 1991, 16: 1233-1240
    78. Gurskaya N G, Diatchenko L, Chenchik A, et al. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: Cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal. Biochem. 1996, 240: 90-97
    79. Gutierrez C, Ramirez-Parra E, Castellano M M, et al., G1 to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 2002, 5: 480-486
    80. Hagen G and Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49: 373-385
    81. Hauagge R and Cummins J N. Genetics of length of dormancy period in Malus vegetative buds. J. Amer. Soc. Hort. Sci. 1991, 116: 121-126
    82. Healy J M, Menges M, Doonan J H, et al. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem. 2001, 276: 7041–7047
    83. Hecht V, Vielle-Calzada J P, Hartog M V, et al. The Arabidopsis somatice smbryogenesis receptor kinase1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 2001, 127: 803-816
    84. Horvath D P and Anderson J V. The effect of photosynthesis on underground adventitious shoot bud dormancy/quiescence in leafy spurge (Euphorbia esula). In 2nd International Symposium On Plant Dormancy: Short Communications(Viémont, J-D. and Crabbé,J., eds) 2000, pp.30-34, Presses de l’University d’Angers
    85. Horvath D P, Chao W S, Anderson J V. Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol. 2002, 128: 1439-1446
    86. Hu Y, Bao F and Li J. Promotive effect of brassinosteroids on cell division involves a distinct CydD3-induction pathway in Arabidopsis. 2000, 24: 693-701
    87. Hubank M and Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl. Acid. Res. 1994, 22: 5640-5648
    88. Hwang E W, Kim K A, Park S C, et al. Expression profiles of hot pepper (Capsicum annuum) genesunder cold stress conditions. J. Biosci. 2005, 30: 101-111
    89. Jeknic Z, Tony H, Chen H. Changes in protein profiles of poplar tissues during the induction of bud dormancy by SD photoperiods. Plant Cell Physiol. 1999, 40: 25-35
    90. Jia Y, Anderson J V, Horvath D P, et al. Subtracive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula). Plant Mol. Biol. 2006, 61: 329-344
    91. Jian L C, Li P H, Sun L H, et al. Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical cells during the induction of dormancy. J. Expt. Bot. 1997, 48: 1195-1207
    92. Kaplan R S, Pratt R, Pedersen P L. Purification and characterization of the reconstitutively active phosphate transporter from rat liver mitochondria. J. Biol. Chem. 1986, 261: 12767-12773
    93. Khanizadeh S, Buszard D, Zarkadas C G. Seasonal variation of hydrophilic, hydrophobic, and charged amino acids in developing apple flower buds. Plant Nature. 1994, 17: 2025-2030
    94. Kiiskinen M, Korhonen M, Kangasj?rvi J. Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): Ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth). Plant Mol. Biol. 1997, 35: 271-279
    95. Kim J Y, Chuang Y S, Paek K H, et al. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization. Mol. Cell. 1999, 9: 392-397
    96. Kim M, Kim S, Ki B D. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol. Cell. 2001, 11:213-219
    97. Kim H B, Lee H, Oh C J, et al. Expression of EuNOD-ARP1 encoding auxin-repressed protein homolog is up regulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellate. Mol. Cel. 2007, 23:115-121
    98. Kim K Y, Park S W, Chuang Y S, et al. Molecular cloning of low-temperature-inducible ribosomal protein from soybean. J. Exp. Bot. 2004, 55: 1153-1155
    99. Kolbe H V and Wohlrab H. Sequence of the N-terminal formic acid fragment and location of the N-ethylmaleimide-binding site of the phosphate transport protein from beef heart mitochondria. J. Biol. Chem. 1985, 260: 15899-15906
    100. Krawiarz K and Szczotka Z. Adenine nucleotides and energy charge during dormancy breaking in embryo axes of Acer platanoides and Fagus sylvatica seeds. Acta Physiol. Planta. 2005, 27: 455-461
    101. Kuan J and Saier M H Jr. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 1993, 28: 209-233
    102. Kumagai A and Dunphy W G. The Cdc25 protein controls tyrosine dephosphorylation of the Cdc2 protein in a cell-free system. Cell. 1991, 64: 903–914
    103. Kwaaitaal M A C J, de Vries S C, Russinova E. Arabidopsis thaliana somatic embryogenesis receptor kinase1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis. Protoplasma. 2005, 226: 55-65
    104. Lang G A, Early J D, Martin G C. Endo-,para-,and eco-dormancy: physiological terminology and classification for dormancy research. HortSci. 1987, 22: 371-377
    105. Lang G A and Tao J. Dormant Peach flower bud proteins associated with chill unit accumulation of negation temperature. HortSci. 1991, 26: 733
    106. Law R D and Suttle J C. Transient decreases in methylation at 50-CCGG-30 sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol. Biol. 2003, 51: 437–447
    107. Lawson D M, Hemmat M, Weeden N F. The use of molecular marker to analyze the inheritance of morphological and developmental traits in apple. J. Amer. Soc. Hort. Sci. 1995, 120: 532-537
    108. Liang P and Arthur B P. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992, 257: 967-971
    109. Linder L. Re-analyzing historical records of winter injury in Finnish apple orchards. Can. J. Plant Sci. 2001, 81: 479-485
    110. Lisitsyn N and Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259: 946-954
    111. Mathews H, Clendennen S K, Caldwell C G, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification and transport. Plant Cell. 2003, 15: 1689-1703
    112. Mironov V V, De Veylder L, Van Montagu M, et al. Cyclin-dependent kinase and cell division in plants-the nexus. Plant Cell. 1999, 11: 509-522
    113. Morris C J, Anderberh R J, Goldmark J S. Molecular cloning and expression of abscisic-acid responsive genes in embryos of dormant wheat seeds. Plant Physiol. 1991, 95: 814-824
    114. Muthalif M M, and Rowland L G. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol. 1994, 104: 1439-1447
    115. Murphy J B and Noland T L. Temperature effects on oxidative metabolism of dormant sugar pine seeds. Plant Physiol. 1982, 70: 1410-1412
    116. Mysore K. S, D’Ascenzo M D, He X, et al. Overpression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruitfly. Plant Physiol. 2003, 132: 1901-1912
    117. Nagar P K and Sood S. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol. Plant. 2006, 28: 165-169
    118. Nagira Y, Shimamura K, Hirai S, et al. Identification and characterization of genes induced foranthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots using suppression subtractive hybridization, cDNA microarrays, and RNAi techniques, J. Plant Res. 2006, 119: 217-230
    119. Nakamori K, Takabatake R, Umehara Y, et al. Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter. Plant Cell Physiol. 2002, 43: 1250-1253
    120. Nir G, Shulman Y, Fanberstein L et al., Changes in the activity of catalase (EC1.11.1.6) in relation to the dormancy of grapevine (Vitis vinifera L.) buds. Plant physiol. 1986, 81: 1140~1142
    121. Nitsh J P. Growth responses of woody plants to photoperiodic stimuli. Proc. Amer. Soc. Hort. Sci. 1957, 70: 512-525
    122. Normanly J. Auxin metabolism. Physiol. Plant. 1997, 100: 431-442.
    123. Normanly J and Bartel B. Redundancy as a way of life-IAA metabolism. Curr. Opin. Plant Biol. 1999, 2: 207-231
    124. Oakenfull E A, Riou-khamlichi C and Murray J A. Plant D-type cyclins and the control of G1 progression. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2002, 357: 749-760
    125. Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003, 15: 1591–1604
    126. Olsen J E, Junttila O, Nilsen J, et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylenth for growth and prevents cold acclimatization. Plant J. 1997, 12: 1339-1350
    127. Or E, Vilozny I, Eyal Y, et al. The transduction of the signal for grape dormancy breaking, induced by hydrogen cyanamide, may involve the SNF-like protein kinase GDBRPK. Plant Mol. Biol. 2000, 43: 483-489
    128. Or E, Vilozny I, Fennell A, et al. Dormancy in grape buds: Isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci. 2002, 162: 121-130
    129. Owens J N and Molder M. A study of DNA and mitotic activity in the vegetative apex of Douglas fir during the annual growth cycle. Can. J. Bot. 1973, 51: 1395-1409
    130. Pacey-Miller T, Scott K, Ablett E, et al. Genes associated with the end of dormancy in grapes. Funct. Integr. Genomics. 2003, 3: 144-152
    131. Park S and Han K H. An auxin-repressed gene (RpARP) from black locus (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation. Tree Physiol. 2003, 23: 815-823
    132. Perl M. ATP accumulation in peanut seeds during seed-ripening and during the dormancy-breaking process. J. Exp. Bot. 1982, 33: 449-455
    133. Perry T O. Dormancy of trees in winter. Science. 1971, 171: 29-36
    134. Pesquet E, Ranocha P, Legay S, et al. Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol. 2005, 139: 1821-1839
    135. Phelps A, Briggs C, Mincone L, et al. Mitochondrial phosphate transport protein. Replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path. Biochem. 1996, 35: 10757-10762
    136. Phelps A, Schobert C T, Wohlrab H. Cloning and characterization of the mitochondrial phosphate transport protein from yeast Saccharomyces cerevisiae. Biochem. 1991, 30: 248-252
    137. Ramaih S, Guedira M, Paulsen G M. Relationship of indole acetic acid and tryptophane to dormancy and preharvest sprouting of wheat. Funct. Plant Biol. 2003, 30: 939-945
    138. Reddy A S N. Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene. Plant Mol. Bio. 1990, 14: 127-136
    139. Rinne P L, Kaikuranta P M, van der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 2001, 26: 249-264
    140. Riou-Khamlichi C, Menges M, Healy J M S and Murray J A H. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cel. Biol. 2000,
    20: 4513-4521
    141. Rohde A, Van Montagu M, Inze D, et al. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta. 1997, 201: 43-52
    142. Rorat T. Plant dehydrins-tissue location, structure and function. Cel. Mol. Biol. Lett. 2006, 11: 536-556
    143. Rosin F M, Hart J K, Horner H T, et al. Overexpression of a KNOTTED-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol. 2003, 132: 106–117
    144. Rowland L J and Arora R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 1997, 126: 119-144
    145. Runswick M J, Powell S J, Nyren P, et al. Sequence of the bovine mitochondrial phosphate carrier protein: Structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 1987, 6: 1367-1373
    146. Russell P and Nurse P. Negative regulation of mitosis by wee1 +, a gene encoding a protein kinase homolog. Cell. 1987, 49: 559–567
    147. Sahr T, Voigt G, Schimmack W, et al. Low-level radio caesium exposure alters gene expression in roots of Arabidopsis. New Phytol. 2005, 168: 141-148
    148. Sanchez L, Weidmann S, Arnould C, et al. Pseudomonas fluorescens and Glomus mosseae triggerDMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol. 2005, 139: 1065-1077
    149. Sauter M. Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J. 1997, 11: 181–190
    150. S?venstrand H, Brosché M, Strid ?. Regulation of gene expression by low levels of ultraviolet-B radiation in Pisum sativum: isolation of novel genes by suppression subtractive hybridization. Plant Cell Physiol. 2002, 43: 402-410
    151. Schroers A, Kr?mer R, Wohlrab H. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondrial depends on the presecnce of a single cysteine. J Bio. Chem. 1997, 272: 10588-10564
    152. Sean D G M, Joanna J P, Kim M P, et al. The carboxylesterase gene family from Arabidopsis thaliana. J. Mol. Evol. 2003, 57: 487-500
    153. Seeley S D. Dormancy-The black box. HortSci. 1994, 29: 1248
    154. Sherr C J. G1 phase progression: cycling on cue. Cell. 1994, 79: 551-555
    155. Shimizu-Sato S. and Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol. 2001, 127: 1405–1413
    156. Siegenthaler P A and Biotto C. Variations of adenyl nucleotide content in two potato cultivars stored at 15°C. I. Method for the determination of ATP level and first results. Potato Res. 1994, 37: 151-160
    157. Sozzi G O and Martínez G P. Energetic metabolism in vegetative and flower peach (Prunus persica) primordial under different thermal regimes. Ciencia e Investigación Agraria. 2004, 31: 101-109
    158. Stafstrom J P, Ripley B D, Debitt M L, et al. Dormancy-associated gene expression in pea axillary buds. Planta. 1998, 205: 547-552
    159. Steiner C, Bauer J, Amrhein N, et al. Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. Biochim. Biophys. Acta. 2003, 1625: 123-133
    160. Stuhlfelder C, Lottspeich F, Mueller M J. Purification and partial amino acid sequences of an esterase from tomato. Phytochem. 2002, 60: 233-240
    161. Sylvie F M, Mélanie B, Olivier L, et al. Physiological characterization of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. Planta. 2005, 223: 28-39
    162. Takabatake R, Hata S, Taniguchi M, et al. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopsis. Plant Mol. Biol. 1999, 40: 479-486
    163. Takabatake R, Siddique A B, Kouchi H, et al. Characterization of a Saccharomyces cerevisiae genethat encodes a mitochondrial phosphate transporter-like protein. J Biochem. 2001, 129: 827-833
    164. Terefe D. and Tatlioglu T. Isolation of a partial sequence of a putative nucleotide sugar epimerase, which may involve in stamen development in cucumber (Cucumis sativus L.), Theor. Appl. Genet. 2005, 111: 1300-1307
    165. Thigpen S P and Sachs R M. Changes in ATP in relation to floral induction and initiation in Pharbitis nil. Physiol. Plant. 1985, 65: 156-162
    166. Tillberg E. Levels of Endogenous indole-3-acetic acid in achenes of Rosa rugosa during dormancy release and germination. Plant Physiol. 1984, 76: 84-87
    167. Tohbe M, Mochioka R, Horiuchi S, et al. The role of glutathione in the onset of endodormancy of grape buds. J. Jan. Soci. Hort. Sci. 1999, 67: 912-916
    168. Toorop P E, Barroco R M, Engler G, et al. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta. 2005, 221: 637-647
    169. Van Huystee R B, Weiser C J, Li P H. Cold acclimation in Cornus stolonifera under natural and controlled photoperiod and temperature. Bot. Gaz. 1967, 128: 200-205
    170. Velculescu V E, Zhang L, Vogeistein B, et al. Serial analysis of gene expression. Science. 1995, 270: 484-487
    171. Wang H, Fowke L C, Crosby W L. A plant cyclin dependent kinase inhibitor gene. Nature. 1997, 386: 451–452
    172. Wang H, Qi Q, Schorr P, et al. ICK1, a cyclin-dependent pritein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 1998, 15: 501-510
    173. Wang M L, Hsu C M, Chang L C, et al. Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth. Plant Cell Physiol. 2004, 45: 1519-1528
    174. Wang S Y, Jiao H J, Faust M. Changes in the activities of catalase, peroxidase, and polyphenol oxididase in apple buds during bud break induced by thidiazuron. Plant Growth Regul. 1991, 10: 33-39
    175. Watt D A. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J. Exp. Bot. 2003, 54: 1163-1174
    176. Wawrzyńska A, Lewandowska M, Hawkesford M J, et al. Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. J. Exp. Bot. 2005, 56: 1575-1590
    177. Welling A, Kaikuranta P, Rinne P. Photoperiodic induction of dormancy and freezing tolerance in Betula puvescens. Involvement of ABA and dehydrins. Physiol. Plant. 1997, 100: 119-125
    178. Welling A, Rinne P, Annell V A, et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch. J Experi. Bot, 2004, 55: 507-517
    179. Whitelam G C and Devlin P. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Env. 1997, 20: 752-758
    180. Yao Y, Ni Z, Zhang Y, et al. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol. Bio. 2005, 58: 367-384
    181. Yazaki K, Bechthold A, Tabata M. Nucleotide sequence of a cDNA from Lithospermum erythrorhizon homologous to PR-1 of parsley. Plant Physiol. 1995, 108: 1331-1332
    182. Zeng F, Zhang X, Zhu L, et al. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol. Bio. 2006, 60: 167-183
    183. Zhang Y, Mian M A, Chekhovskiy K, et al. Differential gene expression in Festuca under heat stress conditions. J. Exp. Bot. 2005, 56: 897-907
    184. Zhao Y H, Wang G Y, Zhang J P, et al. Expressed sepquence tags (ESTs) and phylogenetic analysis of floral genes from a paleoherb species, Asarum caudigerum. Ann. Bot. 2006, 98: 157-163
    185. Zhu-Salzman K, Salzman R A, Ahn J E, et al. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 2004, 134: 420-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700