生物可降解脂肪族聚酯制备、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物可降解脂肪族聚酯——聚乳酸(PLA)、聚-3-羟基丁酸酯(P3HB)、聚ε-己内酯(PCL)以及它们共聚物,是目前研究和应用最为广泛生物医用材料之一。脂肪族聚酯主要由环状内酯开环聚合制备,而聚合过程中使用催化剂/引发剂显著影响聚合产物分子量、微观结构和性能;同时,用作生物医用材料,其使用安全性,特别是所用催化剂毒性,越发受到关注。因此,催化剂有效性和安全性显得突出地重要,吸引人们不断地努力研究和开发高效、安全内酯开环聚合催化剂来制备脂肪族聚酯。
     本论文研究了环烷氧锡、二丁基镁、辛酸镁、辛酸亚锡等化合物催化或引发L-、DL-丙交酯、β-丁内酯、ε-己内酯等内酯开环聚合,制备了一系列脂肪族聚酯,采用~1HNMR、~(13)CNMR、FT-IR、GPC、DSC和XRD等手段分析和表征了聚合物化学结构和性能,并研究了聚合产物微观结构与性能关系。
     1.合成了两种结构确定环烷氧锡化合物SnA和SnB作为β-丁内酯(β-BL)开环聚合的引发剂,制得了高分子量聚-3-羟基丁酸酯(P3HB)。聚合物分子量依赖于单体引发剂配比(M/I),当M/I=10000时获得最高分子量M_n为25万,M_w为38万,伸长率达1100%,断裂强度23MPa。聚合温度降低,引发剂活性降低,聚合速率下降,间同组分增加。采用膨胀计法研究了环烷氧锡SnB引发β-丁内酯聚合动力学,表明链增长反应对单体浓度和引发剂浓度反应级数分别为1和0.56。采用~(13)CNMR分析了聚合物微观结构,二单元组序列结构分析表明所得P3HB以间同结构为主,在60%-80%之间,并求得两种引发剂SnA和SnB所得P3HB间同全同结构活化能差值分别为-11和-13 KJ/mol,三单元组序列结构分析符合链端立构控制Bernoulli模型。
     2.考查了二丁基镁引发β-丁内酯溶液聚合动力学,表明对单体和引发剂均为一级反应,求得反应活化能为30 kJ/mol。聚合物端基分析表明,聚合链一端为来自引发剂的丁基,另一端为来源于消除反应丁烯酸酯或来自水解后羟基,证明引发和增长过程是单体酰氧键断裂而不是烷氧键断裂插入增长链中,在此基础上提出了二丁基镁引发β-丁内酯聚合增长机理。
     3.以二丁基镁为催化剂、聚乙二醇为引发剂,成功地制得了一系列不同嵌段长度聚ε-己内酯-聚乙二醇-聚ε-己内酯两亲三嵌段共聚物。结晶性和热性能测试结果表明,共聚物PCL/PEG两段相对长度或组成比例显著影响共聚物结晶性和熔融行为,处在中间链段PEG结晶行为受到两端PCL链段限制,而PEG对PCL结晶影响较小;PEG段只有相对于PCL足够长时才能结晶,且当PEG段较长时,共聚物出现共结晶和共熔融现象。
     4.研究了辛酸镁催化DL-或L-丙交酯和ε-己内酯开环聚合,表明辛酸镁对内酯开环聚合具有良好活性,成功地制得了一系列不同单体配比共聚物。K-R法估算出L-丙交酯和ε-己内酯竞聚率分别为r_(LA)=23和r_(CL)=0.22,共聚单体竞聚率相差较大表明将形成渐变型共聚物。而~(13)CNMR微观结构分析表明,共聚过程中酯交换反应显著改变了共聚物序列结构及分布,使得平均序列长度降低,趋向无规共聚物。
     共聚物组成显著影响单元序列长度,各序列长度随相应单体加入量增加而增长。共聚物单元序列分布随共聚物投料比、反应时间和温度而改变,趋向于无规分布。反应初期主要是一级酯交换反应,二级酯交换反应导致CLC序列结构在反应后期才观察到。
     考察了LA构型对共聚合酯交换反应、无规化和共聚物微观链结构与性能影响,DL-LA比L-LA二级酯交换系数(T_Ⅱ[CLC])稍低,相应单元序列长度稍长,游程数R稍小,结果表明与ε-CL共聚合,DL-LA发生酯交换反应和无规化程度比L-LA相对要小。
     共聚物热性能和结晶性分析结果表明,共聚物结晶性与单元性质和序列长度密切相关。所有共聚物只观察到一个玻璃化转变温度T_g,符合无规共聚物Fox方程,说明所得共聚物为无规共聚物,或者说包含有相容性嵌段成分共聚物。
     5.考察了月桂醇作为分子量控制剂对合成聚乳酸分子量影响。实验结果表明,月桂醇是一种良好分子量控制剂,加入分子量控制剂是一种很好控制聚乳酸分子量手段,可以通过改变月桂醇加入量来控制聚合物分子量。以辛酸亚锡为催化剂、月桂醇为分子量控制剂催化DL-丙交酯、L-丙交酯和乙交酯在高真空条件下本体开环聚合,制得了不同分子量乳酸均聚物(PLA)和不同配比丙交酯乙交酯共聚物(PLGA)。
     6.考察了所制备聚乳酸均聚物和乳酸乙醇酸共聚物薄膜在汉克斯人工模拟体液中降解行为,筛选了适合作为冠脉支架表面载药涂层聚合物。试验结果表明:PLGA降解速度可以通过调节共聚物组成和分子量来控制,随着乙交酯含量增加,共聚物PLGA降解速率逐渐加快,乙交酯含量为30%-40%PLGA一个月内降解可达60%~80%,符合冠脉支架表面载药涂层降解速率要求,适宜用作该涂层材料。
Aliphatic polyesters such as polylactide(PLA),poly-3-hydroxybutyrates(P3HB), poly(ε-caprolactone)(PCL)and their copolymers are the most intensively studies and widely used as biodegradable medical materials.Continuous efforts have been devoted to the development of new catalysts and initiators for the ring opening polymerization of lactide and lactones.
     In the present thesis,ring opening polymerizations of DL-lactide,L-lactide,glycolide, (R,S)-β-butyrolactone andε-caprolactone have been carried out by using stannous octoate, cyclic tin alkoxides,dibutylmagnesium and magnesium octoate as catalysts or initiators.The structure and properties of homopolymers and copolymers were characterized and analyzed by ~1HNMR,~(13)CNMR,FT-IR,GPC,DSC and XRD.The detailed results and conclusions are as follows:
     1.Two well-designed cyclic tin alkoxides(SnA and SnB)were used as initiators for the ring opening polymerization of(R,S)β-butyrolactone(β-BL)to prepare high molecular weight P3HB.Polymerizations ofβ-BL were successfully carried out using high vacuum technique, being molar ratio of monomer to initiator(M/I)above 5 000 or around 20℃.Molecular weight of the polymer is largely dependent on an amount of initiator and inversely proportional to that.The kinetics ofβ-BL polymerization initiated with SnB was investigated at various M/I using dilatometer.The results showed that chain propagation rate forβ-BL polymerization was first order in monomer concentration and 0.56 order in initiator concentration,respectively.Analysis of diad sequence distributions at various polymerization temperatures for SnA and SnB showed the activation energy of ca.-11 and -13 kJ/mol for syndiotactic versus isotactic diad formation.Triad stereosequence distributions of P3HB samples agreed well with the Bernoullian statistical model of chain-end control.
     2.The kinetics ofβ-BL polymerization imitated by dibutylmagnesium(Bu_2Mg)was examined and showed a first order both in monomer concentration and initiator concentration. The value of activation energy obtained for Bu_2Mg-initiatedβ-BL polymerization is ca.30 KJ/mol.The end group analysis suggested that monomer inserted into the growing chains proceeding through the coordination-insertion mechanism based on the acyl-oxygen bond scission rather than the alkyl-oxygen bond cleavage of theβ-BL ring.A possible mechanism for the initiation and propagation procedures ofβ-BL polymerization with Bu_2Mg was proposed.
     3.Two series of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)(PCL-PEG-PCL)triblock copolymers with different lengths of each block were synthesized successfully by ring opening polymerization ofε-CL using Bu_2Mg as catalyst and PEG as macroinitiator in 1,4-dioxane solution at 70℃.The triblock structure and molecular weight of the copolymers were analyzed and confirmed by ~1H NMR,~(13)C NMR,FT-IR and GPC.The crystallization and thermal properties of the copolymers were investigated by WAXD and DSC.The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers.The crystallization of PEG block was strongly restricted by the crystallization of the lateral PCL blocks,whereas the crystallization of PCL blocks was not suppressed by the middle PEG block.
     4.Ring opening copolymerization of L- or DL-LA withε-CL catalyzed by magnesium octoate were investigated in bulk.The reactivity ratios of L-LA andε-CL were measured to be r_(LA)= 23 and r_(CL)= 0.22,respectively,using the Fineman-Ross method.The results(r_(LA)>1 and r_(CL)<1)imply that L-LA monomer added preferentially into the copolymer chain end in the first step of the reaction,resulting in the formation of long blocks of lactidyl unit in the polymer chain.Two modes of transesterification occurred during the copolymerization process and played an important role in the redistribution of comonomer sequences.The repeat unit sequence distribution of the copolymers was varied more or less toward a random sequence distribution by variation in the comonomer feed ratio,reaction time and temperature. The copolymer composition has a profound influence on their average block length, increasing as the relative proportions of the corresponding ective monomers increased.
     The effect of lactide configuration on the transesterification and randomization of the copolymer chain microstructure was determined.The DL-lactide-based copolymers have a more blocky structure and lower transesterification coefficient of the second mode than those containing L-lactide.It is less sensitive to transesterification reactions in the case of DL-LA. The thermal properties and crystallization of the copolymers were investigated by DSC and XRD.The results showed that a close relationship between copolymer crystallinity and the length of the copolymer sequences.All copolymers exhibited a single T_g determined from the second heating scan.The experimental T_gs were in agreement with the calculated values from Fox equation.It can be concluded that the copolymers are random,or comprise a mixture of compatible block copolymers.
     5.A series of poly(DL-lactide)(PDLLA),poly(L-lactide)(PLLA)and poly(L-lactide-co-glycolide)(PLGA)with various molecular weights and various copolymer composition were prepared via ring-opening polymerization of DL-lactide or L-lactide and glycolide catalyzed by stannous octoate in vacuum.The molecular weight of these polymers was controlled by using a molecular weight controller,lauryl alcohol.The number-average molecular weight of PDLLA,ranging from 14800 to 63300 Da,was controlled by the amount of molecular weight controller used.The effect of the amount of molecular weight controller on the polymer molecular weight was studied.The results indicated that the polymer molecular weight has a log-log linear relationship with the amount of lauryl alcohol.
     6.The resulting PDLLA,PLLA and PLGA were further investigated with respect to their degradation behaviors.The biodegradation rate of polymers films in Hank's solution were monitored by the changes of weight loss,inherent viscosity and morphology of the samples.PLGA containing a higher content of glycolide degraded faster than those containing a lower content of glycolide.The results demonstrated that the degradation rate of PLGA could be adjusted by changing the compositions and molecular weight of the copolymer and enhanced with the glycolide content increasing.The results indicated that the PLGA copolymer containing glycolide from 30 to 40%is a potential material as coating on drug elusion stents.
引文
[1] Penczek S, Cypryk M, Duda A, et al. Living ring-opening polymerizations of heterocyclic monomers.Prog Polym Sci, 2007,32: 247-282.
    
    [2] Albertsson AC, Varma IK. Aliphatic polyesters: synthesis, and applications. Adv Polym Sci 2002, 157:1-40.
    
    [3] Kricheldorf H R. Syntheses and application of polylactides. Chemospere, 2001,43:49-54.
    [4] Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition.Prog Polym Sci, 2002,27: 1123-1163.
    [5] Gupta A P, Kumar V. New emerging trends in synthetic biodegradable polymers - Polylactide: A critique. European Polymer Journal, 2007,43:4053-4074.
    [6] 于翠萍,李希,沈之荃.丙交酯开环均聚合.化学进展, 2007,19: 136-144.
    [7] Kricheldorf H R, Dunsing R. Polylactones 8. Mechanism of the cationic polymerization of L,L-dilactide.Makromol Chem, 1986,187: 1611-1625.
    [8] Kricheldorf H R, Ingrid K-S. Polylactones 19. Anionic polymerization of L-lactide in solution. Makromol Chem, 1990,191:1057-1066.
    [9] Kricheldorf H R, Boettcher C. Polylactones 26. Lithium alkoxide-initiated polymerizations of L-lactide.Makromol Chem, 1993,194:1665-1669.
    
    [10] Stere C, Iovu M, Boborodea A, et al. Anionic and Ionic Coordinative Polymerization of L-Lactide.Polym Adv Technol. 1998,9:322-325.
    
    [11] Bhaw-Luximon A, Jhurry D, Spassky N, et al. Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide. Polymer, 2001,42: 9651-9656.
    
    [12] Hsueh ML, Huang B H, Lin J W, et al. Synthesis, Characterization, and Catalytic Studies of Lithium Complexes: Efficient Initiators for Ring-Opening Polymerization of L-Lactide. Macromolecules, 2005,38: 9482-9487.
    [13] Deng X M, Xiong C D. Studies on the block copolymerization of D,L-lactide and poly(ethylene glycol) with aluminium complex catalyst. J Appl Polym Sci, 1995, 55: 1193-1196.
    [14] Dubois P, Jacobs C, Jerome R, Teyssie P. Macromolecular Engineering of Polylactones and Polylactides.4. Mechanism and Kinetics of Lactide Homopolymerization by Aluminum Iopropoxide. Macromolecules, 1991,24: 2266-2270.
    [15] Montaudo G, Montaudo M S, Puglisi C, et al. Evidence for Ester-Exchange Reactions and Cyclic Oligomer Formation in the Ring-Opening Polymerization of Lactide with Aluminum Complex Initiators. Macromolecules, 1996, 29: 6461-6465.
    [16] Zhong Z Y, Dijkstra P J, Feijen J. Controlled and stereoselective polymerization of lactide: Kinetics,selectivity and microstructures. J Am Chem Soc, 2003, 125: 11291-11298.
    [17] Tang Z H, Chen X S, Yang Y K, et al. Stereoselective polymerization of rac-lactide with a bulky aluminum/Schiff base complex. J Polym Sci Part A: Polym Chem, 2004,42: 5974-5982.
    [18] Tang Z H, Chen X S, Pang X, et al. Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex. Biomacromolecules, 2004, 5: 965-970.
    [19]杨永坤,汤朝晖,陈学思等.非手性席夫碱-异丙氧基铝引发外消旋丙交酯立构选择性聚合.高等学校化学学报,2006,27:352-355.
    [20]Majerska,K.;Duda,A.Stereocontrolled Polymerization of Racemic Lactide with Chiral Initiator:Combining Stereoelection and Chiral Ligand-Exchange Mechanism.J Am Chem Soc,2004,126:1026-1027.
    [21]Hormnirun P,Marshall E L,Gibson V C,et al.Polymerization Special Feature:Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators.PNAS,2006,103:15343-15348.
    [22]Nomura N,Ishii R,Yamamoto Y,et al.Stereoselective Ring-Opening Polymerization of a Racemic Lactide by Using Achiral Salen- and Homosalen-Aluminum Complexes.Chem Eur J,2007,13,4433-4451.
    [23]Witzke D R,Naragan R,Kolstad J J.Reversible Kinetics and Thermodynamics of the Homo polymerization of L-Lactide with 2-Ethylhexanoic Acid Tin(Ⅱ)Salt.Macromolecules,1997,30:7075-7085.
    [24]Schwach G,Coudane J,Engel R,Vert M.More about the polymerization of lactides in the presence of stannous octoate.J Polym Sci Part A:Polym Chem,1997,35:3431-3440.
    [25]Kdcheldorf H R,Kreiser-Saunders I,Boettcher C.Polylactones 31.Sn(Ⅱ)octoate-initiated polymerization of l-lactide:a mechanistic study.Polymer,1995,36:1253-1259.
    [26]Kricheldorf H R,Kreiser-Saunders I,Stricker A.Polylactones 48 SnOct_2-initiated Polymerization of Lactide:A Mechanistic Study.Macromolecules,2000,33:702-709.
    [27]Kowalski A,Duda A,Penczek S.Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(Ⅱ)Octoate.3.Polymerization of L,L-Dilactide.Macromolecules,2000,33:7359-7370.
    [28]Ryner M,Stridsberg K,Albertsson A C,et al.Mechanism of Ring-Opening Polymerization of 1,5-Dioxepan-2-one and L-Lactide with Stannous 2-Ethylhexanoate.A Theoretical Study.Macromolecules,2001,34:3877-3881.
    [29]Albertsson A C,Varma I K.Recent developments in ring opening polymerization of lactones for biomedical applications.Biomacromolecules,2003,4:1466-1486.
    [30]Kricheldorf H R,Lee S R,Bush S.Polylactones 36.Macrocyclic polymerization of lactides with cyclic Bu_2Sn initiators derived from 1,2-ethanediol,2-mercaptoethanol,and 1,2-dimercaptoethane.Macromolecules,1996,29:1375-1381.
    [31]Stridsberg K,Ryner M,Albertsson A-C.Dihydroxy-Terminated Poly(L-lactide)Obtained by Controlled Ring-Opening Polymerization:Investigation of the Polymerization Mechanism.Macromolecules,2000,33:2862-2869.
    [32]Finne A,Albertsson A C.Controlled Synthesis of Star-Shaped L-Lactide Polymers Using New Spirocyclic Tin Initiators.Biomacromolecules,2002,3:684 -690.
    [33]Liu L J,Zhang C,Liao LQ,et al.Microwave-assisted polymerization of D,L-lactide with stannous octanoate as catalyst.Chinese Chem Lett,2001,12:663-664.
    [34]Zhang C,Liao LQ,Liu LJ.Rapid ring-opening polymerization of D,L-lactide by microwaves.Macromol Rapid Commun,2004,25:1402-1405.
    [35]Shu J,Wang P,Zheng T,et al.Microwave-Irradiated Ring-Opening Polymerization of D,L-Lactide Under Atmosphere.J Appl Polym Sci,2006,100:2244-2247.
    [36]申有青,张富尧,沈之荃等.稀土化合物催化内酯开环聚合Ⅱ.异丙氧基稀土催化D,L-丙交酯开环聚合.高分子学报,1995,(2):222-227.
    [37]Stevels WM,Ankone MJ K,Feijen J,et al.A Versatile and Highly Efficient Catalyst System for the Preparation of Polyesters Based on Lanthanide Tris(2,6-di-tert-butylphenolate)s and Various Alcohols.Macromolecules,1996,29:3332-3333.
    [38]Yu C P,Zhang L F,Shen Z Q,et al.Ring-Pening Polymerization of L-laetide by the single component rare earth tris(4-tert-butylphenolate)s.J Polym Sci Part A:Polym Chem,2004,42:6209-6215.
    [39]Zhang L F,Shen Z Q,Yu C P,et al.Ring-opening polymerization of D,L-lactide by rare earth 2,6-dimethylaryloxide.Polym Int,2004,53:1013-1016.
    [40]崔冬梅,程建华,朱宁等.二价茂稀土配合物催化左旋丙交醋开环聚合.科学通报,2002,47:418-420.
    [41]Shang XM,Liu XL,Cui DM,et al.Yttrium bis(alkyl)and bis(amido)complexes bearing N,O multidentate ligands.Synthesis and catalytic activity towards ring-opening polymerization of L-lactide.J Polym Sci Part A:Polym Chem,2007,45:5662-5672.
    [42]Platel R H,Hodgson L M,Williams C K.Biocompatible initiators for lactide polymerization.Polymer Reviews,2008,48:11-63.
    [43]Kricheldorf H R,Damrau D O.Polylactones 37.Polymerizations of L-lactide initiated with Zn(Ⅱ)L-lactate and other resorbable Zn salts.Macromol Chem Phys,1997,198:1753-1766.
    [44]Schwach G,Coudane J,Enge R,and Vert M.Ring Opening Polymerization of D,L-Lactide in the Presence of Zinc Metal and Zinc Lactate.Polymer International,1998,46:177-182.
    [45]Hillmyer M.A,Tolman W B,et al.A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide.J Am Chem Soc,2003,125:11350-11359.
    [46]Kricheldorf H R,Damrau D O.Polylactones 38.Polymerization of L-lactide with Fe(Ⅱ)lactate and other resorbable Fe(Ⅱ)salts.Macromol Chem Phys,1997,198:1767-1774.
    [47]Stolt M,Sodergard A.Use of Monocarboxylic Iron Derivatives in the Ring-Opening Polymerization of L-Lactide.Macromolecules,1999,32:6412-6417.
    [48]O'Keefe B J,Breyfogle L E,Hillmyer M A,et al.Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(Ⅲ)-Alkoxide Complexes:Single vs Multiple Site Catalysis.J Am Chem Soc,2002,124:4384-4393.
    [49]Wang X Y,Liao K R,Quan D P.Bulk Ring-Opening Polymerization of Lactides Initiated by Ferric Alkoxides.Macromolecules,2005,38:4611-4617.
    [50]王小莺,廖凯荣,全大萍等.醇铁化合物引发丙交酯开环聚合研究.高分子学报,2006,(2):229-235.
    [51]Zhong Z Y,Dijkstra P J,Feijen J,et al.A Novel and Versatile Calcium-Based Initiator System for the Ring-Opening Polymerization of Cyclic Esters.Macromolecules,2001,34:3863-3868.
    [52]朴龙海,张昕照,陈学思等.有机氨钙催化聚合脂肪族环酯.高等学校化学学报,2003,24:346-349.
    [53]Chen H-Y,Tang H-Y,Lin C-C.Ring-opening polymerization of l-lactide catalyzed by a biocompatible calcium complex.Polymer,2007,48:2257-2262.
    [54]Kricheldorf H R,Lee S-R.Polylactones 32.High-molecular-weight polylactides by ring-opening polymerization with dibutylmagnesium or butyl magnesium chloride.Polymer,1995,36:2995-3003.
    [55]ChisholmM H,Eilerts N W,Huffman J C,et al.Molecular Design of Single-Site Metal Alkoxide Catalyst Precursors for Ring-Opening Polymerization Reactions Leading to Polyoxygenates.1.Polylactide Formation by Achiral and Chiral Magnesium and Zinc Alkoxides,(η~3-L)MOR,Where L =Trispyrazolyl- and Trisindazolylborate Ligands.J Am Chem Soc,2000,122:11845-11854.
    [56]Wu J-C,Huang B-H,Hsueh M-L et al.Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides.Polymer,2005,46:9784-9792.
    [57]刘继延,张黎明.用于环酯单体开环聚合无金属引发/催化体系.化学进展.2007,19:350-355.
    [58]Lohmeijer BGG,Pratt RC,Leibfarth F,et al.Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters.Macromolecules,2006,39:8574-8583.
    [59]Wang C,Li H,Zhao X.Ring opening polymerization of L-lactide initiated by creatinine.Biomaterials,2004,25:5797-5801.
    [60]Li H,Wu J,Brunel S,et al.Polymerization of lactides and lactones by metal-free initiators.Ind Eng Chem Res,2005,44:8641-8643.
    [61]Myers M,Connor E F,Glauser T,et al.Phosphines:Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides.J Polym Sci Part A:Polym Chem,2002,40:844-851.
    [62]Zhang L,Nederberg F,Pratt RC,et al.Phosphazene bases:A new category of organocatalysts for the living ring-opening polymerization of cyclic esters.Macromolecules,2007,40:4154-4158.
    [63]Connor E F,Nyce GW,Myers M,et al.First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization:Organocatalytic Ring-Opening Polymerization of Cyclic Esters.J Am Chem Soc,2002,124:914-915.
    [64]Dove AP,Pratt RC,Lohmeijer BGG,et al.N-Heterocyclic carbenes:Effective organic catalysts for living polymerization.Polymer,2006,47:4018-4025.
    [65]Jedlinski Z,Kowalczuk M,Kurcok P,et al.Stereochemical Control in the Anionic Polymerization of β-Butyrolactone Initiated with Alkali-Metal Alkoxides.Macromolecules,1996,29:3773-3777.
    [66]Jedlinski Z,Kurcok P,Lenz R W.First Facile Synthesis of Biomimetic Poly-(R)-3-hydroxybutyrate via Regioselective Anionic Polymerization of(S)-β-Butyrolactone.Macromolecules,1998,31:6718-6720.
    [67]Juzwa M and Jedlinski Z.Novel Synthesis of Poly(3-hydroxybutyrate).Macromolecules,2006,39:4627-4630.
    [68]Kricheldorf H R,Scharnagl N.Polyactones 17.Anionic polymerization of β-D,L-butyrolactone.J Macromol Sci Chem,1988,A26:951-968.
    [69]Kurcok P,Kowalczuk M,Hennek K,et al.Anionic polymerization of β-lactones initiated with alkali-metal alkoxides:reinvestigation of the polymerization mechanism.Macromolecules,1992,25:2017-2020.
    [70]Agostini D E,Lando J B,Shelton J R.Synthesis and characterization of poly-β-hydroxybutyrate.Ⅰ.Synthesis of grystalline DL-poly-β-hydroxybutyrate from DL-β-butyrolactone.J Polym Sci A-1,1971,9:2775-2787.
    [71]Shelton R J,Agostini D E,Lando J B.Synthesis and characterization of poly-β-hydroxybutyrate.Ⅱ.Synthesis of DL-poly-β-hydroxybutyrate and mechanism of ring-openging polymerization of β-butyrolactone.J Polym Sci.A-1,1971,9:2789-2799.
    [72] Jaimes C, Couve J, Crbtte S, et al. Polymerization of (R, S)-β-butyrolactone from tetraisobutyl dialuminoxane (TIBAO) catalyst. European Polymer Journal, 1996, 32:1175-1181.
    [73] Kurcok P, Duboist P, Jereme R. Polymerization of β-butyrolactone initiated with Al(OiPr)_3. Polym Int,1996,41:479-485.
    [74] Zhang Y, Gross RA, Lenz RW. Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone. Macromolecules, 1990,23: 3206-3212.
    [75] Tanahashi N, Doi Y. Thermal properties and stereoregularity of poly (3-hydroxybutyrate) prepared from optically active β-butyrolactone with a zinc-based catalyst. Macromolecules, 1991, 24:5732-5733.
    [76] Chemberlam B M, Cheng M, Moore D R, et al. Polymerization of Lactide with Zinc and Magnesium β-Diiminate Complexes: Stereocontrol and Mechanism. J Am Chem Soc, 2001,123: 3229-3238.
    [77] Rieth L R, Moore D R, Lobkovsky E B, et al. Single-Site β-Diiminate Zinc Catalysts for the Ring-Opening Polymerization of β-Butyrolactone and β-Valerolactone to Poly(3-hydroxyalkanoates).J Am Chem Soc, 2002, 124: 15239-15248.
    [78] Kricheldorf H R, Berl M, Scharnagl N. Polylactones 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules, 1988,21:286-293.
    [79] Kricheldorf H R, Lee S-R, Scharnagl N, Polyactones 28. Syndiotactic poly(β-D,L-hydroxybutyrate) by ring-opening polymerization of β-D,L-butyrolactone with butyltin methoxides. Macromolecules, 1994,27:3139-3146.
    [80] Kricheldorf H R, Lee S-R. Polylactones 29. Preferentially syndiotactic poly(β-(R,S)-butyrolactone) obtained by ring-opening polymerization with triphenyltin methoxide or diphenyltin dimethoxide.Macromol Chem Phys, 1994,195:2299-2306.
    [81] Kricheldorf H R, Eggerstedt S. Polylactones 41. Polymerizations of β-D,L-butyrolactone with dialkyltinoxides as initiators. Macromolecules, 1997, 30: 5693-5697.
    [82] Kemnitzer J E, McCarthy S P, Gross R A. Preparation of Predominantly Syndiotactic Poly(β-hydroxybutyrate) by the Tributyltin Methoxide Catalyzed Ring-Opening Polymerization of Racemic β-Butyrolactone. Macromolecules, 1993, 26: 1221-1229.
    [83] Otera J, Nobuhisa D, Nozaki H. Novel template effects of distannoxane catalysts in highly efficient transesterification and esterification. J Org Chem, 1991, 56: 5307-5311.
    [84] Hori Y, Suzuki M, Yamaguchi A. Ring-Opening Polymerization of Optically Active β-Butyrolactone Using Distannoxane Catalysts: Synthesis of High Molecular Weight Poly(3-hydroxybutyrate). Macromolecules, 1993, 26: 5533-5534.
    [85] Hori Y, Hagiwara T. Ring-opening polymerisation of β-butyrolactone catalysed by distannoxane complexes: study of the mechanism. Int J Biolog Macromol, 1999,25: 237-245.
    [86] Kricheldorf HR, Lee S R. Polylactones. 35. Macrocyclic and stereoselective polymerization of β-D,L-butyrolactone with cyclic dibutyltin initiators. Mcromolecules, 1995, 28: 6718-6725.
    [87] Kricheldorf H R, Fechner B. Polylactones 59. Biodegradable Networks via Ring-Expansion Polymerization of Lactones and Lactides with a Spirocyclic Tin Initiator. Biomacromolecules, 2002, 3:691-695.
    [88] Coulembier O, Delva X, Hedrick JL, et al. Synthesis of Biomimetic Poly(hydroxybutyrate): Alkoxy-and Carboxytriazolines as Latent Ionic Initiator. Macromolecules, 2007,40: 8560-8567.
    [89]Kurock P,Smiga M,Jedlinski Z.β-Butyrolactone Polymerization Initiated with Tetrabutylammonium Carboxylates:A Novel Approach to Biomimetic Polyester Synthesis.J Polym Sci Part A:Polym Chem,2002,40:2184-2189.
    [90]Martina M,Hutmacher DW.Biodegradable polymers applied in tissue engineering research:a review.Polymer International,2007,56:145-157.
    [91]Hoffman A,Szymanski,Stomkowski S,et al.Structure of active species in the cationic polymerization of β-propiolactone and ε-caprolactone.Macromol Chem,1984,185:655-670.
    [92]Jonte J M,Dunsing R,Kricheldorf H R.Polylactones 4.Cationic Polymerization of Lactones by Means of Alkylfonates.J Mccromol Sci-Chem,1986,A23:495-500.
    [93]Nomura N,Taira A,Tomioka T,et al.A Catalytic Approach for Cationic Living Polymerization:Sc(OTf)_3-Catalyzed Ring-Opening Polymerization of Lactones.Macromolecules,2000,33:1497-1499.
    [94]Ito K,Hashizuka Y,Yamashita Y.Equilibrium Cyclic Oligomer Formation in the Polymerization of ε-Caprolactone.Macromolecules,1977,10:821-824.
    [95]Ito K,Hashizuka Y.Propagation and Depropagation Rates in the Anionic Polymerization of ε-Caprolactone Cyclic Oligomas.Macromolecules,1978,11:68-69.
    [96]Kowalski A,Duda A,Penczek S,et al.Mechanism of Cyclic Ester Polymerization Initiated with Tin(Ⅱ)Octoate 2.Macromolecules Fitted with Tin(Ⅱ)Alkoxide Species Observed Directly in MALDI-TOF Spectra.Macromolecules,2000,33:689-695.
    [97]Storey RF,Sherman JW,Kinetics and Mechanism of the Stannous Octoate-Catalyzed Bulk of ε-Caprolactone,Macromolecules,2002,35:1504-1512.
    [98]Shen Z Q,Chen X H,Shen Y Q,et al.Ring-opening polymerization of ε-caprolactone by rare earth coordination catalysts 1.Characteristics,kinetics,and mechanism of ε-eaprolactone polymerization with Nd(acac)_3.3H2_O-AIEt_3 systems.J Polym Sci Part A:Polym Chem,1994,32:597-602.
    [99]申有表,沈之荃,沈建良等.稀土化合物催化内酯开环聚合(Ⅲ)-氯化钕-环氧化合物体系催化ε-己内酯本体聚合.高等学校化学学报,1995,16:820-825.
    [100]朱蔚璞,童晓薇,沈之荃.三氟甲磺酸稀土催化ε-己内酯开环聚合.高等学校化学学报.2007,28:1186-1188.
    [101]齐民华,沈琪,沈之荃.取代茚基二价稀土配合物催化己内酯开环聚合反应.高等学校化学学报.2007,28:2418-2421.
    [102]李良钊,尚晓敏,杜鸿志等.席夫碱铝双核配合物合成及其对ε-己内酯催化作用.应用化学.2007,24:878-882.
    [103]张其锦,王冰,罗莜烈等.双羧基封端聚己内酯合成与表征.应用化学.1994,11:57-59.
    [104]Yu Z J,Liu L J,Zhuo R X.Microwave-improved polymerization of ε-caprolactone initiated by carboxylic acids.J Polym Sci Part A:Polym Chem,2003,41:13-21.
    [105]解德良,姜标,杨昌正.羟基酸引发ε-己内酯开环聚合研究.高分子学报.2000,(5):532-537.
    [106]Liu J Y,Liu L J.Ring-Opening Polymerization of ε-Caprolactone Initiated by Natural Amino Acids.Macromolecules,2004,37:2674-2676.
    [107]谭丽丽,梁勇,杨柯.血管内支架表面生物涂层发展.材料导报,2002,16:65-68.
    [108]Marin M L,Veith F J,Cynamon J,et al.Effect of polytetrafluoroethylene covering of Palmaz stents on the development of intimal hyperplasia in human iliac arteries.J Vasc Interv Radiol,1996,7:651-656.
    [109]Elsner M,Auch-Schwelk W,Britten M,et al.Coronary stent grafts covered by a polytetra fluoroethylene membrane.The American Journal of Cardiology,1999,84:335-338.
    [110]De Scheerder I K,Wilczek K L,Verbeken E V,et al.Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries.Atherosclerosis,1995,114:105-114.
    [111]Verweire I E,Schacht B P,Qiang K,et al.Evaluation of fluorinated polymers as coronary stent coating.Journal of Materials Science:Materials in Medicine,2000,11:207-212.
    [112]计剑,陈伟东,徐建平等.新型可交联医用涂层材料研究.生物医学工程学杂志,2004,21:122-125.
    [113]范德增,贾志远,严心浩等.类细胞膜仿生药物缓释涂层冠脉支架材料研究.生物医学工程学杂志.2007,24:599-602.
    [114]王春宁,高润霖,程树军等.聚乳酸-乙醇酸涂层冠状动脉支架生物相容性实验研究.中华心血管病杂志,2003,31:528-531.
    [115]Wang X T,Venkatraman S S,Boey F YC,et al.Controlled release of sirolimus from a multilayered PLGA stent matrix.Biomaterials,2006,27:5588-5595.
    [116]Hanefeld P,Westedt U,WombacherR,et al.Coating of poly(p-xylylene)by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.Biomacromolecules,2006,7:2086-2090.
    [117]Pan C J,Tang J J,Weng Y J,et al.Preparation,characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents.Journal of Controlled Release.2006,116:42-49.
    [118]Pan C J,Tang J J,Weng Y J,et al.Preparation and characterization of rapamycin-loaded PLGA coating stem.Journal of Materials Science:Materials in Medicine.2007,18:2193-2198.
    [119]Cho H H,Han D-W,Matsumura K,et al.The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly(L-lactide-co-ε-caprolactone)as stent-coating materials.Biomaterials,2008,29:884-893
    [120]吴隐雄,Johnson T,Herdeg C等.植入携带有治疗性腺病毒包裹支架对猪冠状动脉再狭窄预防作用.第一军医大学学报,2003,23(12):33-35.
    [121]袁晋青,高润霖,史瑞文等.猪冠状动脉内金属支架蛋白涂层生物相容性研究.中国循环杂志,1998,13(4):271-273.
    [122]张新霞,崔长琮,庞志功等.明胶蛋白涂层支架局部导人c-myc反义寡核苷酸体内分布.临床心血管病杂志,2004,20(3):178-179.
    [123]Bornstein J,La Liberte B R,Andrews T M,et al.Formation of a Cyclic Ester from the Reaction of Di-n-butyltin Dichloride with Ethylene Glycol,J Org Chem,1959,24:886-887.
    [124]Odian G,Principles of Polymerization,4th ed.,Wiley Interscience,New York,2004.
    [125]Abe H,Matsubara I,Doi Y,et al.Physical Properties and Enzymic Degradability of Poly(3-hydroxybutyrate)Stereoisomers with Different Stereoregularities,Macromolecules,1994,27:6018-6025.
    [126]Arcana M,Giani-Beaune O,Schue F,et al,Structure and morphology of poly(β-hydroxybutyrate)synthesized by ring-opening polymerization of racemic(R,S)-β-butyrolactone with distannoxane derivatives,Polym Int,2000,49:1348-1355.
    [127]Iida M,Araki T,Teranishi K,et al.Effect of Substituents on Stereospecific Polymerization of β-Alkyl- and β-Chloroalkyl-β-propiolactones.Macromolecules,1977,10:275-284.
    [128]Jaimes C,Collet A,Giani-Beaune O,et al.Ring-Opening Homo- and Copolymerization of Lactones Part 1.Homo- and Copolymerization of Racemic β-Butyrolactone with ε-Caprolactone and δ-Valerolactone by Tetraisobutyldialuminoxane(TIBAO)Catalyst.Polym.Int.,1998,45:5-13.
    [129]Qian H T,Bei J Z,Wang S G.Synthesis,characterization and degradation of ABA block copolymer of L-lactide and ε-caprolactone.Polym Degrad Stabi,2000,68:423-429.
    [130]Moore T,Adhikad R,Gunatillake P.Chemosynthesis of bioresorbable poly(γ-butyrolactone)by ring-opening polymerisation:a review.Biomaterials,2005,26:3771-3782.
    [131]张萍,吴林波,李伯耿.三氟化硼-乙醚络合物催化γ-戊内酯与ε-己内酯开环共聚研究.高分子学报,2006,(3):510-515.
    [132]Wu B,Lenz R W,Scherer TM,Preparation,properties and biodegradation of stereoregular copolymers of(R,S)-3-butyrolactone and 4-butyrolactone,Macromol Chem Phys,1998,199:2079-2085.
    [133]Dubois Ph,Ropson N,Jerome R,et al.Macromolecular Engineering of Polylactones and Polylactides.19.Kinetics of Ring-Opening Polymerization of ε-Caprolactone Initiated with Functional Aluminum Alkoxides.Macromolecules,1996,29:1965-1975.
    [134]Chen C,Yu C H,Cheng Y C,et al.Biodegradable nanoparticles of arnphiphilic triblock copolymers based on poly(3-hydroxybutyrate)and poly(ethylene glycol)as drug carriers.Biomaterials,2006,27:4804-4814.
    [135]Kricheldorf H R,Scharnad N,Jedlinski Z.Polylactones 33.The role of deprotonation in the anionic polymerization of β-propiolactone,Polymer,1996,37:1405-1411.
    [136]Li Z,Hao J Y,Yuan ML,et al.Ring opening polymerization of adipic anhydride initiated by dibutylmagnesium initiator.Eur Polym J,2003,39:313-317.
    [137]Vanhoorne P,Dubois Ph,Jerome R,et al.Macromolecular engineering of polylactones and polylactides.7.Structural analysis of copolyesters of ε-caprolactone and L- or D,L-lactide initiated by Al(OiPr)_3.Macromolecules,1992,25:37-44.
    [138]Piao L H,Dai Z L,Deng M X,et al.Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst.Polymer,2003,44,2025-2031.
    [139]He Y,Zhang L,Cao Y,et al.Degradation Behavior of Poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone)Micelles in Aqueous Solution.Biomacromolecules,2004,5:1756-1762.
    [140]Zhu W P,Xie W H,Tong X W,et al.Amphiphilic biodegradable poly(CL-b-PEG-b-CL)triblock copolymers prepared by novel rare earth complex:Synthesis and crystallization properties.Eur Polym J,2007,43:3522-3530.
    [141]Gan Z H,Jiang B Z,Zhang J,Poly(ε-caprolactone)/poly(ethylene oxide)diblock copolymer.Ⅰ.Isothermal crystallization and melting behavior.J Appl Polym Sci,1996,59:961-967.
    [142]An J H,Kim H S,Chung D J,et al.Thermal behaviour of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone)tri-block copolymers.J Mater Sci,2001,36:715-722.
    [143]He C L,Sun J R,Ma J,et al.Composition Dependence of the Crystallization Behavior and Morphology of the Poly(ethylene oxide)-poly(ε-caprolactone)Diblock Copolymer.Biomacromolecules,2006,7:3482-3489.
    [144]Bogdanov B,Vidts A,Van Den Buicke A,et al.Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone)copolymers.Polymer,1998,39:1631-1636.
    [145]应圣康,余丰年.共聚合原理.化学工业出版社,北京,1984.
    [146]Grijpma DW,Pennings AJ,Polymerization temperature effects on the properties of l-lactide and ε-caprolactone copolymers.Polym Bull,1991,25:335-341.
    [147]Bero M,Kasperczyk J,Adamus G.Coordination polymerization of lactides,3.Copolymerization of L,L-lactide and ε-caprolactone in the presence of initiators containing Zn and Al.Makromol Chem,1993,194:907-912.
    [148]Kasperczyk J,Bero M.Coordination polymerization of lactides,2.Microstructure determination of poly[(L,L-lactide)-co-(ε-caprolactone)]with ~(13)C nuclear magnetic resonance spectroscopy,Makromol Chem,1991,192:1777-1787.
    [149]Kasperczyk J,Bero M.Coordination polymerization of lactides,4.The role of transesterification in the copolymerization of L,L-lactide and ε-caprolactone.Makromol Chem,1993,194:913-925.
    [150]Allcock H R,Lampe F W,Mark J E.Contemporary Polymer Chemistry.3rd ed.Zhang Qijing,Dong Yanming,Zong Huijuan translate.Chemical Industry Press,Beijing:2006.
    [151]Bero M,Kasperczyk J.Coordination polymerization of lactides,5.Influence of lactide structure on the transesterification process in the copolymerization with ε-caprolactone.Makromol Chem,1996,197:3251-3258.
    [152]赵辉鹏,查刘生.单甲氧基聚乙二醇-聚(己内酯-co-丙交酯)嵌段共聚物NMR表征.波谱学杂志,2007,24:303-310.
    [153]Gilding D K,Reed A M.Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid)homo- and copolymers 1.Polymer,1979,20:1459-1464.
    [154]陈佳,程超,王远亮.氧化锌-辛酸亚锡催化合成丙交酯.高分子材料科学与工程,2007,23(3):74-76.
    [155]Huang Y-Y,Qi M,Liu H-Z,et al.Degradation of porous poly(D,L-lactic-co-glycolic acid)films based on water diffusion.J Biomed Mater Res A,2007,80A:909-915.
    [156]Reed A M,Gilding D K.Biodegradable polymers for use in surgery- poly(glycolic)/poly(Iactic acid)homo and copolymers 2.In vitro degradation.Polymer,1981,22:494-498.
    [157]Grijpma D W,Nijenhuis A J,Pennings A J.Synthesis and hydrolytic degradation behaviour of high-molecular-weight-lactide and glycolide copolymers.Polymer,1990,31:2201-2206.
    [158]Hyon S-H,Jamshidi K,Ikada Y.Synthesis of polylactides with different molecular weights.Biomaterials,1997,18:1503-1508.
    [159]蔡晴,贝建中,王身国等.乙交酯/丙交酯共聚物体内外降解行为及生物相容性研究.功能高分子学报.2000,13:249-254.
    [160]Wang N,Wu X S,Li C,et al.Synthesis,characterization,biodegradation,and drag delivery application of biodegradable lactic/glycolic acid polymers:Ⅰ.Synthesis and characterization.J Biomater Sci Polym Edn,2000,11:301-318.
    [161]Wu X S,Wang N,Synthesis,characterization,biodegradation,and drag delivery application of biodegradable lactic/glycolic acid polymers.Part Ⅱ:Biodegradation.J Biomater Sci Polym Edn,2001,12:21-34.
    [162]罗丙红,廖凯荣,全大萍等.丙交酯-乙交酯共聚中酯交换及共聚物结构和性质研究.高分子学报,2003,(6):803-808.
    [163]Liu LL,Cai W.Synthesis and Characterization of Poly(L-lactide-co-glycolide).J Wuhan University of Technology - Mater Sci Ed.2005,20(Suppl):217-219.
    [164]Siparsky G L,Voorhees K J,Miao FD.Hydrolysis of Polylactic Acid(PLA)and Polycaprolactone (PCL)in Aqueous Acetonitrile Solutions:Autocatalysis.J Environ Polym Degrad,1998,6:31-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700