表面可控/活性自由基接枝聚合制备功能聚合物膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物膜的改性和功能化作为一种有效提高分离膜优良性能的方法目前已受到人们广泛关注,而聚合物基材的表面生物功能化也因其在生物医学方面的应用成为另一个研究热点。表面可控/活性自由基接枝聚合可以在不改变聚合物膜固有性能的前提下,通过表面修饰对分离膜和聚合物基材进行有效的功能化。由于聚合物基材的表面惰性,对其表面实施可控/活性自由基接枝聚合,表面引发基团的固定是最难,也是最重要的环节。本论文则详细研究了几种可控/活性自由基聚合表面引发方法及其功能化应用,提出了三种在聚合物膜材料表面固定引发剂的新方法,并制备出了pH敏感性、蛋白吸附性、细胞粘附性以及基因转染性等不同功能聚合物复合膜。主要工作及结果如下:
     1.在聚碳酸酯径迹蚀刻膜表面通过等离子处理进行表面氧化,然后引发丙烯酸的表面自由基接枝聚合,制备出了具有pH敏感的聚合物复合膜;引发效率高,聚合速度快,2wt%丙烯酸单体经过3h就成功得到了具有明显pH敏感特征的功能复合膜。
     2.首次提出通过聚多巴胺在尼龙微滤膜表面的沉积,进而固定ATRP引发剂的方法;聚多巴胺在膜表面沉积均匀;固定引发剂效率高;接枝聚合具有明显的活性可控特征,接枝率随聚合时间线性增长,由此可对接枝厚度进行控制;表面引发丙烯酸的接枝聚合,制备出了具有pH敏感尼龙功能膜;此研究对于无机、有机膜材料表面引发ATRP实现其功能化的改性有着重要的意义。
     3.提出通过胺化法在聚己内酯(PCL)膜表面固定ATRP引发剂的新方法;DMAEMA单体接枝聚合过程具有可控/活性特征;通过PDMAEMA与负性蛋白质的电荷吸引作用,在膜表面固定了明胶蛋白;通过HEK293细胞的培养,对空白PCL膜在表面接枝及沉积蛋白质后表面细胞粘附力的变化进行了研究,并对所吸附细胞进行了初步基因转染实验;此研究对聚酯类材料的功能化改性提供了新的思路,并对细胞培养及基因转染提供了相容性好,粘附力强的医用支架。
     4.在PCL支架上用胺化法固定ATRP引发剂,引发了GMA的表面接枝;PGMA通过环氧开环反应固定明胶蛋白;对明胶功能化的PCL膜进行了表面培养贴壁HEK293细胞和悬浮K562细胞试验;随后,对具有转染功能的复合物PEI/DNA的三种载入方式(前载式、后载式及前后载式)进行了研究,发现前后载式为最佳载入方式,基因转染效率最高;此研究丰富了对基因转染方式的医学研究。
     5.首次提出通过紫外光在含C-H基聚合物膜表面直接固定ATRP引发剂的方法;以BOPP为基材模型,在UV光照下将溴-4-对羟基苯乙酮(BHAP)直接固定在表面;通过金属掩膜的使用,可使引发剂二维图案化固定;对GMA和DMAEMA分别实施了ATRP接枝聚合,体系具有可控/活性特征;利用接枝的PGMA和PDMAEMA可直接固定免疫球蛋白(IgG),抗体免疫球蛋白(anti-IgG)与膜表面固定IgG的反应结果表明IgG不仅有效固定于BOPP膜表面,还具有生物活性;此研究为含C-H键聚合物膜的直接功能化改性提供了有效的实施方法,还为生物医学反应器件的制备提供了可参考方案。
     6. ATRP体系最大的缺点为过渡金属铜的使用,当涉及生物用途时更为突出,针对这个问题提出并探索了一个紫外光/半频那醇自由基协同无铜ATRP方法;初步结果显示,较低紫外光强(2mW/cm2)即可激发ATRP引发剂及半频那醇自由基实现表面引发接枝聚合,使聚合具有活性/可控特征;采用三组对比实验,对烷基溴及BXIAN的引发剂及催化剂作用分别进行了研究,并通过溶液中均聚实验对反应可控/活性特征进行了证实;另外,通过在光照中使用金属掩膜制备出了图形和高度均可控的功能性接枝聚合物表面层。
     7.通过UV/硫杂蒽酮(ITX)可将硫杂蒽酮半频那醇固定到聚合物基材上,然后在可见光下可实施接枝聚合,发现接枝的PEGMA表面具有非常好的抗细胞吸附性能,进而GMA与GMA-Polylysine在其表面进行二次活性共聚接枝,可在PEGMA表面形成PGMA-co-PGMA-Poly lysine的二次图案;通过对MA63细胞的培养,发现接枝PEGMA后表面有优良的抗细胞吸附性,而GMA与GMA-Polylysine接枝共聚后,细胞粘附性恢复并显著提高,形成较好的细胞粘附和生长图案;这些研究为聚合物膜表面生物功能改性,以及生物医学微型装置的制备提供了重要的新方法。
The ability to modify and functionlize filter membrane has got a lot ofattention, and the bio-functionlization of polymer substract has been anotherhotspot. Covalent tethering of functional brushes by surface incitedcontrolled/living radical polymerization (SI-CRP) on polymer film surfacewithout any destruction of bulk properties is of crucial importance to impartnew surface performances. In SI-CRP, well defined dense and structurepolymer brush grows from the initiator immobilized on polymer surface toprepare the functional polymer film, and most polymer film surface is inert.Therefore, the initiator immobilization is quite important. In this thesis, theinitiator immobilization strategies and the applications of functional polymercomposite film was studied in detail, which enriched the SI-CRP techniques,and developed three new initiator immobilization methods to fabricatefunctional polymer composite film. The main contents were listed as followed:
     1. A simple and highly efficient method to initiate surface incited radicalpolymerization by plasma treatment on polycarbonate track-etched (PCTE)membrane was studied. The PCTE membranes was pretreated via plasma andoxidized by air to induce peroxy bond, and subseguently thermal-graftcopolymerization of acrylic acid (AAc) was carried out. Under the highefficient initiating, AAc monomer solution (2wt%) could be polymerized toprepare pH sensitive PCTE membrane after3h.
     2. A facile two-step method was first developed for the covalentimmobilization of ATRP initiators on the surface of Nylon membrane and itsinside pores. The Nylon membrane was firstly functionalized bypolydopamine, the bromoalkyl initiator was then immobilized on thepolydopamine functionalized Nylon membrane surface in a two-stepsolid-phase reaction, followed by ATRP of acrylic acid (AA) in a aqueoussolution. The resulting Nylon membranes with grafted PAA side chains werecharacterized and studied by XPS and SEM. The results showed that thegrafted PAA polymers were formed uniformly inside the pores throughout theentire membrane thickness. With increase in the pore-filling ratio, the porediameters of PAA-grafted membranes became smaller. An approximatelylinear increase in graft yield (GY) of the grafted PAA chains withpolymerization time was observed, indicating that the chain growth from thePCL-Br surface was consistent with a “controlled” and well-defined process. The Nylon-g-PAAc membranes exhibit rapid and reversible response of theflux to the environmental pH as pH is switched between3and9.
     3. An alternative aminolysis-based method was developed for thecovalent immobilization of ATRP initiators on the polycaprolactone (PCL)film surfaces. It is possible to introduce free amino and hydroxyl groups onPCL film surfaces through the aminolysis reaction, and is followed with thereaction of2-bromoisobutyryl bromide (BIBB) to produce the ATRP initiatorspecies. Well-defined PDMAEMA brushes were subsequently prepared viasurface-initiated ATRP from the initiator functionalized PCL surfaces. Thecell-adhesion property on the functionalized PCL surface could be controlledby adjusting the ratio of PDMAEMA/gelatin and the gene transfectionproperty on the immobilized cells was dependent on the density of theimmobilized cells. With the good cell-adhesive nature of gelatin and theefficient gene transfection on the dense immobilized cells, the incorporatingthe suitable of PDMAEMA/gelatin complexes onto PCL surfaces could endowthe PCL substrates new and interesting properties for potential tissue enginering applications.
     4. The gelatin-functionalized PCL film surfaces are prepared viaSI-ATRP of GMA. The gelatin-functionalized PCL film surfaces exhibitexcellent cell-adhesion ability to both adherent and suspension cells. Theattached adherent cells demonstrate the characteristic elongated morphologieswith good spreading capability, while the attached suspension cells can maintain the original status of the round morphologies without spreading. Thegelatin coupled on the PCL surface could be used to absorb the cationicvector/plasmid deoxyribonucleic acid (pDNA) complexes via electrostaticinteraction. The local gene transfection property on the immobilized cells isdependent on both the density of the immobilized cells and the loading typesof pDNA complexes. The transfection efficiency of different assemblemethods of pDNA complex was compared. With the pre-and post-loadingsandwitch-like gene transfection, the gelatin-functionalized PCL film surfacecan substantially enhance the transfection properties to different cell lines. Thepresent study is very useful to spatially control local gene delivery and directcellular functions within PCL-based tissue scaffolds.
     5. The photo-induced one-step method was first developed for thecovalent immobilization of ATRP initiators on the C-H group-containingsubstrates such as biaxially oriented polypropylene (BOPP). The ATRPinitiators could be patterned immobilized by using of metal mask. The C-Hbonds of precise location of inert polymer surfaces were readily transferred tobromoalkyl initiator with the present of metal mask, followed by ATRP of2-(dimethylamino) ethyl methacrylate (DMAEMA) and glycidyl methacrylate(GMA) respectively to produce the resultant patterned BOPP-g-PDMAEMAand BOPP-g-PGMA films. The epoxy groups of the PGMA microdomainscould be aminated for covalently coupling IgG, while the PDMAEMAmicrodomains were used for immobilizing IgG via electronic interactions. The resultant IgG-coupled microdomains could interact with the correspondingtarget proteins, anti-IgG.
     6. The biggest drawback of ATRP is the use of copper, and it is moreserious when it applied in the biomedicine. A novel none-copper ATRPsystem collaborated by UV and BIXAN semipinacol radicals is exploed tosolve this problem. Preliminary results shows that under the low lightintensity of2mW/cm2, an approximately linear increase in GY of the graftedPDMAEMA chains with polymerization time was observed, indicating thatthe chain growth from the BOPP-BHAP surface was consistent with a“controlled” process. Through some comparison experiments, the role ofBHAP and BXIAN was studied. The controlled/living character wasconfirmed by the homopolymerization in solution under similar condition.
     7. The Low density polyethylene (LDPE) film surface was conjugatedwith PEGMA from the “dormant” ITXSP groups for forming antifoulingbackground, and subsequently block polymerized the copolymer of PGMAand (PGMA-Polylysine) from the ITXSP sits at the end of PEGMA chains.The epoxy groups of the GMA prior were aminated with cell-adhesive proteinPoly lysine to protect epoxy groups from ring-opening reaction. Thefunctionalized LDPE film surfaces both exhibit excellent antifouling andcell-adhesion property at different location. The attached adherent cellsdemonstrate the characteristic elongated morphologies with good spreadingcapability. The present study is very useful to spatially control local cell attachment and direct cellular functions within LDPE-based tissue scaffolds.The design and microfabrication of the active patterning on polymer substratesvia surface-initiated photochemical modification is of crucial importance indeveloping novel functional materials.
引文
[1] Matyjaszewski K. Macromolecular engineering: From rational design through precisemacromolecular synthesis and processing to targeted macroscopic material properties [J].Prog. Polym. Sci.,2005,30(8-9):858-875.
    [2] Szwarc, M.'Living' Polymers [J]. Nature1956,178:1168-1169.
    [3] Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer tomonomer a new method of formation of block polymers [J]. J. Am. Chem. Soc.,1956,78(11):2656-2657.
    [4] Webster O W. Living polymerization methods [J]. Science,1991,251(4996):887-893.
    [5] Matyjaszewski K, Gaynor S G. In applied polymer science [M]. Craver C D, Carraher CE: Oxford, UK,2000.929.
    [6] Matyjaszewski K. Controlled radical polymerization [M]. American Chemical Society:Washington,1998. Vol.685.
    [7] Matyjaszewski K. Controlled/living radical polymerization: progress in ATRP, NMP,and RAFT [M]. American Chemical Society: Washington,2000. Vol.768.
    [8] Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: Features,developments, and perspectives [J]. Prog. Polym. Sci.,2007,32(1):93-146.
    [9] Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiatedcontrolled radical polymerization: synthesis, characterization, properties, andapplications. Chem. Rev.,2009,109(11):5437-5527.
    [10],.[M].:,2005.186-187.
    [11] Otsu T, Ogawa T, Yamamoto T. Solid-phase block copolymer synthesis by the inifertertechnique [J]. Macromolecules,1986,19(7):2087-2089.
    [12] Husseman M, Malmstr m E E, McNamara M, et al. Controlled synthesis of polymerbrushes by “living” free radical polymerization techniques [J]. Macromolecules,1999,32(5):1424-1431.
    [13] Nakayama Y, Matsuda T. Surface macromolecular architectural designs usingphoto-graft copolymerization based on photochemistry of benzylN,N-diethyldithiocarbamate [J]. Macromolecules,1996,29(27):8622-8630.
    [14] Boyes S G, Brittain W J, Weng X, et al. Synthesis, characterization, and properties ofABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atomtransfer radical polymerization [J]. Macromolecules,2002,35(13):4960-4967.
    [15] Kim J B, Huang W X, Bruening M L, et al. Synthesis of triblock copolymer brushes bysurface-initiated atom transfer radical polymerization [J]. Macromolecules,2002,35(14):5410-5416.
    [16] Huang W, Kim J B, Baker G L, et al. Preparation of amphiphilic triblock copolymerbrushes for surface patterning [J]. Nanotechnology,2003,14(10):1075-1080.
    [17] Osborne V L, Jones D M, Huck W T S. Controlled growth of triblock polyelectrolytebrushes [J]. Chem. Commun.,2002(17):1838-1839.
    [18] Rowe-Konopacki M D, Boyes S G. Synthesis of surface initiated diblock copolymerbrushes from flat silicon substrates utilizing the RAFT polymerization technique [J].Macromolecules,2007,40(4):879-888.
    [19] Zhao Y L, Perrier S. Synthesis of well-defined homopolymer and diblock copolymergrafted onto silica particles by Z-supported RAFT polymerization [J]. Macromolecules2006,39(25):8603-8608.
    [20] Zhai G Q, Yu W H, Kang E T. et al. Functionalization of hydrogen-terminated siliconwith polybetaine brushes via surface-initiated reversible addition fragmentationchain-transfer (RAFT) polymerization [J]. Ind. Eng. Chem. Res.,2004,43(7):1673-1680.
    [21] Huang J S, Li X T, Zheng Y H, et al. Immobilization of penicillin G acylase onpoly[(glycidyl methacrylate)-co-(glycerol monomethacrylate)]-grafted magneticmicrospheres. Macromol. Biosci.,2008,8(6):508-515.
    [22] Huang J, Han B, Yue W, et al. Magnetic polymer microspheres with polymer brushesand the immobilization of protein on the brushes [J]. J. Mater. Chem.,2007,17(36):3812-3818.
    [23] Lee H J, Nakayama Y, Matsuda T. Spatio-resolved, macromolecular architecturalsurface: Highly branched graft polymer via photochemically driven quasilivingpolymerization technique [J]. Macromolecules,1999,32(21):6989-6995.
    [24] Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbentassays [J]. Anal. Chem.,2007,79(14):5457-5461.
    [25] Ignatova M, Voccia S, Gilbert B, et al. Synthesis of copolymer brushes endowed withadhesion to stainless steel surfaces and antibacterial properties by controllednitroxide-mediated radical polymerization [J]. Langmuir,2004,20(24):10718-10726.
    [26] Mori H, Seng D C, Zhang M F, et al. Hybrid nanoparticles with hyperbranched polymershells via self-condensing atom transfer radical polymerization from silica surfaces [J].Langmuir,2002,18(9):3682-3693.
    [27] Xu F J, Yuan Z L, Kang E T, et al. Branched fluoropolymer Si hybrids viasurface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100) surfaces[J]. Langmuir,2004,20(19):8200-8208.
    [28] Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer tomonomer a new method of formation of block polymers [J]. J. Am. Chem. Soc.,1956,78(11):2656-2657.
    [29] Xu F J, Neoh K G, Kang E T. Bioactive surfaces and biomaterials via atom transferradical polymerization [J]. Prog. Polym. Sci.,2009,34(8):719-761.
    [30] Mayadune R T, Rizzardo E, Chiefari J. Living radical polymerization with reversibleaddition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates aschain transfer agents [J]. Macromolecules,1999,32(21):6977-6980.
    [31] Moad G, Chong Y K, Postma A, et al. Advances in RAFT polymerization: the synthesisof polymers with defined end-groups [J]. Polymer,2005,46(19):8458-8468.
    [32] Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process [J].Aust. J. Chem.,2005,58(6):379-410.
    [33] Chiefari J, Ercole F, Chong Y K, et al. Living free radical polymerization by reversibleaddition-fragmentation chain transfer: the RAFT process [J]. Macromolecules,1998,31(16):5559-5562.
    [34] Mayadunne R T, Rizzardo E, Chiefari J. Living polymers by the use of trhiocarbonates asreversible addition-fragmentation chain transfer (RAFT) agents: ABA triblockcopolymers by radical polymerization in two steps [J]. Macromolecules,2000,33(2):243-245.
    [35] Chiefari J, Mayadunne R, Moad C, et al. Thiocarbonylthio compounds (S=C(Z)S-R) infree radical polymerization with reversible addition-fragmentation chain transfer (RAFTpolymerization). Effect of the activating group Z [J]. Macromolecules,2003,36(7):2273-2283.
    [36] Goto A, Sato K, Tsujiii Y, et al. Mechanism and kinetics of RAFT-based living radicalpolymerization of syrene and methyl methacrylate [J]. Macromolecules,2001,34(3):402-408.
    [37] Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates via reversibleaddition fragmentation chain transfer technique [J]. Macromolecules,2002,35(3):610-615.
    [38] Speranza G P. Waddill H G. Epoxy resin composition containing a curing agent which isa reaction product of hydantoins, formaldehyde and an amine [P]. U.S. Patent,4581423,1986-4-8.
    [39] Solomon D H, Rizzardo E, Cacioli P. Polymerziation process and polymers producedthereby [P]. U.S. Patent,4581429.1986-4-8.
    [40] Rizzardo E, Serelis A K, Solomon D H. Initiation mechanisms in radicalpolymerizations: Reaction of cumyloxy radicals with methyl methacrylate and styrene[J]. Aust. J. Chem.,1982,35(10):2013-2024.
    [41] Hawker C J, Barclay G G, Orellana A, et al. Initiating systems for nitroxide-mediated“living” free radical polymerizations: Synthesis and evaluation [J]. Macromolecules,1996,29(16):5245-5254.
    [42] Hawker C J.“Living” free radical polymerization: A unique technique for thepreparation of controlled macromolecular architectures [J]. Acc. Chem. Res.,1997,30(9):373-382.
    [43] Husseman M, Malmstr m E E, McNamara M, et al. Controlled synthesis of polymerbrushes by “living” free radical polymerization techniques [J]. Macromolecules,1999,32(5):1424-1431.
    [44] Chong Y K, Rizzardo E, Solomon D H. Confirmation of the Mayo mechanism for theinitiation of the thermal polymerization of styrene [J]. J. Am. Chem. Soc.,1983,105(26):7761-7762.
    [45] Meisters A, Moad G, Rizzardo E, et al. Thermal stability of poly(methyl metha-crylate)[J]. Polym. Bull.,1999,20(5):499-503.
    [46] Chen Y, Liu D, Deng Q, et al. Atom transfer radical polymerization directly frompoly(vinylidene fluoride): Surface and antifouling properties [J]. J. Polym. Sci. Part A:Polym. Chem.,2006,44(11):3434-3443.
    [47] Holmberg S, Holmlund P, Wilén C E, et al. Synthesis of proton-conducting membranesby the utilization of preirradiation grafting and atom transfer radical polymerizationtechniques [J]. J. Polym. Sci. Part A: Polym. Chem.,2002,40(4):591-600.
    [48] Singh N, Chen Z, Tomer N, et al. Modification of regenerated cellulose ultrafiltrationmembranes by surface-initiated atom transfer radical polymerization [J]. J. Membr. Sci.,2008,311(1-2):225-234.
    [49] Cheng Z P, Zhu X L, Kang E T, et al. Modification of poly(ether imide) membranes viasurface-initiated atom transfer radical polymerization [J]. Macromolecules,2006,39(4):1660-1663.
    [50] Xu F J, Zhao J P, Kang E T, et al. Surface functionalization of polyimide films viachloromethylation and surface-initiated atom transfer radical polymerization [J]. Ind.Eng. Chem. Res.,2007,46(14):4866-4873.
    [51] Lee S B, Koepsel R R, Morley S W, et al. Permanent, nonleaching antibacterial surfaces.1. synthesis by atom transfer radical polymerization [J]. Biomacromolecules,2004,5(3):877-882.
    [52] Yan L, Ishihara K. Graft copolymerization of2-methacryloyloxyethyl phosphorylcholineto cellulose in homogeneous media using atom transfer radical polymerization forproviding new hemocompatible coating materials [J]. J. Polym. Sci. Part A: Polym.Chem.,2008,46(10):3306-3313.
    [53] Huang J, Murata H, Koepsel R R, et al. Antibacterial polypropylene via surface-initiatedatom transfer radical polymerization [J]. Biomacromolecules,2007,8(5):1396-1399.
    [54] Xu F J, Zhao J P, Kang E T, et al. Functionalization of nylon membranes viasurface-initiated atom-transfer radical polymerization [J]. Langmuir,2007,23(16):8585-8592.
    [55] Yao F, Fu G D, Zhao J P, et al. Antibacterial effect of surface-functionalizedpolypropylene hollow fiber membrane from surface-initiated atom transfer radicalpolymerization [J]. J. Membr. Sci.,2008,319(1-2):149-157.
    [56] Cheng Z P, Zhu X L, Kang E T, et al. Modification of poly(ether imide) membranes viasurface-initiated atom transfer radical polymerization [J]. Macromolecules,2006,39(4):1660-1663.
    [57] Lokuge I, Wang X, Bohn P W. Temperature-controlled flow switching in nanocapillaryarray membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted byatom transfer radical polymerization [J]. Langmuir,2006,23(1):305-311.
    [58] Yang Q, Tian J, Hu M X, et al. Construction of a comb-like glycosylated membranesurface by a combination of UV-induced graft polymerization and surface-initiatedATRP [J]. Langmuir,2007,23(12):6684-6690.
    [59] Singh N, Husson S M, Zdyrko B, et al. Surface modification of microporous PVDFmembranes by ATRP [J]. J. Membr. Sci.,2005,262(1-2):81-90.
    [60] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry formultifunctional coatings [J]. Science,2007,318(5849):426-430.
    [61] Li C Y, Wang W C, Xu F J, et al. Preparation of pH-sensitive membranes viadopamine-initiated atom transfer radical polymerization [J]. J. Membr. Sci.,2010,367(1-2):7-13.
    [62] Yamago S, Miyazoe H, Goto R, et al. Radical-mediatedimidoylation of telluroglycosides.Insertion of isonitriles into the glycosidiccarbon telluriumbond [J]. Tetrahedron Lett.,1999,40(12):2347-2350.
    [63] Okubo M, Sugihara Y, Kitayama Y, et al. Emulsier-free, organotellurium-mediatedliving radical emulsion polymerization of butyl acrylate [J]. Macromolecules,2009,42(6):1979-1984.
    [64] Goto A, Zushi H, Hirai N, et al. Living radical polymerizations with germanium, tin, andphosphorus catalysts reversible chain transfer catalyzed polymerizations (RTCPs)[J]. J.Am. Chem. Soc.,2007,129(6):13347-13354.
    [65] Goto A, Hirai N, Wakada T, et al. Living radical polymerization with nitrogen catalyst:Reversible chain transfer catalyzed polymerization with N-iodosuccinimide [J].Macromolecules,2008,41(17):6261-6264.
    [66] Yang W, Ranby B. Radical living graft polymerization on the surface of polymericmaterials [J]. Macromolecules,1996,29(9):3308-3310.
    [67] Amirzadeh G, Schnabel W. On the photoinitiation of free radical polymerization-laserflash photolysis investigations on thioxanthone derivatives [J]. Die MakromolekulareChemie,1981,182(10):2821-2835.
    [68] Fouassier J P, Allonas X, Burget D. Photopolymerization reactions under visible lights:principle, mechanisms and examples of applications [J]. Prog. Org. Coat.,2003,47(1):16-36.
    [69] Bai H, Huang Z, Yang W. Visible light-induced living surface grafting polymerizationfor the potential biological applications [J]. J. Polym. Sci. Part A: Polym. Chem.,2009,47(24):6852-6862.
    [70]..[J],1995,(1):14-19.
    [71] Ulbricht M, zdemir S, Geismann C. Functionalized track-etched membranes asversatile tool to investigate stimuli-responsive polymers for “smart” nano-andmicrosystems [J]. Desalination,2006,199(1-3):150-152.
    [72] Tarvainen T, Nevalainen T, Sundell A, et al. Drug release from poly-(acrylic acid)grafted poly(vinylidene fluoride) membrane bags in the gastrointestinal tract in the Ratand Dog [J]. J. Contr. Rel.,2000,66(1):19-26.
    [73] Abetz V, Brinkmann T, Dijkstra M, et al. Developments in membrane research: frommaterial via process design to industrial application [J]. Adv. Eng. Mater.,2006,8(5):328-358.
    [74] Chapman C L, Bhattacharyya D, Eberhart R, et al. Plasma polymer thin film depositionsto regulate gas permeability through nanoporous track etched membranes [J]. J. Membr.Sci.,2008,318(1-2):137-144.
    [75] Ito T, Yamaguchi T. Controlled release of model drugs through a molecular recognitionion gating membrane in response to a specific ion signal [J]. Langmuir,2006,22(8):3945-3949.
    [76] Chen J, Iwata H, Maekawa Y, et al. Grafting of polyethylene by γ-radiation grafting ontoconductive carbon black and application as novel gas and solute sensors [J]. Radiat. Phys.Chem.,2003,67(3-4):397-401.
    [77] Squires T M, Messinger R J, Manalis S R. Making it stick: convection, reaction anddiffusion in surface-based biosensors [J]. Nature Biotechnol.,2008,26:417-426.
    [78] Xue C Y, Yang K L. Chemical modifications of inert organic monolayers with oxygenplasma for biosensor applications [J]. Langmuir,2007,23(10):5831-5835.
    [79] Belder D, Hussman H, Warnke J. Directed control of electroosmotic flow in nonaqueouselectrolytes using poly(ethylene glycol) coated capillaries [J] Electrophoresis,2001,22(4):666-672.
    [80] Popat K C, Johnson R W, Desai T A. Characterization of vapor deposited poly(ethyleneglycol) films on silicon surfaces for surface modification of microfluidic systems [J]. J.Vac. Sci. Technol. B,2003,21(2):645-654.
    [81] Jo S, Park K. Surface modification using silanated poly(ethylene glycol)s [J].Biomaterials,2000,21(6):605-616.
    [82] Li F, Chen W, Tang C, et al. Recent development of interaction of transition metalcomplexes with DNA based on biosensor and its applications [J]. Talanta,2008,77(1):1-8.
    [83] Chen Y, Liu D, Deng Q, et al. Atom transfer radical polymerization directly frompoly(vinylidene fluoride): surface and antifouling properties [J]. J. Polym. Sci. Part A:Polym. Chem.,2006,44(11):3434-3443.
    [84] Chen Y, Deng Q, Xiao J, et al. Controlled grafting from poly(vinylidene fluoride)microfiltration membranes via reverse atom transfer radical polymerization andantifouling properties [J]. Polymer,2007,48(26):7604-7613.
    [85] Dong H B, Xu Y Y, Yi Z, et al. Modification of polysulfone membranes viasurface-initiated atom transfer radical polymerization [J]. Appl. Surf. Sci.,2009,255(21):8860-8866.
    [86] Chen S, Zheng J, Li L, et al. Strong resistance of phosphorylcholine self-assembledmonolayers to protein adsorption: insights into nonfouling properties of zwitterionicmaterials [J]. J. Am. Chem. Soc.,2005,127(41):14473-14478.
    [87] Liu P S, Chen Q, Liu X, et al. Grafting of zwitterion from cellulose membranes viaATRP for improving blood compatibility [J]. Biomacromolecules,2009,10(10):2809-2816.
    [88] Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfoulingpoly(carboxybetaine) with active functional groups for protein immobilization [J].Biomacromolecules,2006,7(12):3311-3315.
    [89] Zhang Z, Chen S, Chang Y, et al. Surface grafted sulfobetaine polymers via atom transferradical polymerization as super low fouling coatings [J]. J. Phys. Chem. B,2006,110(22):10799-10804.
    [90] Zhang Z, Chao T, Chen S, et al. Super low fouling sulfobetaine and carboxybetainepolymers on glass slides [J]. Langmuir,2006,22(24):10072-10077.
    [91] Chang Y, Chen S, Zhang Z, et al. Highly protein-resistant coatings from well-defineddiblock copolymers containing sulfobetaines [J]. Langmuir,2006,22(5):2222-2226.
    [92] Cheng G, Zhang Z, Chen S, et al. Inhibition of bacterial adhesion and biofilm formationon zwitterionic surfaces [J]. Biomaterials,2007,28(29):4192-4199.
    [93] Cho W K, Kong B, Choi I S. Highly efficient non-biofouling coating of zwitterionicpolymers: poly((3-(methacryloylamino)propyl) dimethyl (3-sulfopropyl)ammoniumhydroxide)[J]. Langmuir,2007,23(10):5678-5682.
    [94]] Chang Y, Liao S C, Higuchi A, et al. A highly stable nonbiofouling surface withwell-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion [J].Langmuir,2008,24(10):5453-5458.
    [95] Cen L, Neoh K G, Kang E T. Surface functionalization technique for conferringantibacterial properties to polymeric and cellulosic surfaces [J]. Langmuir,2003,19(24):10295-10303.
    [96] Lin J, Qiu S, Lewis K, et al. On the mechanism of bactericidal and fungicidal activities oftextiles covalently modified with alkylated polyethylenimine [J]. Biotechnol. Bioeng.,2003,83(2):168-172.
    [97] Lin J, Murthy S K, Olsen B D, et al. Making thin polymeric materials, including fabrics,microbicidal and also water-repellent [J]. Biotechnol. Lett.2003,25(19):1661-1665.
    [98] Kügler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimumefficiency of biocidal cationic surfaces [J]. Microbiology,2005,151(5):1341-1348.
    [99] Tiller J C, Lee S B, Lewis K, et al. Polymer surface derivatized withpoly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria [J]. Biotechnol.Bioeng.,2002,79(4):465-471.
    [100] Lin J, Tiller J C, Lee S B, et al. Insights into bactericidal action of surface-attachedpoly(vinyl-N-hexylpyridinium) chains [J]. Biotechnol. Lett.,2002,24(10):801-805.
    [101] Hu F X, Neoh K G, Cen L, et al. Antibacterial and antifungal efficacy of surfacefunctionalized polymeric beads in repeated applications [J]. Biotechnol. Bioeng.,2005,89(4):474-484.
    [102] Lee S B, Koepsel R R, Morley S W, et al. Permanent, nonleaching antibacterial surfaces.1. synthesis by atom transfer radical polymerization [J]. Biomacromolecules,2004,5(3):877-882.
    [103] Lin J, Qui S, Lewis K, et al. Bactericidal properties of flat surfaces and nanoparticlesderivatized with alkylated polyethylenimines [J]. Biotechnol. Prog.,2002,18(5):1082-1086.
    [104] Thome J, Hollander A, Jaeger W, et al. Ultrathin antibacterial polyammonium coatingson polymer surfaces [J]. Surf. Coat. Technol.,2003,174-175:584-587.
    [105] Ignatova M, Voccia S, Gilbert B, et al. Synthesis of copolymer brushes endowed withadhesion to stainless steel surfaces and antibacterial properties by controllednitroxide-mediated radical polymerization [J]. Langmuir,2004,20(24):10718-10726.
    [106] Zhai G, Shi Z L, Kang E T, et al. Surface-initiated atom transfer radical polymerizationon poly(vinylidene fluoride) membrane for antibacterial ability [J]. Macromol. Biosci.,2005,5(10):974-982.
    [107] Dai S, Ravi P, Tam K C. pH-responsive polymers: synthesis, properties and applications[J]. Soft Matter,2008,4(3):435-449.
    [108] Wang W C, Vora R H, Kang E T, et al. pH-sensitive fluorinated polyimides with graftedacid and base side chains [J]. Ind. Eng. Chem. Res.,2003,42(4):784-794.
    [109] Xie R, Li Y, Chu L Y. Preparation of thermo-responsive gating membranes withcontrollable response temperature [J]. J. Membr. Sci.,2007,289(1-2):76-85.
    [110] Chu L Y, Li Y, Zhu J H, et al. Control of pore size and permeability of aglucose-responsive gating membrane for insulin delivery [J]. J. Contr. Rel.,2004,97(1):43-53.
    [111] Hautoj rvi J, Kontturi K, N sman J H, et al. Characterization of graft-modified porouspolymer membranes [J]. Ind. Eng. Chem. Res.,1996,35(2):450-457.
    [112] Chu L Y, Yamaguchi T, Nakao S. A molecular-recognition microcapsule forenvironmental stimuli-responsive controlled release [J]. Adv. Mater.,2002,14(5):386-389.
    [113] Yang H H, Zhang S Q, Yang Wei, et al. Molecularly imprinted sol gel nanotubesmembrane for biochemical separations [J]. J. Am. Chem. Soc.,2004,126(13):4054-4055.
    [114] Wandera D, Wickramasinghe S R, Husson S M. Stimuli-responsive membranes [J]. J.Membr. Sci.,2010,357(1-2):6-35.
    [115] Ebara M, Yamato M, Hirose M, et al. Copolymerization of2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachmentfrom grafted surfaces by reducing temperature [J]. Biomacromolecules,2003,4(2):344-349.Mizutani A, Kikuchi A, Yamato M, et al. Preparation of thermoresponsive polymer brush
    [116]surfaces and their interaction with cells [J]. Biomaterials,2008,29(13):2073-2081.Nagase K, Kobayashi J, Kikuchi A, et al. Effects of graft densities and chain lengths on
    [117]separation of bioactive compounds by nanolayered thermoresponsive polymer brushsurfaces [J]. Langmuir,2007,24(2):511-517.
    [118] Friebe A, Ulbricht M. Controlled pore functionalization of poly(ethylene terephthalate)track-etched membranes via surface-initiated atom transfer radical polymerization [J].Langmuir,2007,23(20):10316-10322.
    [119] Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates [J]. Prog.Polym. Sci.,2004,29(12):1173-1222.
    [120] Wandera D, Wickramasinghe S R, Husson S M. Stimuli-responsive membranes [J]. J.Membr. Sci.,2010,357(1-2):6-35.
    [121] Oak M S, Kobayashi T, Wang H Y, et al. pH effect on molecular size exclusion ofpolyacrylonitrile ultrafiltration membranes having carboxylic acid groups [J]. J. Membr.Sci.,1997,123(2):185-195.
    [122] Ying L, Wang P, Kang E T, et al. Synthesis and characterization of poly(acrylicacid)-graft-poly(vinylidene fluoride) copolymers and pH-sensitive membranes [J].Macromolecules,2002,35(3):673-679.
    [123] Hester J F, Olugebefola S C, Mayes A M. Preparation of pH-responsive membranes byself-organization [J]. J. Membr. Sci.,2002,208(1-2):375-388.
    [124] Ying L, Kang E T, Neoh K G. Characterization of membranes prepared from blends ofpoly(acrylic acid)-graft-poly(vinylidene fluoride) with poly(N-isopropylacrylamide) andtheir temperature-and pH-sensitive microfiltration [J]. J. Membr. Sci.,2003,224(1-2):93-106.
    [125] Zhang Z B, Zhu X L, Xu F J, et al. Temperature-and pH-sensitive nylon membranesprepared via consecutive surface-initiated atom transfer radical graft polymerizations [J].J. Membr. Sci.,2009,342(1-2):300-306.
    [126] Friebe A, Ulbricht M. Cylindrical pores responding to two different stimuli viasurface-initiated atom transfer radical polymerization for synthesis of grafted diblockcopolymers [J]. Macromolecules,2009,42(6):1838-1848.
    [127] Goddard J M, Hotchkiss J H. Polymer surface modification for the attachment ofbioactive compounds [J]. Prog. Polym. Sci.,2007,32(7):698-725.
    [128] Fu L, Chen X, He J, Xiong C, et al. Study viscoelasticity of ultrathin poly(oligo(ethyleneglycol) methacrylate) brushes by a quartz crystal microbalance with dissipation [J].Langmuir,2008,24(12):6100-6106.
    [129] Fan X, Lin L, Messersmith P B. Cell fouling resistance of polymer brushes grafted fromTi substrates by surface-initiated polymerization: effect of ethylene glycol side chainlength [J]. Biomacromolecules,2006,7(8):2443-2448.
    [130] Tugulu S, Barbey R, Harms M, et al. Synthesis of poly(methacrylic acid) brushes viasurface-initiated atom transfer radical polymerization of sodium methacrylate and theiruse as substrates for the mineralization of calcium carbonate [J]. Macromolecules,2007,40(2):168-177.
    [131] Ying L, Yin C, Zhou R X, et al. Immobilization of galactose ligands on acrylic acidgraft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyteculture. Biomacromolecules,2003,4(1):157-165.
    [132] Yin C, Ying L, Zhang P C, et al. High density of immobilized galactose ligand enhanceshepatocyte attachment and function. J. Biomed. Mater. Res. Part A,2003,67A(4):1093-1104.
    [133] Ulbricht M, Yang H. Porous polypropylene membranes with different carboxyl polymerbrush layers for reversible protein binding via surface initiated graft copolymerization.Chem. Mater.,2005,17(10):2622-2631.
    [134] Kusumo A, Bombalski L, Lin Q, et al. High capacity, charge-selective protein uptake bypolyelectrolyte brushes [J]. Langmuir,2007,23(8):4448-4454.
    [135] Ma H, Hyun J, Stiller P, et al.“Non-fouling” oligo(ethylene glycol)-functionalizedpolymer brushes synthesized by surface-initiated atom transfer radical polymerization [J].Adv. Mater.,2004,16(4):338-341.
    [136] Matyjaszewski K, Miller P J, Shukla N, et al. Polymers at interfaces:using atom transferradical polymerization in the controlled growth of homopolymers and block copolymersfrom silicon surfaces in the absence of untethered sacrificial initiator [J].Macromolecules,1999,32(26):8716-8724.
    [137] Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates via reversibleaddition fragmentation chain transfer technique [J]. Macromolecules,2002,35(3):610-615.
    [138] Kawakita H, Masunaga H, Nomura K, et al. Adsorption of bovine serum albumin to apolymer brush prepared by atom-transfer radical polymerization in a porous inorganicmembrane [J]. J. Porous Mater.,2007,14(4):387-391.
    [139] Sun C, Zhou F, Shi L, et al. Tribological properties of chemically bonded polyimidefilms on silicon with polyglycidyl methacrylate brush as adhesive layer [J]. Appl. Surf.Sci.,2006,253(4):1729-1735.
    [140] Dumont J, Fortier G. Behavior of glucose oxidase immobilized in variouselectropolymerized thin films [J]. Biotechnol. Bioeng.,1996,49(5):544-552.
    [141] Cen L, Neoh K G, Kang E T. Surface functionalization of polypyrrole film with glucoseoxidase and viologen [J]. Biosens. Bioelectron.,2003,18(4):363-374.
    [142] Nishiyama S, Goto A, Saito K, et al. Concentration of17β-estradiol using animmunoaffinity porous hollow-fiber membrane [J]. Anal. Chem.,2002,74(19):4933-4936.
    [143] Arica M Y, Bayramoglu G, Bicak N. Characterisation of tyrosinase immobilised ontospacer-arm attached glycidyl methacrylate-based reactive microbeads [J]. ProcessBiochem.,2004,39(12):2007-2017.
    [144] Alarcón C H, Farhan T, Osborne V L, et al. Bioadhesion at micro-patternedstimuli-responsive polymer brushes [J]. J. Mater. Chem.,2005,15(21):2089-2094.
    [145] Kusumo A, Bombalski L, Lin Q, et al. High capacity, charge-selective protein uptake bypolyelectrolyte brushes [J]. Langmuir,2007,23(8):4448-4454.
    [146] Xu F J, Cai Q J, Li Y L, et al. Covalent immobilization of glucose oxidase onwell-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiatedatom-transfer radical polymerization [J]. Biomacromolecules,2005,6(2):1012-1020.
    [147] Laporte L D, Shea L D. Matrices and scaffolds for DNA delivery in tissueengineering[J]. Adv. Drug Delivery Rev.,2007,59(4-5):292-307.
    [148] Blocker K M, Kiick K L, Sullivan M O. Surface immobilization of plasmid DNA with acell-responsive tether for substrate-mediated gene delivery [J]. Langmuir,2011,27(6):2739-2746.
    [149] Singh N, Cu X F, Boland T, et al. The role of independently variable grafting density andlayer thickness of polymer nanolayers on peptide adsorption and cell adhesion [J].Biomaterials,2007,28(5):763-771.
    [150] Navarro M, Benetti E M, Zapotoczny S, et al. Buried, covalently attached RGD peptidemotifs in poly(methacrylic acid) brush layers: the effect of brush structure on celladhesion [J]. Langmuir,2008,24(19):10996-11002.
    [151] Xu F J, Zhong S P, Yung L Y, et al. Collagen-coupled poly(2-hydroxyethylmethacrylate)-Si(111) hybrid surfaces for cell immobilization [J]. Tissue Eng.,2005,11(11-12):1736-1748.
    [152] Wischerhoff E, Uhlig K, Lankenau A, et al. Controlled cell adhesion on PEG-basedswitchable surfaces [J]. Angew. Chem. Int. Ed.,2008,47(30):5666-5668.
    [153] Lee B S, Chi Y S, Lee K B, et al. Functionalization of poly(oligo(ethylene glycol)methacrylate) films on gold and Si/SiO2for immobilization of proteins and cells: SPRand QCM studies [J]. Biomacromolecules,2007,8(12):3922-3929.
    [154] Xu F J, Wang Z H, Yang W T. Surface functionalization of polycaprolactone films viasurface-initiated atom transfer radical polymerization for covalently couplingcell-adhesive biomolecules [J]. Biomaterials,2010,31(12):3139-3147.
    [155] Kato K, Uchida E, Kang E T, et al. Polymer surface with graft chains [J]. Prog. Polym.Sci.,2003,28(2):209-259.
    [156] Stehling U M, Malmstrom E E, Waymouth R M, et al. Synthesis of poly(olefin) graftcopolymers by a combination of metallocene and living free radical polymerizationtechniques [J]. Macromolecules,1998,31(13):4396-4398.
    [157] Yamaki T, Asano M, Maekawa Y, et al. Radiation grafting of styrene into crosslinkedPTEE films and subsequent sulfonation for fuel cell application [J]. Radiat. Phys. Chem.,2003,67(3-4):403-407.
    [158] Xu F J, Kang E T, Neoh K G. UV-induced coupling of4-vinylbenzyl chloride onhydrogen-terminated Si (100) Surfaces for the preparation of well-defined polymer-Sihybrids via surface-initiated ATRP [J]. Macromolecules,2005,38(5):1573-1580.
    [159] Susanto H, Ulbricht M. Photo grafted thin polymer hydrogel layers on PES ultrafiltrationmembranes: characterization, stability, and influence on separation performance [J].Langmuir,2007,23(14):7818-7830.
    [160] Xie R, Chu L Y, Chen W M, et al. Characterization of microstructure ofpoly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared byplasma-graft pore-filling polymerization [J]. J. Membr. Sci.,2005,258(1-2):157-166.
    [161] Gupta B, Plummer C, Bisson I, et al. Plasma-induced graft polymerization of acrylic acidonto poly(ethylene terephthalate) films: characterization and human smooth muscle cellgrowth on grafted films [J]. Biomaterials,2002,23(3):863-871.
    [162] Li N, Yu S, Harrell C C, et al. Conical nanopore membranes preparation and transportproperties [J]. Anal. Chem.,2004,76(7):2025-2030.
    [163] Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis systems.1. Introduction,theory, and technology [J]. Anal. Chem.,2002,74(12):2623-2636.
    [164] Matyjaszewski K, Xia J. Atom transfer radical polymerization [J]. Chem. Rev.,2001,101(9):2921-2990.
    [165] Advincula R C, Brittain W J, Caster K C, et al. Polymer brushes: synthesis,characterization, applications [M]. John Wiley&Sons:2006.
    [166] Carlmark A, Malmstrom E E. ATRP grafting from cellulose fibers to createblock-copolymer grafts [J]. Biomacromolecules,2003,4(6):1740-1745.
    [167] Xu C, Wu T, Mei Y, et al. Synthesis and characterization of tapered copolymer brushesvia surface-initiated atom transfer radical copolymerization [J]. Langmuir,2005,21(24):11136-11140.
    [168] Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels andgeckos [J]. Nature,2007,448:338-342.
    [169] Sankhe A Y, Husson S M, Kilbey S M. Direct polymerization of surface-tetheredpolyelectrolyte layers in aqueous solution via surface-confined atom transfer radicalpolymerization [J]. J. Polym. Sci. Part A: Polym. Chem.,2007,45(4):566-575.
    [170] Jain P, Dai J, Baker G L, Bruening M L. Rapid synthesis of functional polymer brushesby surface-initiated atom transfer radical polymerization of an acidic monomer [J].Macromolecules,2008,41(22):8413-8417.
    [171] Chen T, Ferris R, Zhang J, et al. Stimulus-responsive polymer brushes on surfaces:Transduction mechanisms and applications [J]. Prog. Polym. Sci.,2010,35(1-2):94-112.
    [172] Rana D, Matsuura T. Surface Modifications for antifouling membranes [J]. Chem. Rev.,2010,110(4):2448-2471.
    [173] Raynor J E, Petrie T A, García A J, et al. Controlling cell adhesion to titanium:functionalization of poly[oligo(ethylene glycol)methacrylate] brushes with cell-adhesivepeptides [J]. Adv. Mater.,2007,19(13):1724-1728.
    [174] Tugulu S, Silacci P, Stergiopulos N, et al. RGD-functionalized polymer brushes assubstrates for the integrin specific adhesion of human umbilical vein endothelial cells [J].Biomaterials,2007,28(16):2536-2546.
    [175] Murata H, Koepsel R R, Matyjaszewski K, et al. Permanent, non-leaching antibacterialsurfaces--2: How high density cationic surfaces kill bacterial cells [J]. Biomaterials,2007,28(32):4870-4879.
    [176] Blawas A S, Reichert W M. Protein patterning [J]. Biomaterials,1998,19(7-9):595-609.
    [177] Fodor S, Read J, Pirrung M, et al. Light-directed, spatially addressable parallel chemicalsynthesis [J]. Science,1991,251(4995):767-773.
    [178] Plummer S T, Wang Q, Bohn P W, et al. Electrochemically derived gradients of theextracellular matrix protein fibronectin on gold [J]. Langmuir,2003,19(18):7528-7536.
    [179] Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteomechips [J]. Science,2001,293(5537):2101-2105.
    [180] Huang W, Skanth G, Baker G L, et al. Surface-initiated thermal radical polymerizationon gold [J]. Langmuir,2001,17(5):1731-1736.
    [181] Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transferradical polymerization in the presence of transition-metal complexes [J]. J. Am. Chem.Soc.,1995,117(20):5614-5615.
    [182] Percec V, Barboiu B."Living" radical polymerization of styrene initiated byarenesulfonyl chlorides and CuI(bpy)nCl [J]. Macromolecules,1995,28(23):7970-7972.
    [183] Chen Y, Kim H. Poly(vinylidene fluoride) grafted with3-trimethoxysilylpropylmethacrylate for silyl functional membranes [J]. React. Funct. Polym.,2008,68(11):1499-1506.
    [184] Xu J, Ma Y, Xie J, et al. Functionalization of polymeric surfaces by simplephotoactivation of C-H bonds [J]. J. Polym. Sci. Part A: Polym. Chem.,2011,49(12):2755-2760.
    [185] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of x-ray photoelectronspectroscopy: a reference book of standard spectra for identification and interpretation of
    [M]. Perkin-Elmer:1992.
    [186] Wu X Z, Huang T, Mullett W M, et al. Determination of isoelectric point andinvestigation of immunoreaction in peanut allergenic proteins–rabbit IgG antibodysystem by whole-column imaged capillary isoelectric focusing [J]. J. MicrocolumnSeparations,2001,13(8):322-326.
    [187] Kweon H Y, Yoo M K, Park I Y, et al. A novel degradable polycaprolactone networksfor tissue engineering [J]. Biomaterials,2003,24(5):801-808.
    [188] Cheng Z, Teoh S H. Surface modification of ultra thin poly(ε-caprolactone) films usingacrylic acid and collagen [J]. Biomaterials,2004,25(11):1991-2001.
    [189] Teramura Y, Iwata H. Islets surface modification prevents blood-mediated inflammatoryresponses [J]. Bioconjugate Chem.,2008,19(7):1389-1395.
    [190] Oyane A, Uchida M, Choong C, et al. Simple surface modification ofpoly(ε-caprolactone) for apatite deposition from simulated body fluid [J]. Biomaterials,2005,26(15):2407-2413.
    [191] Gabriel M, Nazmi K, Veerman E C, et al. Preparation of LL-37-grafted titanium surfaceswith bactericidal activity [J]. Bioconjugate Chem.,2006,17(2):548-550.
    [192] Glinel K, Jonas A M, Jouenne T, et al. Antibacterial and antifouling polymer brushesincorporating antimicrobial peptide [J]. Bioconjugate Chem.,2009,20(1):71-77.
    [193] Xu F J, Wang Z H, Yang W T. Surface functionalization of polycaprolactone films viasurface-initiated atom transfer radical polymerization for covalently couplingcell-adhesive biomolecules [J]. Biomaterials,2010,31(12):3139-147.
    [194] Zhu Y, Gao C, Liu X, et al. Surface modification of polycaprolacton membrane viaaminolysis and biomacromolecule immobilization for promoting cytocompatibility ofhuman endothelial cells [J]. Biomacromolecules,2002,3(6):1312-1319.
    [195] Zhu Y, Gao C, Liu X, et al. Immobilization of biomacromolecules onto aminolyzedpoly(L-lactic acid) toward acceleration of endothelium regeneration [J]. Tissue Eng.,2004,10(1-2):53-61.
    [196] Xu F J, Yang X C, Li C Y, et al. Functionalized polylactide flim surfaces viasurface-initiated ATRP [J]. Macromolecules,2011,44(7):2371-2377.
    [197] Liu S, Armes S P. The facile one-pot synthesis of shell cross-linked micelles in aqueoussolution at high solids [J]. J. Am. Chem. Soc.,2001,123(40):9910-9911.
    [198] Xu F J, Kang E T, Neoh K G. pH-and temperature-responsive hydrogels fromcrosslinked triblock copolymers prepared via consecutive atom transfer radicalpolymerizations [J]. Biomaterials,2006,27(14):2787-2797.
    [199] Yin Y J, Li Z Y, Sun Y B, et al. A preliminary study on chitosan/gelatin polyelectrolytecomplex formation [J]. J. Mater. Sci.,2005,40(17):4649-4652.
    [200] Xu F J, Li Y L, Kang E T, et al. Heparincoupled poly(poly(ethylene glycol)monomethacrylate)-Si(111) hybrids and their blood compatible surfaces [J].Biomacromolecules,2005,6(3):1759-1768.
    [201] Bratt-Leal A M, Carpenedo R L, Ungrin M D, et al. Incorporation of biomaterials inmulticellular aggregates modulates pluripote stem cell differentiation [J]. Biomaterials,2011,32(1):48-56.
    [202] Mao J S, Cui Y L, Wang X H, et al. A preliminary study on chitosan and gelatinpolyelectrolyte complex cytocompativility by cell cycle and apoptosis analysis [J].Biomaterials,2004,25(18):3973-3981.
    [203] Jiang T, Zhang Z, Zhou Y, et al. Surface functionalization of titanium withchitosan/gelatin via electrophoretic deposition:charaterization and cell behavior [J].Biomacromolecules,2010,11(5):1254-1260.
    [204] Wang Z H, Li W B, Ma J, et al. Functionalized nonionic dextran backbones by atomtransfer radical polymerization for efficient gene delivery [J]. Macromolecule,2011,44(2):230-239.
    [205] Li C Y, Yuan W, Jiang H, et al. PCL Film Surfaces Conjugated withPDMAEMA/Gelatin Complexes for Improving Cell Immobilization and GeneTransfection [J]. Bioconjugate Chem.,2011,22(9):1842-1851.
    [206] Yang X B, Bhatnagar R S, Li S, et al. Biomimetic collagen scaffolds for human bone cellgrowth and differentiation [J]. Tissue Eng.,2004,10(7-8):1148-1159.
    [207] Lebaron R G, Athanasiou K A. Extracellular matrix cell adhesion peptides: functionalapplications in orthopedic materials [J]. Tissue Eng.,2000,6(2):85-103.
    [208] Segura T, Shea L D. Surface-tethered DNA complexes for enhanced gene delivery [J].Bioconjugate Chem.,2002,13(3):621-629.
    [209] Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis ofpolymeric materials [J]. Adv. Mater.,1998,10(12):901-915.
    [210] Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization: atomtransfer radical polymerization [J]. Chem. Eur. J.1999,5(11):3095-3102.
    [211] Patten T E, Matyjaszewski K. Copper (I)-catalyzed atom transfer radical polymerization[J]. Acc. Chem. Res.,1999,32(10):895-903.
    [212] Matyjaszewski K, Dong H, Jakubowski W, et al. Grafting from surfaces for “everyone”:ARGET ATRP in the presence of air [J]. Langmuir,2007,23(8):4528-4531.
    [213] Li P F, Xie R, Jiang J C, et al. Thermo-responsive gating membranes with controllablelength and density of poly(N-isopropylacrylamide) chains grafted by ATRP method [J].J. Membr. Sci.,2009,337(1-2):310-317.
    [214] Bai L, Zhang L, Zhang Z, et al. Iron-mediated AGET ATRP of styrene in the presence ofcatalytic amounts of base [J]. Macromolecules,2010,43(22):9283-9290.
    [214] Bai L, Zhang L, Zhang Z, et al. Iron-mediated AGET ATRP of styrene in the presence ofcatalytic amounts of base [J]. Macromolecules,2010,43(22):9283-9290.
    [215] Tao M, Zhang L, Jiang H, et al. Iron(III)-mediated AGET ATRP of methyl methacrylateusing vitamin C sodium salt as a reducing agent [J]. Macromol. Chem. Phys.,2011,212(14):1481-1488.
    [216] Qin J, Cheng Z, Zhang L, et al. A highly efficient iron-mediated AGET ATRP of methylmethacrylate using Fe(0) powder as the reducing agent. Macromol. Chem. Phys.,2011,212(10):999-1006.
    [217] Deng J, Wang L, Liu L, et al. Developments and new applications of UV-induced surfacegraft polymerizations [J]. Prog. Polym. Sci.,2009,34(2):156-193.
    [218] Nakanishi K, Solomon P H. Infrared absorption spectroscopy [M]. Emerson-AdamsPress:1977.
    [219] Ying L, Yu W H, Kang E T, et al. Functional and surface-active membranes frompoly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graftcopolymerization [J]. Langmuir,2004,20(14):6032-6040.
    [220] Miwa Y, Yamamoto K, Sakaguchi M, et al. Well-defined polystyrene grafted topolypropylene backbone by “living” radical polymerization with TEMPO [J].Macromolecules,2001,34(7):2089-2094.
    [221] Allméar K, Hult A, R rnby B. Surface modification of polymers. I. Vapour phasephotografting with acrylic acid [J]. J. Polym. Sci. Part A: Polym. Chem.,1988,26:2099-2111.
    [222] Zhu L P, Xu L, Zhu B K, et al. Preparation and characterization of improvedfouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEGcopolymers as additives [J]. J. Membr. Sci.,2007,294(1-2):196-206.
    [223] Allen N S, Catalina F, Peinado C, et al. Synthesis, characterization andphotopolymerization activity of a novel thioxanthone monomer and photopolymers [J].Eur. Polym. J.,1987,23(12):985-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700