模型油中噻吩类硫化物的氧化和吸附脱硫方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效控制燃油中的含硫化合物所带来的环境污染,各国政府不断出台日益严格的燃油含硫标准。传统的加氢脱硫可有效脱除燃油中的非噻吩类硫化物,但却很难脱除噻吩(thiophene)、苯并噻吩(benzothiophene,BT)、二苯并噻吩(dibenzothiophene,DBT)及其衍生物等。因此,研究者开发了许多非加氢脱硫方法,如吸附脱硫、萃取脱硫、氧化脱硫等。本文主要研究了三种催化剂在萃取催化氧化脱硫过程中的催化性能,开发了一种集成氧化脱硫的新方法,并考察了四种金属-有机骨架化合物(Metal-Organic Frameworks,MOFs)对含硫模型油的吸附脱硫性能。
     首先,本文研究了H_2O_2作氧化剂的萃取催化氧化脱硫方法。对所制备的三种Keggin型磷钨酸盐催化剂,通过元素分析、X射线衍射分析和红外光谱分析等手段分析了其组成和结构。以H_2O_2为氧化剂,1-丁基-3甲基咪唑六氟磷酸盐([Bmim]PF_6)为萃取剂,考察了这三种催化剂在萃取催化氧化脱硫体系中的催化性能。研究了温度、离子液体的亲水性、硫化物种类及催化剂、离子液体和H_2O_2的用量等因素的影响,得到了优化的脱硫条件。结果表明,这三种催化剂均表现出较高的催化活性,在40℃,质量比m(DBT-oil):m([Bmim]PF_6=4:1,摩尔比n(H_2O_2):n(S):n(catalyst)=300:100:1的条件下反应1.5h,它们对初始硫含量为1000ppm的DBT模型油的脱硫率均可达到99.8%以上。憎水性的离子液体[Bmim]PF_6比亲水性的离子液体[Bmim]BF_4更适合于本脱硫体系。提出了本脱硫过程的反应机理,认为离子液体是反应相,离子液体中硫化物及过氧化催化剂的含量会严重影响脱硫效果。含有催化剂的离子液体在多次重复利用后,体系的脱硫性能下降很小,该离子液体可通过简单的萃取处理恢复其脱硫性能。
     其次,本文开发了一种集成氧化脱硫的新方法。通过集成异丙醇氧化生成原位H_2O_2和H_2O_2氧化脱硫,在催化剂[π-C_5H_5NC_(16)H_(33)]_3[PW_(12)O_(40)]的作用下,对含硫模型油进行氧化脱硫。考察了反应时间、反应温度、不同硫化物及异丙醇、引发剂、氧气和催化剂的用量等因素对脱硫性能的影响,优化了反应条件。发现[π-C_5H_5NC_16H_33]_3[PW_(12)O_(40)]的催化活性远大于H3PW_(12)O_(40)和[(C4H9)4N]3[PW_(12)O_(40)],在70℃,m(DBT-oil)/m(isopropanol)=4:1,m(AIBN)/m(isopropanol)=4%,n(S)/n([π-C_5H_5NC_16H_33]3[PW_(12)O_(40)])=50:1,P氧气=1.4MPa的条件下反应6h,它们对DBT模型油的硫转化率分别为98.9%、34.9%和18.7%,其原因在于[π-C_5H_5NC_16H_33]3[PW_(12)O_(40)]对噻吩类硫化物具有更强的吸附性能,且在燃油中具有更好的分散性。对于整个集成反应过程,异丙醇自由基的生成是控制步骤,任何有利于该自由基生成的因素都能显著影响最终脱硫率。该集成过程能有效脱除模型油中的BT和DBT,在相对温和的条件下反应6h,硫转化率可达到96%以上;但对3-甲基噻吩(3-methylthiophene,3-MT)的脱除效果相对较差,90℃反应6h,硫转化率仅为43.3%。相同条件下,不同硫化物的脱除顺序为DBT> BT>3-MT,该顺序与其硫原子上的电子密度大小相一致。以DBT为代表,其集成氧化脱硫产物经表征证明为DBTO和DBTO_2的混合物。同样条件下,有异丙醇参与的集成反应硫转化率可达98.9%,远大于不加异丙醇时的5.1%,说明集成脱硫的效果明显优于传统的氧气氧化脱硫方法。脱硫后燃油中的硫氧化产物可通过简单的过滤-萃取方法除去,燃油中的异丙醇可水洗脱除。
     最后,本文研究了几种MOF材料的吸附脱硫性能。通过两种有机羧酸配体(H_3BTC和H_2BDC)与两种金属离子(Cu~(2+)和Cr~(3+))的组合,合成四种MOF材料(Cu-BDC、Cu-BTC、Cr-BDC和Cr-BTC),系统考察了它们对模型油的吸附脱硫性能。结果发现,Cu-BTC、Cr-BDC和Cr-BTC的脱硫能力优于传统的沸石和活性炭,在30℃和m(DBT-oil):m(MOF)=200:1的条件下吸附60min,它们对初始硫含量为1000ppm的DBT模型油的吸附脱硫容量分别可达到56.1、41.2和30.7mg S/(g MOF)。结果分析表明,MOF材料的吸附脱硫是物理吸附和化学吸附共同作用的结果,其脱硫能力是各种因素共同作用的结果,这些因素包括:合适的骨架结构、与目标硫化物相匹配的暴露的Lewis酸位点、以及合适的孔尺寸和孔型等。对于不同硫化物的吸附脱除性能,其顺序均为DBT> BT>3-MT,该顺序与其硫原子上的电子密度和π电子数量有关。脱硫后的MOF材料通过简单的醇洗方法再生,可重复利用五次以上。
For effectively controlling the environmental pollution caused by theS-content in fuel oils, more stringent environmental regulations to lower theS-content in fuel oils are continuously introduced by governments. Thetraditional industrial process is the hydrodesulfurization (HDS), which iseffective for non-thiophenic S-compounds, but less effective for thedesulfurization of thiophene (Th), benzothiophene (BT), dibenzothiophene(DBT) and their derivatives. Therefore, some new technologies different fromHDS such as adsorptive desulfurization (ADS), extractive desulfurization(EDS), oxidative desulfurization (ODS) and other processes have beenproposed. In this paper, we studied the catalysis of three catalysts in theextractive and catalytic oxdative desulfurization (ECODS) process, proposedan integrated ODS process, and investigated the adsorption behavior of fourmetal-organic frameworks (MOFs) in model oil.
     Firstly, three Keggin-type phosphotungstates were synthesized andcharacterized by elemental analysis, X-ray diffraction and infrared spectra.Their catalysis in an ECODS process was studied with ionic liquid (IL)[Bmim]PF_6as extractant and H_2O_2as oxidant. The main factors affecting the desulfurization process were investigated, including temperature,hydrophobicity of IL, variety of sulfur compounds, as well as the amount ofcatalyst, IL and H_2O_2. All the three catalysts show high catalytic activity.Under the optimal conditions (40℃, m(DBT-oil):m([Bmim]PF_6=4:1,n(H_2O_2):n(S):n(catalyst)=300:100:1,1.5h), for the three catalysts, theirS-removal of DBT-oil with its initial S-content being1000ppm can achieve99.8%. It is found that the hydrophobic IL [Bmim]PF_6is more suitable thanhydrophilic IL [Bmim]BF_4as the extractant in the ECODS system. For thepresent ECODS process, a new interpretation is proposed, in which IL isassumed as a reaction phase, and the amount of the extracted S-compound andthe peroxidized catalyst wherein greatly affect the desulfurization rate.Besides, the IL with the dissolved catalyst can be reused many times andregenerated easily.
     Secondly, we proposed a novel integrated ODS process, in which theoxidant H_2O_2is in situ generated by oxidizing isopropanol with oxygen, andthe oxidative desulfurization process is helped by a reaction-controlled phasetransfer catalyst. Some influencing factors for the S-conversion were studied,viz., time, temperature, various S-compounds, and the amount of isopropanol,initiator, oxygen, and catalyst. It is found that the catalysis of[π-C_5H_5NC_(16)H_(33)]_3[PW_(12)O_(40)] is much superior to H_3PW_(12)O_(40)and[(C_4H_9)_4N]_3[PW_(12)O_(40)], under the same conditions (70℃, m(DBT-oil)/m(isopropanol)=4:1, m(AIBN)/m(isopropanol)=4%, n(S) /n([π-C_5H_5NC_(16)H_(33)]3[PW_(12)O_(40)])=50:1, P_(O2)=1.4MPa,6h), the S-conversioncan reach to98.9%,34.9%,18.7%, respectively, because of its gooddispersivity in oil and adsorptivity for S-compounds. For the integrated ODSprocess, the rate determining step is the induction period of the oxidation ofisopropanol, and all measures favoring the production of the isopropanolradicals can improve the reaction rate markedly. Both BT and DBT can beremoved efficiently at mild conditions in6h with S-conversion above96%,however, the S-conversion of3-methylthiophene (3-MT) is relatively low, theS-conversion for which is only43.3%at90°C in6h. The reactivity ofdifferent S-compounds follows the order DBT> BT>3-MT, which is inaccordance with their decreasing electron density on the sulfur atom. Theoxidation products of DBT in the integrated ODS process is characterized asDBTO and DBTO_2. Under the same conditions, the S-conversion withisopropanol can reach98.9%, which is much higher than the S-conversionwithout isopraponal, i.e.5.1%. So the present integrated ODS process isbetter than the traditional ODS process. And the oxidation products can beseparated easily via settling or filtration. Besides, the dissolved isopropanol inthe treated oil can be removed easily by washing with water.
     Finally, four MOFs (Cu-BDC, Cu-BTC, Cr-BDC and Cr-BTC) weresynthesized using two different metal ions (Cu~(2+)and Cr~(3+))and two differentcarboxylate ligands (H_3BTC and H_2BDC). Their adsorption behaviors forthiophenic sulfurs in model oils are systemically investigated at mild temperatures. And Cu-BTC, Cr-BDC and Cr-BTC are found to be superior tothe conventional zeolites or activated carbons adsorbents, their adsorptioncapacity of DBT-S can reach56.1,41.2, and30.7mg S/(g MOF) at30°C in1h (mDBT-oil:mMOF=200:1). The results show that the adsorption of these MOFsis a result of combined effects of physisorption and chemisorption. Theiradsorption behaviors are controlled by manifold factors involving appropriateframework structures, suitable pore size and shape, and exposed Lewis acidsites matching the given S-compound. The adsorption capacity of differentsulfur compounds follows the order: DBT> BT>3-MT, which is mainlyascribed to their π electron number and the electron density on sulfur atom.The used MOF can be easily regenerated by solvent washing and recycled atleast five times.
引文
[1] Al-Malki A. Desulfurization of gasoline and diesel fuels, using non-hydrogen consumingtechniques [D]. Dhahran of Saudi Arabia: King Fahd University of Petroleum and Minerals,2004.
    [2] Borgne S L, Quintero R. Biotechnological processes for the refining of petroleum[J]. Fuel Process.Technol.,2003,81:155~169.
    [3] Lee R Z, Ng F T T. Effect of water on HDS of DBT over a dispersed Mo catalyst using in situgenerated hydrogen[J]. Catal. Today,2006,116:505~511.
    [4] Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra lowsulfur diesel (ULSD) production[J]. Catal. Today,2010,153:1~68.
    [5]张晶华,梁晓乐,张宝军.清洁汽油生产技术进展[J].精细石油化工进展,2004,5(11):50~52.
    [6] Cooney C M. California moves ahead on diesel exhaust study[J]. Environ. Sci. Technol.,1998:250.
    [7] Pawelec B, Navarro R M, Campos-Martin J M, et al. Towards near zero-sulfur liquid fuels: aperspective review[J]. Catal. Sci. Technol.,2011,1:23~42.
    [8] Babich I V, Moulijin J A. Science and technology of novel processes for deep desulfurization ofoil refinery streams: a review[J]. Fuel,2003,82:607~631.
    [9] Marafi A, Al-Hindi A, Stanislaus A. Deep desulfurization of full range and low boiling dieselstreams from Kuwait Lower Fars heavy crude[J]. Fuel Process. Technol.,2007,88:905~911.
    [10] Breysse M, Geantet C, Afanasiev P, et al. Recent studies on the preparation, activation and designof active phases and supports of hydrotreating catalysts[J]. Catal. Today,2008,130:3~13.
    [11] Ho T C. Deep HDS of diesel fuel: chemistry and catalysis[J]. Catal. Today,2004,98:3~18.
    [12] Farag H. A comparative assessment of the effect of H2S on hydrodesulfurization ofdibenzothiophene over nanosize MoS2-and CoMo-based Al2O3catalysts[J]. Appl. Catal. A: Gen.,2007,331:51~59.
    [13] Liu Z, Zhang Q, Zheng Y, et al. Effects of Nitrogen and Aromatics on Hydrodesulfurization ofLight Cycle Oil Predicted by a System Dynamics Model[J]. Energy Fuels,2008,22:860~866.
    [14] Song T, Zhang Z, Chen J, et al. Effect of Aromatics on Deep Hydrodesulfurization ofDibenzothiophene and4,6-Dimethyldibenzothiophene over NiMo/Al2O3Catalyst[J]. EnergyFuels,2006,20:2344~2349.
    [15] Knudsen K G, Cooper B H, Topsφe H. Catalyst and process technologies for ultra low sulfurdiesel[J]. Appl. Catal. A: Gen.,1999,189:205~215.
    [16] Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and diesel fuels usingnon-hydrogen consuming techniques[J]. Fuel,2006,85:1354~1363.
    [17] Jose N, Sengupta S, Basu J K. Optimization of oxidative desulfurization of thiophene usingCu/titanium silicate-1by box-behnken design[J]. Fuel,2011,90:626~632.
    [18] Sampanthar J T, Xiao H, Dou J, et al. A novel oxidative desulfurization process to removerefractory sulfur compounds from diesel fuel[J]. Appl. Catal. B: Environ.,2006,63:85~93.
    [19] Qian E W. Development of Novel Nonhydrogenation Desulfurization Process: OxidativeDesulfurization of Distillate[J]. J. Jpn. Petrol. Inst.,2008,51:14~31.
    [20] Murata S, Murata K, Kidena K, et al. A novel oxidative desulfurization system for diesel fuelswith molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy Fuels,2004,18:116~121.
    [21] Chen T, Shen Y, Lee W, et al. The study of ultrasound-assisted oxidative desulfurization processapplied to the utilization of pyrolysis oil from waste tires[J]. J. Cleaner Prod.,2010,18:1850~1858.
    [22]朱庆云,李雪静,乔明,等.世界汽柴油标准及供需发展趋势浅析[J].中外能源,2011,16:87~93.
    [23] Fuel Regulations[EB/OL]. http://www.dieselnet.com/standards/fuels.html,2012.03.12.
    [24] Vona C. Middle East Fuel Quality-Overview: Presented to UNEP Jordan National Post LeadWorkshop[R]. Amman, Jordan: International Fuel Quality Center,2008.
    [25]夏青虹.柴油机排放标准发展研究[A].李大东,龙军,张宝吉.中国石油学会第六届石油炼制学术年会[C].北京:中国石化出版社,2010.
    [26]徐东,罗艳托,龚满英.实施国Ⅲ车用柴油标准对我国成品油市场的影响[J].国际石油经济,2011,19:38~42.
    [27]杜宝程.中国车用燃油标准现状与发展[J].农家科技(下旬刊),2011:54~55.
    [28]高树征,张庆林,高洪歌,等.中国市场车用柴油品质和使用状况调查[J].内燃机与动力装置,2009:1~6.
    [29] Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization anddeep dearomatization[J]. Appl. Catal. B: Environ.,2003,41:207~238.
    [30] Hua R, Li Y, Liu W, et al. Determination of sulfur-containing compounds in diesel oils bycomprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector[J].J. Chromatogr. A,2003,1019:101~109.
    [31] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, dieselfuel and jet fuel[J]. Catal. Today,2003,86:211~263.
    [32]李建源,周新锐,赵德丰.苯并噻吩及其衍生物[J].化学通报,2005,68(5):1~7.
    [33]孙志娟,余谟鑫,张心亚,等.油品中噻吩类硫化物脱除技术研究进展[J].化工进展,2005,24(9):1002~1005.
    [34] Jiang Z, Lü H, Zhang Y, et al. Oxidative Desulfurization of Fuel Oils[J]. Chin. J. Catal.,2011,32:707~715.
    [35]宋鹏俊,闫锋,张影,等. FCC柴油氧气氧化萃取法脱硫研究[J].化工科技,2010,18:43~47.
    [36] Ma X, Sakanishi K, Mochida I. Hydrodesulfurization reactivities of various sulfur compounds indiesel fuel[J]. Ind. Eng. Chem. Res.,1994,33:218~222.
    [37] Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes: an overview[J].Catal. Today,2000,59:423~442.
    [38] Xue M, Chitrakar R, Sakane K, et al. Selective adsorption of thiophene and1-benzothiophene onmetal-ion-exchanged zeolites in organic medium [J]. J. Colloid Interface Sci.,2005,285:487~492.
    [39] Liu B S, Xu D F, Chu J X, et al. Deep Desulfurization by the Adsorption Process of FluidizedCatalytic Cracking (FCC) Diesel over Mesoporous Al MCM-41Materials[J]. Energy Fuels,2007,21:250~255.
    [40] Ma X, Sun L, Song C. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuelby selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catal. Today,2002,77:107~116.
    [41] Song C. New Approaches to Deep Desulfurization for Ultra-Clean Gasoline and Diesel Fuels: AnOverview[J]. Fuel. Chem. Div. Prepr.,2002,47:438~444.
    [42] Michael J G, Bruce C G. Reactivities, reaction networks, and kinetics in high-pressure catalytichydroprocessing[J]. Ind. Eng. Chem. Res.,1991,30:2021~2058.
    [43] Gates B C, Topsoe H. Reactivities in deep catalytic hydrodesulfurization: challenges,opportunities, and the importance of4-methyldibenzothiophene and4,6-dimethyldibenzothiophene[J]. Polyhedron,1997,16:3213~3217.
    [44] Perot G. Hydrotreating catalysts containing zeolites and related materials—mechanistic aspectsrelated to deep desulfurization[J]. Catal. Today,2003,86:111~128.
    [45] Bataille F, Lemberton J, Michaud P, et al. AlkyldibenzothiophenesHydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism[J]. J. Catal.,2000,191:409~422.
    [46] Mochida I, Sakanishi K, Ma X, et al. Deep hydrodesulfurization of diesel fuel: Design of reactionprocess and catalysts[J]. Catal. Today,1996,29:185~189.
    [47] Mochida I, Choi K. An Overview of Hydrodesulfurization and Hydrodenitrogenation[J]. J. Jpn.Petrol. Inst.,2004,47:145~163.
    [48] Topsφe H, Hinnemann B, Nφrskov J K, et al. The role of reaction pathways and supportinteractions in the development of high activity hydrotreating catalysts[J]. Catal. Today,2005,107-108:12~22.
    [49] Ninh T K T, Massin L, Laurenti D, et al. A new approach in the evaluation of the support effectfor NiMo hydrodesulfurization catalysts[J]. Appl. Catal. A: Gen.,2011,407:29~39.
    [50] Baeza P, Aguila G, Vargas G, et al. Adsorption of thiophene and dibenzothiophene on highlydispersed Cu/ZrO2adsorbents[J]. Appl. Catal. B: Environ.,2012,111-112:133~140.
    [51] Chen T, Yang B, Li S, et al. Ni2P Catalysts Supported on Titania-Modified Alumina for theHydrodesulfurization of Dibenzothiophene[J]. Ind. Eng. Chem. Res.,2011,50:11043~11048.
    [52] Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: Areview[J]. Catal. Today,2009,143:94~107.
    [53] Sattler A, Janak K E, Parkin G. Modeling aspects of hydrodesulfurization by molybdenumhydride compounds: Desulfurization of thiophene and benzothiophene and C–S bond cleavageof dibenzothiophene [J]. Inorg. Chim. Acta,2011,369:197~202.
    [54] Nava R, Infantes-Molina A, Casta o P, et al. Inhibition of CoMo/HMS catalyst deactivation in theHDS of4,6-DMDBT by support modi cation with phosphate[J]. Fuel,2011,90:2726~2737.
    [55] Suo Z, Ma C, Liao W, et al. Structure and activity of Au-Pd/SiO2bimetallic catalyst for thiophenehydrodesulfurization[J]. Fuel Process. Technol.,2011,92:1549~1553.
    [56] Zhu H, Guo W, Li M, et al. Density Functional Theory Study of the Adsorption andDesulfurization of Thiophene and Its Hydrogenated Derivatives on Pt(111): Implication for theMechanism of Hydrodesulfurization over Noble Metal Catalysts[J]. ACS Catal.,2011,1:1498~1510.
    [57] Sawhill S J, Layman K A, Van Wyk D R, et al. Thiophene hydrodesulfurization over nickelphosphide catalysts: effect of the precursor composition and support[J]. J. Catal.,2005,231:300~313.
    [58] Oyama S T, Zhao H, Freund H, et al. Unprecedented selectivity to the direct desulfurization (DDS)pathway in a highly active FeNi bimetallic phosphide catalyst[J]. J. Catal.,2012,285:1~5.
    [59] Muhammad Y, Li C. Dibenzothiophene hydrodesulfurization using in situ generated hydrogenover Pd promoted alumina-based catalysts[J]. Fuel Process. Technol.,2011,92:624~630.
    [60] Muhammad Y, Lu Y, Shen C, et al. Dibenzothiophene hydrodesulfurization over Ru promotedalumina based catalysts using in situ generated hydrogen[J]. Energy Convers. Manage.,2011,52:1364~1370.
    [61] Muzic M, Sertic-Bionda K, Gomzi Z, et al. Study of diesel fuel desulfurization by adsorption[J].Chem. Eng. Res. Des.,2010,88:487~495.
    [62] Yang R T, Hernández-Maldonado A J, Yang F H. Desulfurization of Transportation Fuels withZeolites Under Ambient Conditions[J]. Science,2003,301:79~81.
    [63] Jiang M, Ng F T T. Adsorption of benzothiophene on Y zeolites investigated by infraredspectroscopy and flow calorimetry[J]. Catal. Today,2006,116:530~536.
    [64] Kim J H, Ma X, Zhou A, et al. Ultra-deep desulfurization and denitrogenation of diesel fuel byselective adsorption over three different adsorbents: A study on adsorptive selectivity andmechanism[J]. Catal. Today,2006,111:74~83.
    [65] Seredych M, Rawlins J, Bandosz T J. Investigation of the Thermal Regeneration Efficiency ofActivated Carbons Used in the Desulfurization of Model Diesel Fuel[J]. Ind. Eng. Chem. Res.,2011,50:14097~14104.
    [66] Gao X, Mao H, Lu M, et al. Facile synthesis route to NiO–SiO2intercalated clay with orderedporous structure: Intragallery interfacially controlled functionalization using nickel–ammoniacomplex for deep desulfurization[J]. Micropor. Mesopor. Mater.,2012,148:25~33.
    [67] Subhan F, Liu B S. Acidic sites and deep desulfurization performance of nickel supportedmesoporous AlMCM-41sorbents[J]. Chem. Eng. J.,2011,178:69~77.
    [68] Tang X, Meng X, Shi L. Desulfurization of Model Gasoline on Modified Bentonite[J]. Ind. Eng.Chem. Res.,2011,50:7527~7533.
    [69] Hernandez S P, Fino D, Russo N. High performance sorbents for diesel oil desulfurization[J].Chem. Eng. Sci.,2010,65:603~609.
    [70] Yu M, Li Z, Xia Q, et al. Desorption activation energy of dibenzothiophene on the activatedcarbons modified by different metal salt solutions[J]. Chem. Eng. J.,2007,132:233~239.
    [71] Yang R T, Takahashi A, Yang F H. New Sorbents for Desulfurization of Liquid Fuels by π-Complexation[J]. Ind. Eng. Chem. Res,2001,40:6236~6239.
    [72] Takahashi A, Yang F H, Yang R T. New Sorbents for Desulfurization by π-Complexation:Thiophene/Benzene Adsorption[J]. Ind. Eng. Chem. Res.,2002,41:2487~2496.
    [73] Hernandez-Maldonado A J, Yang R T. Desulfurization of Diesel Fuels by Adsorption via π-Complexation with Vapor-Phase Exchanged Cu(I)-Y Zeolites[J]. J. Am. Chem. Soc.,2004,126:992~993.
    [74] Yang R T, Foldes R. New Adsorbents Based on Principles of Chemical Complexation:Monolayer-Dispersed Nickel(II) for Acetylene Separation by π-Complexation[J]. Ind. Eng.Chem. Res.,1996,35:1006~1011.
    [75] Huang H Y, Padin J, Yang R T. Anion and Cation Effects on Olefin Adsorption on Silver andCopper Halides; Ab Initio Effective Core Potential Study of π-Complexation[J]. J. Phys.Chem. B,1999,103:3206~3212.
    [76] Takahashi A, Yang F H, Yang R T. Aromatics/Aliphatics Separation by Adsorption: NewSorbents for Selective Aromatics Adsorption by π-Complexation[J]. Ind. Eng. Chem. Res.,2000,39:3856~3867.
    [77] Munson C L, Chinn D. Deactivation of π-Complexation Adsorbents by Hydrogen andRejuvenation by Oxidation[J]. Ind. Eng. Chem. Res.,2001,40:4370~4376.
    [78] Wang L, Sun B, Yang F H, et al. Effects of aromatics on desulfurization of liquid fuel by π-complexation and carbon adsorbents[J]. Chem. Eng. Sci.,2012,73:208~217.
    [79] Shan J, Chen L, Sun L, et al. Adsorptive Removal of Thiophene by Cu-Modified MesoporousSilica MCM-48Derived from Direct Synthesis[J]. Energy Fuels,2011,25:3093~3099.
    [80] Ma X, Velu S, Kim J H, et al. Deep desulfurization of gasoline by selective adsorption over solidadsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cellapplications[J]. Appl. Catal. B: Environ.,2005,56:137~147.
    [81] Velu S, Ma X, Song C. Selective Adsorption for Removing Sulfur from Jet Fuel overZeolite-Based Adsorbents[J]. Ind. Eng. Chem. Res.,2003,42:5293~5304.
    [82] Xiao J, Li Z, Liu B, et al. Adsorption of Benzothiophene and Dibenzothiophene onIon-Impregnated Activated Carbons and Ion-Exchanged Y Zeolites[J]. Energy Fuels,2008,22:3858~3863.
    [83] Huang L, Wang G, Qin Z, et al. In situ XAS study on the mechanism of reactive adsorptiondesulfurization of oil product over Ni/ZnO[J]. Appl. Catal. B: Environ.,2011,106:26~38.
    [84] Wang Y, Latz J, Dahl R, et al. Liquid phase desulfurization of jet fuel by a combinedpervaporation and adsorption process[J]. Fuel Process. Technol.,2009,90:458~464.
    [85] Li W, Tang H, Liu Q, et al. Deep desulfurization of diesel by integrating adsorption and microbialmethod[J]. Biochem. Eng. J.,2009,44:297~301.
    [86]曾小岚,李丹,张香平,等.基于离子液体的燃料油萃取脱硫过程[J].过程工程学报,2007,7(3):506~509.
    [87] Eβer J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction withionic liquids[J]. Green Chem.,2004,6:316~322.
    [88]陈娜,张文林,米冠杰,等. FCC汽油萃取脱硫过程萃取剂筛选[J].化工进展,2006,25(11):1345~1348.
    [89] Poole C F, Poole S K. Extraction of organic compounds with room temperature ionic liquids[J]. J.Chromatogr. A,2010,1217:2268~2286.
    [90] Han X, Armstrong D W. Ionic Liquids in Separations[J]. Acc. Chem. Res,2007,40:1079~1086.
    [91] Zhao D, Wu M, Kou Y, et al. Ionic liquids: applications in catalysis[J]. Catal. Today,2002,74:157~189.
    [92] Werner S, Haumann M, Wasserscheid P. Ionic Liquids in Chemical Engineering[J]. Annu. Rev.Chem. Biomol. Eng.,2010,1:103~230.
    [93] B smann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction withionic liquids[J]. Chem. Commun.,2001:2494~2495.
    [94] Holbrey J D, López-Martin I, Rothenberg G, et al. Desulfurisation of oils using ionic liquids:selection of cationic and anionic components to enhance extraction efficiency[J]. Green Chem.,2008,10:87~92.
    [95] Gao H, Li Y, Wu Y, et al. Extractive Desulfurization of Fuel Using3-Methylpyridinium-BasedIonic Liquids[J]. Energy Fuels,2009,23:2690~2694.
    [96] Nie Y, Li C, Sun A, et al. Extractive Desulfurization of Gasoline Using Imidazolium-BasedPhosphoric Ionic Liquids[J]. Energy Fuels,2006,20:2083~2087.
    [97] Nie Y, Li C, Wang Z. Extractive Desulfurization of Fuel Oil Using Alkylimidazole and ItsMixture with Dialkylphosphate Ionic Liquids[J]. Ind. Eng. Chem. Res.,2007,46:5108~5122.
    [98] Li F, Liu Y, Sun Z, et al. Deep Extractive Desulfurization of Gasoline with xEt3NHCl·FeCl3IonicLiquids[J]. Energy Fuels,2010,24:4285~4289.
    [99] Zhang S, Zhang Z C. Novel properties of ionic liquids in selective sulfur removal from fuels atroom temperature[J]. Green Chem.,2002,4:376~379.
    [100] Zhang S, Zhang Q, Zhang Z C. Extractive Desulfurization and Denitrogenation of Fuels UsingIonic Liquids[J]. Ind. Eng. Chem. Res.,2004,43:614~622.
    [101] Kulkarni P S, Afonso C A M. Deep desulfurization of diesel fuel using ionic liquids: current statusand future challenges[J]. Green Chem.,2010,12:1139~1149.
    [102] Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, et al. Oxidative processes ofdesulfurization of liquid fuels[J]. J. Chem. Technol. Biotechnol.,2010,85:879~890.
    [103] Zhang G, Yu F, Wang R. Research Advances in Oxidative Desulfurization Technologies for theProduction of Low Sulfur Fuel Oils[J]. Petrol. Coal,2009,51:196~207.
    [104] Al-Shahrani F, Xiao T, Llewellyn S A, et al. Desulfurization of diesel via the H2O2oxidation ofaromatic sulfides to sulfones using a tungstate catalyst[J]. Appl. Catal. B: Environ.,2007,73:311~316.
    [105] Otsuki S, Nonaka T, Takashima N, et al. Oxidative Desulfurization of Light Gas Oil and VacuumGas Oil by Oxidation and Solvent Extraction[J]. Energy Fuels,2000,14:1232~1239.
    [106] Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and Denitrogenation Process for LightOils Based on Chemical Oxidation followed by Liquid-Liquid Extraction[J]. Ind. Eng. Chem.Res.,2002,41:4362~4375.
    [107] Haw K, Bakar W A W A, Ali R, et al. Catalytic oxidative desulfurization of diesel utilizinghydrogen peroxide and functionalized-activated carbon in a biphasic diesel–acetonitrilesystem[J]. Fuel Process. Technol.,2010,91:1105~1112.
    [108] Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of Dibenzothiophenes in an Organic BiphasicSystem and Its Application to Oxidative Desulfurization of Light Oil[J]. Energy Fuels,2001,15:1535~1536.
    [109] Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogen peroxide andheteropolyanion catalysis[J]. J. Mol. Catal. A: Chem.,1997,117:397~403.
    [110] Lü H, Gao J, Jiang Z, et al. Ultra-deep desulfurization of diesel by selective oxidation with
    [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J. Catal.,2006,239:369~375.
    [111] Komintarachat C, Trakarnpruk W. Oxidative Desulfurization Using Polyoxometalates[J]. Ind. Eng.Chem. Res.,2006,45:1853~1856.
    [112] Zhang J, Wang A, Li X, et al. Oxidative desulfurization of dibenzothiophene and diesel over
    [Bmim]3PMo12O40[J]. J. Catal.,2011,279:269~275.
    [113] Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2and formic acid/H2O2systems[J]. Appl. Catal. A: Gen.,2001,219:267~280.
    [114] Lo W, Yang H, Wei G. One-pot desulfurization of light oils by chemical oxidation and solventextraction with room temperature ionic liquids[J]. Green Chem.,2003,5:639~642.
    [115] Zhao D, Wang J, Zhou E. Oxidative desulfurization of diesel fuel using a Br nsted acid roomtemperature ionic liquid in the presence of H2O2[J]. Green Chem.,2007,9:1219~1222.
    [116] Zhao D, Sun Z, LI F, et al. Oxidative Desulfurization of Thiophene Catalyzed by(C4H9)4NBr·2C6H11NO Coordinated Ionic Liquid[J]. Energy Fuels,2008,22:3065~3069.
    [117] Zhang W, Xu K, Zhang Q, et al. Oxidative Desulfurization of Dibenzothiophene Catalyzed byIonic Liquid [BMIm]HSO4[J]. Ind. Eng. Chem. Res.,2010,49:11760~11763.
    [118] Gui J, Liu D, Sun Z, et al. Deep oxidative desulfurization with task-specific ionic liquids: Anexperimental and computational study[J]. J. Mol. Catal. A: Chem.,2010,331:64~70.
    [119] Li F, Kou C, Sun Z, et al. Deep extractive and oxidative desulfurization of dibenzothiophene withC5H9NO·SnCl2coordinated ionic liquid[J]. J. Hazard. Mater.,2012,205-206:164~170.
    [120] Di Giuseppe A, Crucianelli M, De Angelis F, et al. Efficient oxidation of thiophene derivativeswith homogeneous and heterogeneous MTO/H2O2systems: A novel approach for, oxidativedesulfurization (ODS) of diesel fuel[J]. Appl. Catal. B: Environ.,2009,89:239~245.
    [121] Chen L, Guo S, Zhao D. Oxidative Desulfurization of Simulated Gasoline over MetalOxide-loaded Molecular Sieve[J]. Chin. J. Chem. Eng.,2007,15:520~523.
    [122] García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, et al. Ultra-deep oxidativedesulfurization of diesel fuel by the Mo/Al2O3-H2O2system: The effect of system parameters oncatalytic activity[J]. Appl. Catal. A: Gen.,2008,334:366~373.
    [123] Dai Y, Qi Y, Zhao D, et al. An oxidative desulfurization method using ultrasound/Fenton's reagentfor obtaining low and/or ultra-low sulfur diesel fuel[J]. Fuel Process. Technol.,2008,89:927~932.
    [124] Ma X, Zhou A, Song C. A novel method for oxidative desulfurization of liquid hydrocarbon fuelsbased on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catal.Today,2007,123:276~284.
    [125] Lü H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygenusing emulsion catalysis[J]. Chem. Commun.,2007:150~152.
    [126] Rao T V, Sain B, Kafola S, et al. Oxidative Desulfurization of HDS Diesel Using theAldehyde/Molecular Oxygen Oxidation System[J]. Energy Fuels,2007,21:3420~3424.
    [127] Zhou X, Lv S, Wang H, et al. Catalytic oxygenation of dibenzothiophenes to sulfones based on FeⅢ porphyrin complex[J]. Appl. Catal. A: Gen.,2011,396:101~106.
    [128] Jiang C, Wang J, Wang S, et al. Oxidative desulfurization of dibenzothiophene with dioxygen andreverse micellar peroxotitanium under mild conditions[J]. Appl. Catal. B: Environ.,2011,106:343~349.
    [129] Xinrui Z, Hongtao G, Jing W, et al. Oxidation of Benzothiophenes Using Tert-amylHydroperoxide[J]. Chin. J. Chem. Eng.,2009,17:189~194.
    [130] Ishihara A, Wang D, Dumeignil F, et al. Oxidative desulfurization and denitrogenation of a lightgas oil using an oxidation/adsorption continuous flow process[J]. Appl. Catal. A: Gen.,2005,279:279~287.
    [131] Chica A, Corma A, Dómine M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on acontinuous fixed-bed reactor[J]. J. Catal.,2006,242:299~308.
    [132] Stanger K J, Angelici R J. Silica-Catalyzed tert-Butyl Hydroperoxide Oxidation ofDibenzothiophene and Its4,6-Dimethyl Derivative: A Route to Low-Sulfur PetroleumFeedstocks[J]. Energy Fuels,2006,20:1757~1760.
    [133] Prasad V V D N, Jeong K, Chae H, et al. Oxidative desulfurization of4,6-dimethyldibenzothiophene and light cycle oil over supported molybdenum oxide catalysts[J]. Catal.Commun.,2008,9:1966~1969.
    [134] Chica A, Gatti G, Moden B, et al. Selective Catalytic Oxidation of Organosulfur Compounds withtert-Butyl Hydroperoxide[J]. Chem. Eur. J.,2006,12:1960~1967.
    [135] Wolfe D M, Schreiner P R. Oxidative Desulfurization of Azole-2-thiones with Benzoyl Peroxide:Syntheses of Ionic Liquids and Other Azolium Salts[J]. Eur. J. Org. Chem.,2007:2825~2838.
    [136] Zhou X, Zhao C, Yang J, et al. Catalytic Oxidation of Dibenzothiophene Using CyclohexanonePeroxide[J]. Energy Fuels,2007,21:7~10.
    [137] Zhang J, Bai X, Li X, et al. Preparation of MoO3-CeO2-SiO2Oxidative Desulfurization Catalystsby a Sol-Gel Procedure[J]. Chin. J. Catal.,2009,30:1017~1021.
    [138] Sundararaman R, Ma X, Song C. Oxidative Desulfurization of Jet and Diesel Fuels UsingHydroperoxide Generated in Situ by Catalytic Air Oxidation[J]. Ind. Eng. Chem. Res.,2010,49:5561~5568.
    [139] Shiraishi Y, Tachibana K, Hirai T, et al. Photochemical Production of Biphenyls from OxidizedSulfur Compounds Obtained by Oxidative Desulfurization of Light Oils[J]. Energy Fuels,2003,17:95~100.
    [140] Di-shun Z, Fa-tang L, Er-peng Z, et al. Kinetics and Mechanism of the Photo-oxidation ofThiophene by O2Adsorbed on Molecular Sieves[J]. Chem. Res. Chinese Universities,2008,24:96~100.
    [141] Tao H, Nakazato T, Sato S. Energy-efficient ultra-deep desulfurization of kerosene based onselective photooxidation and adsorption[J]. Fuel,2009,88:1961~1969.
    [142] Lin F, Wang D, Jiang Z, et al. Photocatalytic oxidation of thiophene on BiVO4with dualco-catalysts Pt and RuO2under visible light irradiation using molecular oxygen as oxidant[J].Energy Environ. Sci.,2011.
    [143]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995.
    [144] Duarte F A, de A. Mello P, Bizzi C A, et al. Sulfur removal from hydrotreated petroleum fractionsusing ultrasound-assisted oxidative desulfurization process[J]. Fuel,2011,90:2158~2164.
    [145] Mei H, Mei B W, Yen T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasoundassisted oxidative desulfurization[J]. Fuel,2003,82:405~414.
    [146] Deshpande A, Bassi A, Prakash A. Ultrasound-Assisted, Base-Catalyzed Oxidation of4,6-Dimethyldibenzothiophene in a Biphasic Diesel-Acetonitrile System[J]. Energy Fuels,2006,19:28~34.
    [147] Wan M, Yen T. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assistedoxidative desulfurization (UAOD) process[J]. Appl. Catal. A: Gen.,2007,319:237~245.
    [148] Tam P S, Kittrell J R, Eldridge J W. Desulfurization of Fuel Oil by Oxidation and Extraction.1.Enhancement of Extraction Oil Yield[J]. Ind. Eng. Chem. Res.,1990,29:321~324.
    [149] Liu W, Lei Z, Wang J. Kinetics and Mechanism of Plasma Oxidative Desulfurization in LiquidPhase[J]. Energy Fuels,2001,15:38~43.
    [150] Nehlsen J, Benziger J, Kevrekidis I. Oxidation of Aliphatic and Aromatic Sulfides Using SulfuricAcid[J]. Ind. Eng. Chem. Res.,2006,45:518~524.
    [151] Wang W, Wang S, Liu H, et al. Desulfurization of gasoline by a new method of electrochemicalcatalytic oxidation[J]. Fuel,2007,86:2747~2753.
    [152] Liu S, Wang B, Cui B, et al. Deep desulfurization of diesel oil oxidized by Fe (VI) systems[J].Fuel,2008,87:422~428.
    [153] Chan N Y, Lin T, Yen T F. Superoxides: Alternative Oxidants for the Oxidative DesulfurizationProcess[J]. Energy Fuels,2008,22:3326~3328.
    [154]郭巧霞,唐晓东,赵红义,等. FCC汽油烷基化脱硫催化剂研究进展[J].精细石油化工,2009,26(4):68~72.
    [155] Bellière V, Geantet C, Vrinat M, et al. Alkylation of3-Methylthiophene with2-Methyl-2-buteneover a Zeolitic Catalyst[J]. Energy Fuels,2004,18:1806~1813.
    [156] Liu Y, Yang B, Yi C, et al. Kinetics Study of3-Methylthiophene Alkylation with IsobutyleneCatalyzed by NKC-9Ion Exchange Resin[J]. Ind. Eng. Chem. Res.,2011,50:9609~9616.
    [157] Guo B, Wang R, Li Y. Gasoline alkylation desulfurization over Amberlyst35resin: In uence ofmethanol and apparent reaction kinetics[J]. Fuel,2011,90:713~718.
    [158] Arias M, Laurenti D, Bellière V, et al. Preparation of supported H3PW12040·6H2O for thiopheniccompounds alkylation in FCC gasoline[J]. Appl. Catal. A: Gen.,2008,348:142~147.
    [159] Wang R, Li Y, Guo B, et al. Catalytic Mechanism of MCM-41Supported Phosphoric AcidCatalyst for FCC Gasoline Desulfurization by Alkylation: Experimental and TheoreticalInvestigation[J]. Energy Fuels,2011,25:3940~3949.
    [160]赵野,申宝剑,高金森.柴油脱硫技术评述[J].精细石油化工进展,2005,6(10):47~54.
    [161] Kodama K, Umehara K, Shimizu K, et al. Identification of Microbial Products fromDibenzothiophene and Its Proposed Oxidation Pathway[J]. Agr. Biol. Chem.,1973,37:45~50.
    [162] Olson E S, Stanley D C, Gallagher J R. Characterization of intermediates in the microbialdesulfurization of dibenzothiophene[J]. Energy Fuels,1993,7:159~164.
    [163] Rhee S, Chang J H, Chang Y K, et al. Desulfurization of Dibenzothiophene and Diesel Oils by aNewly Isolated Gordona Strain, CYKS1[J]. Appl. Environ. Microbiol.,1998,64:2327~2331.
    [164] Maghsoudi S, Vossoughi M, Kheirolomoom A, et al. Biodesulfurization of hydrocarbons anddiesel fuels by Rhodococcus sp. Strain P32C1[J]. Biochem. Eng. J.,2001,8:151~156.
    [165] Luo M F, Xing J M, Gou Z X, et al. Desulfurization of dibenzothiophene by lyophilized cells ofPseudomonas delafieldii R-8in the presence of dodecane[J]. Biochem. Eng. J.,2003,13:1~6.
    [166] Li F, Xu P, Feng J, et al. Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7BImmobilized-Cell System[J]. Appl. Environ. Microbiol.,2005,71:276~281.
    [167] Jia X, Wen J, Sun Z, et al. Modeling of DBT biodegradation behaviors by resting cells ofGordonia sp. WQ-01and its mutant in oil–water dispersions[J]. Chem. Eng. Sci.,2006,61:1987~2000.
    [168] Agarwal P, Sharma D K. Comparative Studies on the Bio-desulfurization of Crude Oil with OtherDesulfurization Techniques and Deep Desulfurization through Integrated Processes[J]. EnergyFuels,2010,24:518~524.
    [169] Bahuguna A, Lily M K, Munjal A, et al. Desulfurization of dibenzothiophene (DBT) by a novelstrain Lysinibacillus sphaericus DMT-7isolated from diesel contaminated soil[J]. J. Environ. Sci.,2011,23:975~982.
    [170] Shiraishi Y, Taki Y, Hirai T, et al. A Novel Desulfurization Process for Fuel Oils Based on theFormation and Subsequent Precipitation of S-Alkylsulfonium Salts.1. Light Oil Feedstocks[J].Ind. Eng. Chem. Res.,2001,40:1213~1224.
    [171] Shiraishi Y, Tachibana K, Taki Y, et al. A Novel Desulfurization Process for Fuel Oils Based onthe Formation and Subsequent Precipitation of S-Alkylsulfonium Salts.2. Catalytic-CrackedGasoline[J]. Ind. Eng. Chem. Res.,2001,40:1225~1233.
    [172] Sévignon M, Macaud M, Favre-Réguillon A, et al. Ultra-deep desulfurization of transportationfuels via charge-transfer complexes under ambient conditions[J]. Green Chem.,2005,7:413~420.
    [173] Lin L, Wang G, Qu H, et al. Pervaporation performance of crosslingked polyethylene glycolmembranes for deep desulfurization of FCC gasoline[J]. J. Membr. Sci.,2006,280:651~658.
    [174] Mortaheb H R, Ghaemmaghami F, Mokhtarani B. A review on removal of sulfur components fromgasoline by pervaporation[J]. Chem. Eng. Res. Design,2012,90:409~432.
    [175] Pasel J, Wang Y, Hürter S, et al. Desulfurization of jet fuel by pervaporation[J]. J. Membr. Sci.,2012:390~391.
    [176] Torres-Nleto J, Arévalo A, García J J. Catalytic Desulfurization of Dibenzothiophene withPalladium Nanoparticles[J]. Inorg. Chem.,2008,47:11429~11434.
    [177]邢金仙,刘晨光. FCC柴油中硫、氮化合物的馏分和类型分布[J].石油与天然气化工,2003,32:246~249.
    [178]杨林,李春虎,李秀平,等.活性半焦在FCC柴油吸附脱硫中的应用研究[J].工业催化,2007,15(1):24~28.
    [179]单佳慧,刘晓勤,岳军,等.汽油中硫含量的分析方法进展[J].南京工业大学学报,2007,29:106~112.
    [180] Zhu W, Li H, Jiang X, et al. Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten andPeroxomolybdenum Complexes in Ionic Liquids[J]. Energy Fuels,2007,21:2514~2516.
    [181] He L N, Li H M, Zhu W S, et al. Deep oxidative desulfurization of fuels usingperoxophosphomolybdate catalysts in ionic liquids[J]. Ind. Eng. Chem. Res.,2008,47:6890~6895.
    [182] Li H M, He L N, Lu J D, et al. Deep oxidative desulfurization of fuels catalyzed byphosphotungstic acid in ionic liquids at room temperature[J]. Energy Fuels,2009,23:1354~1357.
    [183] Zhu W S, Li H M, Jiang X, et al. Commercially Available Molybdic Compound-CatalyzedUltra-Deep Desulfurization of Fuels in Ionic Liquids[J]. Green Chem.,2008,10:641~646.
    [184] Li H, Jiang X, Zhu W, et al. Deep Oxidative Desulfurization of Fuel Oils Catalyzed byDecatungstates in the Ionic Liquid of [Bmim]PF6[J]. Ind. Eng. Chem. Res.,2009,48:9034~9039.
    [185] Zhang Y, Lü H, Wang L, et al. The oxidation of benzothiophene using the Keggin-type lacunarypolytungstophosphate as catalysts in emulsion[J]. J. Mol. Catal. A: Chem.,2010,332:59~64.
    [186]赵忠奎,李宗石,王桂茹,等.杂多酸催化剂及其在精细化学品合成中的应用[J].化学进展,2004,16:620~630.
    [187] Zhu W, Li H, Gu Q, et al. Kinetics and mechanism for oxidative desulfurization of fuels catalyzedby peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids[J]. J. Mol. Catal.A: Chem,2011,336:16~22.
    [188] Zhang S J, Zhao G D, Gao S, et al. Secondary alcohols oxidation with hydrogen peroxidecatalyzed by [n-C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalyticprecursor and catalytic activity species[J]. J. Mol. Catal. A: Chem.,2008,289:22~27.
    [189] Zhang X, Li J, Chen Y, et al. Heteropolyacid Nanoreactor with Double Acid Sites as a HighlyEfficient and Reusable Catalyst for the Transesterification of Waste Cooking Oil[J]. Energy Fuels,2009,23:4640~4646.
    [190]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [191] Lu X, Liu B, Sarula, et al. Synthesis, crystal structure and NMR of [Na(DB18C6)(CH3CN)]3[α-PW12O40][J]. Polyhedron,2005,24:2889~2893.
    [192] Huang W, Zhu W, Li H, et al. Heteropolyanion-Based Ionic Liquid for Deep Desulfurization ofFuels in Ionic Liquids[J]. Ind. Eng. Chem. Res.,2010,49:8998~9003.
    [193] Wong D S H, Chen J P, Chang J M, et al. Phase equilibria of water and ionic liquids [emim][PF6]and [bmim][PF6][J]. Fluid Phase Equilibr.,2002:1089~1095.
    [194]吴洪达,郭敏. Keggin结构铜单取代硅钨酸钾催化过氧化氢分解[J].精细石油化工,2003:8~11.
    [195] Silverstein R M, Webster F X, Kiemle D J. Spectrometric Identification of OrganicCompounds[M]. Seventh Edition ed. New York: Wiley,2005.
    [196] Ma X, Sprague M, Song C. Deep Desulfurization of Gasoline by Selective Adsorption overNickel-Based Adsorbent for Fuel Cell Applications[J]. Ind. Eng. Chem. Res.,2005,44:5768~5775.
    [197] Liu Y, Murata K, Inaba M, et al. Direct epoxidation of propylene by molecular oxygen overPd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system[J]. Appl. Catal. B:Environ.,2005,58:51~59.
    [198] Torres-García E, Galano A, Rodriguez-Gattorno G. Oxidative desulfurization (ODS) oforganosulfur compounds catalyzed by peroxo-metallate complexes of WOx–ZrO2:Thermochemical, structural, and reactivity indexes analyses[J]. J. Catal.,2011,282:201~208.
    [199] Ramírez-Verduzco L F, Torres-García E, Gómez-Quintana R, et al. Desulfurization of diesel byoxidation/extraction scheme: influence of the extraction solvent[J]. Catal. Today,2004,98:289~294.
    [200] Blanco-Brieva G, Capel-Sanchez M C, de Frutos M P, et al. New Two-Step Process for PropeneOxide Production (HPPO) Based on the Direct Synthesis of Hydrogen Peroxide[J]. Ind. Eng.Chem. Res.,2008,47:8011~8015.
    [201] Peng G, Fu Z, Yin D, et al. A Promising Coupled Process of Pd/γ-Al2O3-NH4VO3Catalyzing theHydroxylation of Benzene with Hydrogen Peroxide Produced In Situ by an Anthraquinone RedoxRoute[J]. Catal. Lett.,2007,118:270~274.
    [202] Feng J, Wang H, Evans D G, et al. Catalytic hydrogenation of ethylanthraquinone over highlydispersed eggshell Pd/SiO2–Al2O3spherical catalysts[J]. Appl. Catal. A: Gen.,2010,382:240~245.
    [203] Wang C, Wang B, Meng X, et al. Study on process integration of the production of propyleneoxide and hydrogen peroxide[J]. Catal. Today,2002,74:15~21.
    [204]朱向学,徐贤伦,刘淑文.蒽醌催化加氢法生产过氧化氢研究进展[J].化工科技,2001,9(6):55~62.
    [205] Zhao J, Zhou J, Su J, et al. Propene epoxidation with in-site H2O2produced by H2/O2non-equilibrium plasma[J]. AIChE J.,2007,53:3204~3209.
    [206] Samanta C, Choudhary V R. Direct oxidation of H2to H2O2over Pd/Ga2O3catalyst under ambientconditions: Influence of halide ions added to the catalyst or reaction medium[J]. Appl. Catal. A:Gen.,2007,326:28~36.
    [207] Samanta C, Choudhary V R. Direct formation of H2O2from H2and O2anddecomposition/hydrogenation of H2O2in aqueous acidic reaction medium over halide-containingPd/SiO2catalytic system[J]. Catal. Commun.,2007,8:2222~2228.
    [208] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen Peroxide Synthesis: An Outlookbeyond the Anthraquinone Process[J]. Angew. Chem. Int. Ed.,2006,45:6962~6984.
    [209] Edwards J K, Hutchings G J. Palladium and Gold–Palladium Catalysts for the Direct Synthesis ofHydrogen Peroxide[J]. Angewandte Chemie International Edition,2008,47(48):9192~9198.
    [210]安红强,王桂赟,王延吉,等.过氧化氢的合成与有机物选择性氧化反应的集成研究进展[J].化工进展,2010,29(9):1675~1680.
    [211] Song H, Li G, Wang X, et al. Characterization and catalytic performance of Au/Ti-HMS for directgeneration of H2O2and in situ-H2O2-ODS from H2and O2: An in situ-reduction synthesis and arecycle study of catalyst[J]. Micropor. Mesopor. Mater.,2011,139:104~109.
    [212] Aiken J E. Process for integrated co-production of hydrogen peroxide and epoxidized esters[P].US Patent,2010/0,113,809,2010-05-06.
    [213] Harris C R. Production of Hydrogen Peroxide by the Partial Oxidation of Alcohols[P]. US Patent,2479111,1949-08-16.
    [214] Crocco G L, Jubin J C, Zajacek J G. Integrated process for cyclohexanone oxime production [P].US Patent,5599987,1997-02-04.
    [215] Liang X, Mi Z, Wang Y, et al. An Integrated Process of H2O2Production through IsopropanolOxidation and Cyclohexanone Ammoximation[J]. Chem. Eng. Technol.,2004,27:176~180.
    [216] Kunugi T, Matsuura T. Isopropanol oxidizes this way[J]. Hydrocarb. Process.,1965,44:116~122.
    [217] Sun Y, Xi Z, Cao G. Epoxidation of olefins catalyzed by [π-C5H5NC16H33]3[PW4O16] withmolecular oxygen and a recyclable reductant2-ethylanthrahydroquinone[J]. J. Mol. Catal. A:Chem.,2001,166:219~224.
    [218] Xi Z, Zhou N, Sun Y, et al. Reaction-Controlled Phase-Transfer Catalysis for PropyleneEpoxidation to Propylene Oxide[J]. Science,2001,292:1139~1141.
    [219] Li J, Gao S, Li M, et al. Influence of composition of heteropolyphosphatotungstate catalyst onepoxidation of propylene[J]. J. Mol. Catal. A: Chem.,2004,218:247~252.
    [220] Kuriacose J C, Markham M C. Conversion of Isopropyl Alcohol to Acetone on Irradiated ZincOxide[J]. J. Catal.,1962,1:498~507.
    [221]高大彬,尹静梅,刘翠华.异丙醇常压氧化法制备过氧化氢反应研究[J].精细石油化工,1997,(3):44~45.
    [222] Peng C, Scricco J, Li S, et al. Organo-Cobalt Mediated Living Radical Polymerization of VinylAcetate[J]. Macromolecules,2008,41:2368~2373.
    [223] Liu K, Kiran E. Density and Viscosity as Real-Time Probes for Progress of High-PressurePolymerizations: Polymerization of Methyl Methacrylate in Acetone[J]. Ind. Eng. Chem. Res.,2008,47:5039~5047.
    [224] Ye S, Cramer N B, Stevens B E, et al. Induction Curing of Thiol-Acrylate and Thio-EneComposite Systems[J]. Maromolecules,2011,44:4988~4996.
    [225] Scherzer T, Langguth H. The effect of temperature on the induction period in the photoinitiatedpolymerization of tripropylene glycol diacrylate[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2001,185:276~282.
    [226] Huang R. L., Goh S. H., Ong S. H.自由基化学[M].上海:上海科学技术出版社,
    [227] Surisetty V R, Dalai A K, Kozinski J. Alcohols as alternative fuels: An overview[J]. Appl. Catal.A: Gen.,2011,404:1~11.
    [228] Zhang B, Jiang Z, Li J, et al. Catalytic Oxidation of Thiophene and Its Derivatives via DualActivation for Ultra-Deep Desulfurization of Fuels[J]. J. Catal.,2012,287:5~12.
    [229] Zhou H, Long J R, Yaghi O M. Introduction to Metal–Organic Frameworks[J]. Chem. Rev.,2012,112:673~674.
    [230] Ma S. Gas adsorption applications of porous metal-organic frameworks[J]. Pure Appl. Chem.,2009,81:2235~2251.
    [231] Li J, Sculley J, Zhou H. Metal–Organic Frameworks for Separations[J]. Chem. Rev.,2012,112:869~932.
    [232] Meek S T, Greathouse J A, Allendorf M D. Metal-Organic Frameworks: A Rapidly Growing Classof Versatile Nanoporous Materials[J]. Adv. Mater.,2011,23:249~267.
    [233] Cychosz K A, Wong-Foy A G, Matzger A J. Liquid Phase Adsorption by MicroporousCoordination Polymers: Removal of Organosulfur Compounds[J]. J. Am. Chem. Soc.,2008,130:6938~6939.
    [234] Achmann S, Hagen G, H mmerle M, et al. Sulfur Removal from Low-Sulfur Gasoline and DieselFuel by Metal-Organic Frameworks[J]. Chem. Eng. Technol.,2010,33:275~280.
    [235] Khan N A, Jun J W, Jeong J H, et al. Remarkable adsorptive performance of a metal-organicframework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene[J]. Chem. Commun.,2011,47:1306~1308.
    [236] Blanco-Brieva G, Campos-Martin J M, Al-Zahrani S M, et al. Effectiveness of metal-organicframeworks for removal of refractory organo-sulfur compound present in liquid fuels[J]. Fuel,2011,90:190~197.
    [237] Shi F, Thompson M H L T. Selective adsorption of dibenzothiophene by functionalized metalorganic framework sorbents[J]. Appl. Catal. B: Environ.,2011,103:261~265.
    [238] Chowdhury P, Bikkina C, Meister D, et al. Comparison of adsorption isotherms on Cu-BTC metalorganic frameworks synthesized from different routes[J]. Micropor. Mesopor. Mater.,2009,117:406~413.
    [239] Carson C G, Hardcastle K, Schwartz J, et al. Synthesis and Structure Characterization of CopperTerephthalate Metal–Organic Frameworks[J]. Eur. J. Inorg. Chem.,2009:2338~2343.
    [240] Férey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by aCombination of Targeted Chemistry, Simulation, and Powder Diffraction[J]. Angew. Chem. Int.Ed.,2004,43:6296~6301.
    [241] Serre C, Millange F, Thouvenot C, et al. Very Large Breathing Effect in the First NanoporousChromium(Ⅲ)-Based Solids: MIL-53or CrⅢ(OH)·{O2C C6H4CO2}·{HO2C C6H4CO2H}x·H2Oy[J]. J. Am. Chem. Soc.,2002,124:13519~13526.
    [242] Horcajada P, Serre C, Vallet-Regí M, et al. Metal–Organic Frameworks as Efficient Materials forDrug Delivery[J]. Angew. Chem. Int. Ed.,2006,45:5974~5978.
    [243] Seki K, Takamizawa S, Mori W. Characterization of Microporous Copper(Ⅱ) Dicarboxylates(Fumarate, Terephthalate, and trans-1,4-Cyclohexanedicarboxylate) by Gas Adsorption[J]. Chem.Lett.,2001:122~123.
    [244] Schlichte K, Kratzke T, Kaskel S. Improved synthesis, thermal stability and catalytic properties ofthe metal-organic framework compound Cu3(BTC)2[J]. Micropor. Mesopor. Mater.,2004,73:81~88.
    [245] Long P, Wu H, Zhao Q, et al. Solvent effect on the synthesis of MIL-96(Cr) and MIL-100(Cr)[J].Micropor. Mesopor. Mater.,2011,142:489~493.
    [246] Hu J, Cai H, Ren H, et al. Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2MOF andPolyimide for Gas Separation and Adsorption[J]. Ind. Eng. Chem. Res.,2010,49:12605~12612.
    [247] Zhang Z Y, Shi T B, Jia C Z, et al. Adsorptive removal of aromatic organosulfur compounds overthe modified Na-Y zeolites[J]. Appl. Catal. B: Environ.,2008,82:1~10.
    [248] Selvavathi V, Chidambaram V, Meenakshisundaram A, et al. Adsorptive desulfurization of dieselon activated carbon and nickel supported systems[J]. Catal. Today,2009,141:99~102.
    [249] Zhang H, Liu Q, Li Y, et al. Slection of adsorbents for in-situ coupling technology of adsorptivedesulfurization and bidodesulfurization[J]. Sci. China Chem.,2008,51:69~77.
    [250] Salles F, Bourrelly S, Jobic H, et al. Molecular Insight into the Adsorption and Diffusion of Waterin the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF[J]. J. Phys. Chem. C,2011,115:10764~10776.
    [251] Larrubia M A, Gutièrrez-Alejandre A, Ramìrez J, et al. A FT-IR study of the adsorption of indole,carbazole, benzothiophene, dibenzothiophene and4,6-dibenzothiophene over solid adsorbents andcatalysts[J]. Appl. Catal. A: Gen.,2002,224:167~178.
    [252] Pearson R G. Hard and Soft Acids and Bases[J]. J. Am. Chem. Soc.,1963,85:3533~3539.
    [253] Vitillo J G, Regli L, Chavan S, et al. Role of Exposed Metal Sites in Hydrogen Storage inMOFs[J]. J. Am. Chem. Soc.,2008,130:8386~8396.
    [254] Chen B, Xiang S, Qian G. Metal-Organic Frameworks with Functional Pores for Recognition ofSmall Molecules[J]. Acc. Chem. Res.,2010,43:1115~1124.
    [255] Seredych M, Wu C T, Brender P, et al. Role of phosphorus in carbon matrix in desulfurization ofdiesel fuel using adsorption process[J]. Fuel,2012,92:318~326.
    [256] Xiao J, Song C, Ma X, et al. Effects of Aromatics, Diesel Additives, Nitrogen Compounds, andMoisture on Adsorptive Desulfurization of Diesel Fuel over Activated Carbon[J]. Ind. Eng. Chem.Res.,2012,51:3436~3443.
    [257] Farag H. Selective adsorption of refractory sulfur species on active carbons and carbon basedCoMo catalyst[J]. J. Colloid Interface Sci.,2007,307:1~8.
    [258] Tang X, Qian W, Hu A, et al. Adsorption of Thiophene on Pt/Ag-Supported Activated CarbonsPrepared by Ultrasonic-Assisted Impregnation[J]. Ind. Eng. Chem. Res.,2011,50:9363~9367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700