喷射成形新型雾化器设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雾化喷射成形技术既克服了传统铸造过程中存在的晶粒粗大、偏析严重的缺点,又摒弃了粉末冶金工艺中工序繁多,氧化严重等不足,是一种极具竞争力的快速凝固工艺。金属液滴雾化是决定喷射成形微观质量的关键技术,雾化器就成为喷射成形工艺的核心。为了解决以往自由式雾化器鼓包或者耦合式雾化器反喷的现象,本文在已有雾化器的基础上设计了一种新型自由式雾化器,确定了基于二级双层非限制式结构的新型自由式雾化器的结构,采用FLUENT对雾化器的工作参数进行了模拟,获得了工艺参数对雾化过程的影响规律,同时进行了实验验证。
     分析喷射成形雾化器及导液管的影响因素及各因素对雾化效果的影响,本文最终设计的新型二级双层非限制式雾化器的结构为环缝式,辅助雾化器和主雾化器的缝隙大小分别为0.3mm和0.5mm,主雾化器的雾化角为35°,辅助雾化器为0°。导液管的伸出距离为4mm,θ角为180°,导液管内径为4mm。
     对不同雾化压强下的雾化区域流场进行了模拟,并对各组情况下的压强及速度分布进行了比较,通过比较发现,当辅助雾化器的压强较大时能得到较大的负压,负压带主要受辅助雾化器的影响,雾化区域内的压强主要受主雾化器压强的影响。当主、辅雾化器的压强为1.0MPa、0.5MPa时,能得到较大的负压且不会出现鼓包的现象,当主雾化器的压强大于1.5MPa时有可能出现鼓包的现象。
     在上述数值模拟结果的基础上,对设定的几种不同压强下的雾化效果进行了实验分析。实验与模拟结果基本一致,当主雾化器的压强为1.0MPa,辅助雾化器的压强为0.5MPa时,能得到较好的雾化效果,主雾化器的压强较小时起不到明显的雾化效果,主雾化器的压强较大时(大于1.5MPa)将出现反喷的现象。此外,还分析了单主雾化器工作的情况,得出在相同结构下,普通自由式雾化器所允许的最大压强小于0.7MPa。
Atomizing spray forming technology not only overcomes the shortcomings of coarse grain and serious segregation in the traditional casting process but also abandons some shortcoming in powder metallurgy process, such as complicated processes and serious oxidation, so it is very competitive in rapid solidification process. During spray forming, metal droplets atomizing is the key to the quality of micro-technology, so atomizer becomes the core of the spray forming process. In order to Solve the drum packets phenomenon of freestyle atomizer or anti-spray phenomenon of coupled atomizer, this article designed a new type unrestricted atomizer, determined the structure of new freestyle atomizer based on structure of double-decked unrestricted atomizer, combined with the CFD software FLUENT got the influence rule of technological parameter to atomization process and did some experimental verification..
     By analyzed the factors of atomizer and catheter and the impact of these factors on atomization, the final structure of the atomizer was designed as circle-shaped gap, the gap size of main atomizer and the auxiliary atomizer is 0.3mm and 0.5mm, the atomization angle of main atomizer and the auxiliary is 35°and 0°. The catheter extend distance is 4mm,θis 180°, inner diameter is 4mm.
     Did some simulation to the atomization region under different pressure, and did some analysis of pressure and velocity distribution, the results show, when the auxiliary atomizer's pressure become greater can get big negative pressure, negative pressure zone is mainly affected by the impact of auxiliary atomizer and pressure of the atomization region is mainly affected by the main pressure atomizer. When main atomizer's pressure is 1.0MPa and the auxiliary atomizer's pressure is 0.5MPa, can get big negative pressure and not appear drum packets phenomenon, when main atomizer's pressure is higher than 1.5MPa, drum packets phenomenon may appear.
     On the basis of numerical simulation results, this article did some experimental analysis of several different kinds of pressure. The experimental results are consist with the simulate conclusions, when main atomizer's pressure is 1.0MPa and the auxiliary atomizer's pressure is 0.5MPa, can get a good atomization phenomenon, when the main atomizer's pressure is too low, atomization phenomenon is not good, when the main atomizer's pressure is higher than 1.5MPa drum packets phenomenon may appear. In addition, experiment was did when only the main atomizer working, result shows, at the same structure, the main atomizer's pressure is no more than 0.7MPa
引文
[1]袁武华.多层喷射沉积制备大尺寸耐热铝合金管坯的研究:(博士学位论文)长沙:中南大学,2001.
    [2]李清泉等.超音声气动雾化制粉机理的实验研究及分析.力学学报,1992,29(6):653-655.
    [3]李清泉,欧阳通,麻润海等.气雾化微细金属粉末的生产工艺研究.粉末冶金技术,1996,8,14(3):182-184.
    [4]陈玉勇,张淑荣,沈光骏等.喷射共沉积Al-4.7Cu-1.73Mg/SiCP复合材料的微观组织及界面结构研究.98全国喷射成形学术研讨会论文集,哈尔滨,1998:134-138.
    [5]Yuan Wu-hua,Chen Zhen-hua,Huang Pei-yun.Preparation of heat-resist aluminum alloy pipe blanks by mufti-layer spray deposition.Trans.Nonferrous Met Soc.China,2000,10(4):401-405.
    [6]曲迎东,崔成松,曹福洋等.喷射沉积坯体特征尺寸的神经网络模型建立与仿真.材料工程,2005,8:15-19.
    [7]傅晓伟,张济山,孙祖庆.喷射沉积过程的计算模型及优化软件.金属学报,1999,35(2):147-150.
    [8]曹福洋,崔成松,范洪波等.喷射成形过程工艺参数作用规律的理论预测.中国有色金属学报,1999,9(2):213-215.
    [9]Gerking L.Powder from metal and ceramic melts by lamina gas streams at supersonic speeds.Powder Metallurgy International,1993,25(2):59-65.
    [10]Qing X B,An Z Y,Jun L Y,etc.Preparation of tube blanks by atomization deposition process,Trans.Nonferrous Met.Soc.China.1999,9(3):472-475.
    [11]Yuan Wu-hua,Chen Zhen-hua.The application of mufti-layer spray deposition to production of heat-resisting aluminum alloy,pros of the Int.Conf.on spray deposition and Melt Atomization,2004:7-11.
    [12]母育锋.气体雾化制各细粉末的工艺优化研究:(博士学位论文).长沙:中南工业大学,1997.
    [13]黄培云主编.粉末冶金原理.北京:冶金工业出版社,1988:99-102.
    [14]Brandenberger H,Nussli D,Piech V,etal.Monodisperse particle production:A method to prevent drop coalescence using electrostatic-forces.Electrostatics,1999,45(3):227-238.
    [15]Anderson I E,Figlila R S,Morton H.Flow mechanisms in high pressure gas atomization.Mater Sci Eng,1991,A148:10-18.
    [16]Anderson I E.Boost in atomizer pressure shaves powder particle size.Advanced Materials and Processes,1991,(7):30-40.
    [17]张国庆,米国发,李周等.氢气雾化喷射成形镍基高温合金的研究.98全国喷射成形学术研讨会论文集,哈尔滨,1998:117-120.
    [18]徐行,郭志辉,顾善建.新型气动雾化喷嘴喷雾特性的实验研究.航空动力学报,1997,12(3):296-298.
    [19]张晓莉,孙德恩.气体雾化喷嘴及影响因素:哈尔滨焊机研究所,1998,11(8):11-13.
    [20]梁荣,党新安.一种新型的微细金属粉末气雾化喷嘴的设计.硬质合金,2006,23(3):172-174.
    [21]李庆春,沈军1998全国喷射成形技术学术研讨会论文集.哈尔滨,1998,45-47.
    [22]李清泉.气雾化微细金属粉的生产工艺研究,中国科学院力学研究所报告,1995:3-8.
    [23]李建平,唐青云.雾化器对喷射成形的影响.长沙:湖南理工大学学报.2005,18(3):66-68.
    [24]陈振华,陈刚,严红革等.液体金属和合金的盐雾化.湖南大学学报(自然科学版),2001,28(4):30-34.
    [25]陈振华.金属液体的雾化问题.粉末冶金技术,1998,16(4):282-289.
    [26]张淑荣.气流式雾化喷嘴的特性研究.大连:大连理工大学,2006,11:14-16.
    [27]张永安,熊柏青,刘江等.喷射成型过程中雾化粒滴的数值模拟研究.98全国喷射成形技术学术研讨会论文集,1998:49-55.
    [28]张济山,孙继跃,崔华等.喷射沉积成形过程的优化控制.材料导报,1999,19(2):69-72.
    [29]董寅生,沈军,杨英俊等.快速凝固耐热铝合金的发展及展望.粉末冶金技术,2000,18(1):35-40.
    [30]刘仲武,米国发,田世落等.氮气雾化喷射沉积变形镍基高温合金的研究.98全国喷射成形学术研讨会论文集,哈尔滨,1998:125-130.
    [31]陈振华,黄培云.快速凝固—粉末冶金技术的发展综述.中南矿冶学院学报,1991,(增刊):1-10.
    [32]曲迎东,李荣德,王键等.管状喷射沉积坯成形过程数值模拟.铸造,2008,57(1):29-31.
    [33]S.Markus,C.Cui,U.Fritsching.Analysis of deposit growth in spray forming with multiple atomizers.Materials Science and Engineering 2004,166-174.
    [34]娄亚军.基于熔池图像传感的脉冲GTAW动态过程智能控制.哈尔滨:哈尔滨工业大学博士论文.1998:20-21.
    [35]欧阳鸿武,陈欣,余文焘等.气雾化制粉技术发展历程及展望.粉末冶金技术,2007,25(1):54-56.
    [36]A Unal.Influence of Gas Flow on Performance of Confined Atomization Nozzle.Metallurgical Transaction B,1989,20B:840-843,
    [37]Schulz G.N.A novel process offers free powder benefits.MPR,1996,11:30-33.
    [38]Morton H.Osprey improves atomizer for MIM powder Production.MPR,1994.26(3):16-20.
    [39]J.S.Chin,N.K.Rizk,and M.K.Razdan.Study on Hybrid Air blast Atomization.Journal of Propulsion and Power,1999,15(2):43-49.
    [40]Raman R V,Patel A N,Canbonara R S.Rapidly solidified powders produced by a new atomization process.Metal Powder Report,1984,39(2):106-112.
    [41]朱远志,尹志民,成小军等.喷射沉积过程计算机模拟.铸造,2005,9:899-901.
    [42]梁荣,党新安,赵小娟.超声波雾化雾化器的设计.上海有色金,2006,12,27(4):14-17.
    [43]Grant N J.Rapid solidification of metallic particulates.J Met,1983,35(1):20-28 Gerking L.Powder from Metal and Ceramic Melts by Laminar Gas streams at Supersonic Speeds.pmi,1993,25(2):59-65.
    [44]张卫方,蓝庆波,袁晓光等.双级雾化快速凝固工艺及其破碎机理.材料科学与工艺,1997,5(1):14-16.
    [45]Erich D L,Patel A N.Battelle plan commercialization of two-stage spinning cup atomization process Metal Powder Report,1984,42(10):698-702.
    [46]Miller S A.Close-coupled gas atomization of metal alloy.Proceedings PM'R6.1986:29-32.
    [47]Hopkins W G.Fine powder:close-coupled or open-die atomization.Metal Powder Report,1990,45(1):41-42.
    [48]黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术.长沙:中南工业大学出版社,1995,21.25.
    [49]吴晋湘.不同反压下大流量气液同轴式雾化喷嘴雾化特性及喷雾两相流场的试验和理论研究:(博士学位论文).长沙:国防科学技术大学,1993.
    [50]于杜复等.超声Ar气雾化工艺及快速凝固铝合金粉末的研究.航空部621所,1986,5:21-23.
    [51]马峥,周哲玮.喷射雾化最小等效直径的能量判断准则.应用数学和力学,1999,20(8):771-774.
    [52]刘联胜,杨华,吴晋湘等.环状出口气泡雾化喷嘴液膜破碎过程与喷雾特性.燃烧科学与技术.2005,11(2):121-125.
    [53]欧阳鸿武,陈欣,黄伯云.气雾化制粉技术发展历程及展望.粉末冶金技术.2007,25(1):53-58.
    [54]陈仕奇,黄培云.金属粉末气体雾化制备技术的研究现状与进展.粉末冶金技术,2004,22(5):297-301.
    [55]Ting J,Terpstra R,Anderson I E.A novel high pressure gas atomizing nozzle for liquid metal atomization.In:Advances in Powder M Particulate Materials.1996:97-108.
    [56]陈世柱,尹志民.旋涡式雾化器对漏管外伸长度的影响.材料科学与工艺,1998,6(1):69-74.
    [57]吕洪,陈振华,陈刚.液体金属和合金的固一气两相流雾化的研究.中国粉末技术,2004,(4):14-17.
    [58]张晓莉,孙德恩.气体雾化喷嘴及影响因素:哈尔滨焊机研究所,1998,11(8):11-13.
    [59]姚增权,马进.简式旋流喷嘴的设计.电力环境保护,2002,18(3):6-10.
    [60]侯晓春.小型发动机燃烧室供油方式和燃油喷嘴设计.株洲航字动力机械研究所,1999:20-22.
    [61]Kang Zhi-tao,Cheng Zhen-hua,Yan Hong-ge,etc.Preparation of 60G6A1/SiCP composites by mufti-layer spray deposition,proc.of the Int.Conf.on spray deposition and Melt Atomization,Bremen,Germany,2G-28,June,2000:519-523.
    [62]赵麦群,王迪功.新型环孔雾化喷嘴.粉末冶金技术,1996,14(4):273-275.
    [63]孙德生,吴阳阳,苏竞高等.一种雾化喷嘴的气体流动场特性及其影响因素.上海钢研,1996(6):20-22.
    [64]杨任刚,张东东,何枫等.气固两相自由射流的瞬态流场研究.实脸流体力学,2005,19(1):22-25.
    [65]张延松.高压喷雾及其在煤矿井下粉尘防治中的应用.重庆环境科学,1994,3:13-15.
    [66]李建平,唐青云.雾化器往复扫描喷射共沉积过程的数值模拟.科苑论坛,铝加工,2005,2(163):27-29.
    [67]刘震,葛新锋.FLUENT软件及其在我国的应用.能源研究与利用,2003,2:36-38.
    [68]长祥珍,林南英,翟过栋等.引射除尘器中内旋子式喷嘴的结构研究 煤矿机械,1998,(11):8-9.
    [69]刘伟军.低压空气雾化喷嘴的雾化特性的研究及最优化结构分析:(硕士论文).上海:华东工业大学,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700