喷射成形静电雾化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射成形是近年来发展极其迅速的金属和合金成形新技术,该工艺制成的材料具有晶粒细小、组织均匀并能抑制偏析等快速凝固材料的特点,其中雾化质量是影响喷射成形产品质量的重要因素之一。本文首次将静电雾化技术和喷射成形结合在一起,最终目的是使金属液荷电、利用静电力强化雾化过程,从而改善雾化质量。本研究主要工作内容为:设计了金属液荷电的喷射成形装置,采用FLUENT软件对喷射成形工艺中静电作用下气体流场进行了模拟,获得了各种参数对雾化过程的影响规律,同时进行了部分实验验证。
     在静电雾化过程中,一般具有三种雾滴带电方式,即电晕充电、感应充电和接触充电。本文设计的金属液充电装置以感应充电为主、接触充电为辅,设计的充电系统为:电源的一极通过电极棒与金属液接触,使其带负电,另一极与石墨垫片接触,使其带正电,从而形成一个电容,对内部的液滴进行感应荷电。电源装置是本研究工作的一个重要方面,为此设计了可调直流电源装置,主要包括电压范围在0—300V的调压器、整流桥、电解电容和电容、电流表、电压表。
     本文将静电作用应用到喷射成形工艺过程中,建立了电场作用下气体流场的模型。在Fluent软件中,导入电磁场模块,引入电场的作用,从而实现对喷射成形工艺中静电作用下气体流场的模拟。模拟结果表明,在静电作用下雾化区域的压强的分布更加均匀、集中,气流速度由300m/s提高到700m/s,高速气流对金属液雾化是起积极作用的,说明静电作用后能有效地提高金属液的雾化效果。
     在上述数值模拟结果的基础上,对加入压强为1.0MPa、电压为200V和压强为1.0MPa、电压为0V时情况分别做了实验,实验结果与模拟结果基本一致。当压强为1.0MPa,电压为200V时,能得到较好的雾化效果,轴向的压强分布更加均匀、集中,有利于减少了液滴的飞溅,而且在喷嘴出口处负压减小,降低了金属液反喷的可能性。
Spray forming is a new forming technology of metals and alloys which is extremely rapid development in recent year, the perform produced by spray forming has rapid solidification characteristics of grain refining, tissue uniformity and inhibition of segregation, for spray forming process, atomization quality is a important factor that effect the quality of spray forming product. In this paper, the application of electrostatic atomization technology in spray forming will be present, aim is to make liquid alloy charging and use electrostatic force to reinforce atomizing process, furthermore, the atomization quality can be improved. The main research work is following: Firstly, design charging system of spray forming device; Then electrostatic interaction on gas flow field in spray forming is simulated, effect of some parameter on atomization process under electrostatic is discussed, and some experimental verification are present.
     There are three mode making droplet charged in electrostatic atomization process: corona charging, induction charging and contact charging. In this paper, the designed charging device mainly use inductive charging mode, few used contact charging mode,this charging device can be described: One pole of power contact with metal liquid through electrode bar, it is negative, the other pole of power contact with graphite gasket, it is positive, then between two poles built a capacitor, it will be induction charged while liquid alloy moved through capacitor. The design of direct current power device is an important equipment, so a optional direct current power device is designed, it mainly include adjustable voltage regulator ranged between 0-300V, rectifier bridge, electrolytic capacitors and capacitance, ammeter, voltmeter.
     Electrostatic interaction is applied to spray forming in this paper, the gas flow field model in the electric field is built. In FlUENT software, MHD modules is used, it can introduce electric field effect, then the electrostatic interaction of gas flow field in spray forming is simulated. Simulation results show that the distribution of atomization area pressure is more uniform and concentrate, the velocity is increased from 300m/s to 700m/s. It is explained that electrostatic has active effect on atomization process, and atomization quality of liquid metal can be improved under electrostatic field.
     On the basis of numerical simulation results, experimental of pressure is 1MPa, voltage is 200V and pressure is 1MPa, voltage is 0V are present, it is satisfied that the experimental results are consist with the simulated results. While pressure is 1.0MPa, voltage is 200V, there are a satisfied atomization phenomenon, axial pressure distribution is more uniform and concentrate, it helps to reduce the droplets splash and negative pressure at the nozzle decreases, the possibility of liquid metal anti-spray is decreased too.
引文
[1]高娃,孙廷富.喷射成形技术的应用及产业化发展趋势[J].兵器材料科学与工程, 2002, 25 (3) : 67 - 69.
    [2]张雁,费群星.喷射成形技术的研究概况[J].现代制造工程,2006,7:134-137.
    [3] Xu Q, Gupta V V, Lavernia E J . Thermal behavior during droplet based deposition. Actamater [J], 2000 , 48 : 835~849.
    [4] Lavernia E J, Wu Y. Spray atomization and deposition[J]. John Wiley , New York , 1996.
    [5] Grant P S, Contor B. Modeling of droplet dynamic and thermal histories during spray forming III Analysis of spray solid fraction [J]. Acta Metal Mater , 1995 , 43 (3) : 913~921.
    [6] Cai W D, Lavernia EJ. Modeling of porosity during spray forming[J] . Materials Science and Engineering A , 1997 , 226 - 228 : 8~12.
    [7] Mathur P, Apelian D, Lawlwy A. Analysis of the spray deposition process[J]. Acta Metal Mater , 1989 , 37 : 429~443.
    [8] Afonso C R M, Bolfarini C, Bassim N D, etal. Amorphous phase formation in spray deposited AlYNiCo and AlYNiCoZr alloys[J]. Scripta Mater , 2001 , 44 : 1625~1628.
    [9]王文明,潘复生,等.喷射成形技术的发展概况及展望[J].重庆大学学报, 2004, 27 (1) : 101 - 106.
    [10]张豪.喷射沉积耐热铝合金Al - Fe - V - Si的研究.[硕士学位论文] ,长沙:中南工业大学,1995.
    [11]张豪.多层喷射沉积过程及其材料的研究.[博士学位论文] ,长沙:中南工业大学,1998.
    [12]张豪,章靖国,张荻,等.我国喷射成形产业化及其对钢铁、轻合金材料的影响.中国(青岛)材料科技周论文集。青岛:2004 :12~18.
    [13] Jing Guo Zhang, Guang Min Luo , Hao Zhang , etc. Recent New Development of Spray Formed Ultrahigh - Carbon Steels[J], Materials Science Forum Vols. 475 - 479 (2005) pp. 2779~2784.
    [14]张豪,控制往复喷射成形装置,中国专利,03230878. 7.
    [15]张豪,张荻,张捷,宋立,控制往复喷射成形工艺,中国专利,03117066. 8.
    [16]曹福洋,崔成松,范洪波等.喷射成形过程工艺参数作用规律的理论预测.中国有色金属学报,1999,9(2):213-215.
    [17] Gerking L. Powder from metal and ceramic melts by lamina gas streams at supersonic speeds[J]. Powder Metallurgy International, 1993, 25(2): 59-65.
    [18] Qing X B, An Z Y, Jun L Y, etc. Preparation of tube blanks by atomization deposition process [J],Trans. Nonferrous Met. Soc. China. 1999, 9(3): 472-475.
    [19]高全杰,王家青,王记军.液体荷电雾化技术及其在静电涂油机中的应用[J].武汉科技大学学报(自然科学版),2008,31(1):18-21.
    [20]高胜东,姚英学,崔成松.金属均匀液滴束流技术的应用[J].材料导报,2006,20(1):95-97.
    [21] Singer A. British Patent:1262471,1972.
    [22] Ogata K, Lavernia E J,etal. Inter. J. Rapid Solidification[J],1986 ,2(1) :21.
    [23]康福伟.喷射成形工艺的发展及应用[J].稀有金属,2004,28(2):402-407.
    [24] Anderson I E. Boost in atomizer pressure shaves powder particle size[J]. Advanced Materials and Processes, 1991, (7): 30-40.
    [25]刘宏伟,张龙,王建江,杜心康.喷射成形工艺与理论研究进展[J].兵器材料科学与工程,2007,30(3):63-67.
    [26]张永昌.金属喷射成形的进展[J].粉末冶金工业,2001, 11 (6) : 17 - 22.
    [27] Zhang Y C,etal.Proceedings of the Sixth International Conference on Rapidly Quenched Metals[J]. Montreal, Canada: 1987: 119.
    [28]熊柏青,等.喷射成形技术制备高性能铝合金材料[J].材料导报,2000,14(12):50.
    [29]张国庆,等.氩气雾化喷射成形镍基高温合金的研究.1998年全国喷射成形技术学术研讨会论文集.哈尔滨: 1998:117.
    [30]陈仕奇,黄培云.金属粉末气体雾化制备技术的研究现状与进展[J].粉末冶金技术,2004,22(5):297-301.54
    [31] Ting J, Terpstra R, Anderson I E.A novel high pressure gas atomizing nozzle for liquid metal atomization[J]. In: Advances in Powder M Particulate Materials. 1996: 97-108.55
    [32] Klar E, Shafer WMPowder metallurgy for high performance application[J].Syracuse University Press ,1971 :57– 68.
    [33] Dunkley J J.Liquid atomization[J].Powder Metall,1989 ,32 (2) :96.
    [34] Schulz G.Nanoval process offers fine powder benefits[J]. MPR ,1996 ,51 (11):30–33.
    [35] Alagheband A ,Brown C. UMT promises tight control of particle size[J].MPR ,1998 ,11 :30– 33.
    [36] Ting Jason , Connor Jeffery , Ridder Stephen. High speed cinematography of gas metal atomization[J]. Materials Science and Engineering A ,2005 ,390 :452 - C460.
    [37]欧阳鸿武,黄伯云,陈欣,等.开涡状况下紧耦合气雾化的成膜机理[J].中国有色金属学报,2005 ,15 (7) :1000–1005.
    [38] Ouyang H W, Huang B Y, Chen X. Melt metal sheet breaking mechanism of close - coupled gas atomisation[J]. Trans Nonferrous Met Soc China , 2005 ,15 (5) :985– 992.
    [39] Bergmann D, Fritsching U, Bauckhage K. A mathematical model for cooling and rapid solidification of molten metal droplets[J]. International Journal of Thermal Science, 2000,39 :53–62.
    [40]张璟,周哲玮.喷射成形中的喷射雾化机理研究[J].粉末冶金技术,1999,17(3):163-169.
    [41]李清泉,欧阳通.气雾化微细金属粉末的生产工艺研究[J].粉末冶金技术,1996 ,14 (3) :181– 188.
    [42]李清泉,紧耦合气体雾化制粉原理[J].粉末冶金工业,1999 ,9(5) :3–16.
    [43]周浩生.荷电射流雾化研究[J].江苏理工大学学报.1995, 16 (4) : 7-12.
    [44] Law S E. Agricultural electrostatic sp ray application: a review of significant research and development during the 20th century[J]. Journal of Electrostatics,2001,51:25 - 42.
    [45] Hideo W, Tatsushi M, Hideo Y. Experimental study on electrostatic atomization of highly viscous liquids[J] .Journal of Electrostatics, 2003 (57) : 183 - 197.
    [46]王贞涛,闻建龙,陈燕,等.静电雾化理论及应用技术研究进展[J].排灌机械,2004,22(6):41-44.
    [47]康灿,杨敏官,罗惕乾,等.高压静电喷洒机的试验[J].江苏大学学报:自然科学版,2007,28 (3) : 197-200.
    [48] Bose G.M.Philos[J].Trans.R.Soc.London,1748;45:187
    [49] Zeleny.J.Phys[J].Rev,1917;10:1
    [50] Drozin Ibid,1955;10:158
    [51] G I Taylor. Disintegration of water drops in an electric field[J]. Proc Roy Soc, 1964 (280):383-397
    [52] Taylor G.van Dyke M.D[J].Proc.R.Soc.London Ser.A,1969;313:453.
    [53] K Hayati. Investigations into the mechanism of electrohy drodynamic spraying liquidsⅡ: mechanism of stable jet formation and electrical forces acting on a liquid cone[J].Journal of Colloid and Interface Science ,1987 ,117 :205-230.
    [54] Petera J,Nassehi V. A new two dimensional finite element model using Lagrangian framework constructed along fluid particlet rajectories[J].Int Numer Methods Engineering,1996(6):4159-4182.
    [55] C Pantano , A M Gannan Calvo , A Barrero. Zeroth order,electrohydrostatic solution for electrostatic spraying in conejet mode[J] . J Aerosol Sci ,1977 ,25 (6) :1065-1077.
    [56] Hartman R ,Borra J P ,Bruner D J ,et al. The evolution of electrohy drodynamic sprays produced in the cone jet mode :a physical model[J] . J Elecrostatics ,1999 (47) :143-170.
    [57] J D Rooney , L R Weatherley. Particle and droplet trajectories in anon-linear electrical field[J]. Chemical Engineering, 1998,53(22):3 781-3792.
    [58] D Rafiroiu , C Munteanu , R Morar , etal. Computation of the electric field in wire electrode arrangements for electrostatic processes applications[J]. Electro- statics ,2001 ,51 :571-577.
    [59] O Lastow,W Balachandram. An agricultural electrostatic spray application: a review of significant research and development during the 20th century[J]. J Electrostatics, 2006 ,56 :850-859.
    [60]汪成榕.静电喷漆[J].电镀与环保,2000,20(4):28-30.
    [61] Orme M , Courter J ,Liu Q B , etal .Elect rostatic charging and deflection of nonconventional droplet streams formed from capillary stream breakup[J].Physics of Fluids,2000 ,12 (9) :2224-2235.
    [62]张晓莉,孙德恩.气体雾化喷嘴及影响因素:哈尔滨焊机研究所,1998,11(8):11-13.
    [63]侯晓春.小型发动机燃烧室供油方式和燃油喷嘴设计[J].株洲航字动力机械研究所,1999:20-22.
    [64]金晗辉,王军锋,王泽,等.静电喷雾研究与应用综述[J].江苏理工大学学报,1995,25(3):16-19
    [65]梁荣,党新安.一种新型的微细金属粉末气雾化喷嘴的设计[J].硬质合金,2006,23(3):172-174.
    [66]于蕾,李敏,林豹,等. Fluent软件在射流模拟中的应用[J].科技情报开发与经济,2005,15(13):154-155.
    [67]许涛,过学迅. FLUENT在汽车工业中的应用[J].学术论坛.2006,5:39-41.
    [68]长祥珍,林南英,翟过栋等.引射除尘器中内旋子式喷嘴的结构研究[J].煤矿机械,1998,(11):8-9.
    [69]刘伟军.低压空气雾化喷嘴的雾化特性的研究及最优化结构分析[J].上海:华东工业大学,1995.
    [70]潘勇,王江峰,伍贻兆.三维理想MHD方程数值求解方法研究[J].中国科学技术大学学报,2008,38(5):534-541.
    [71]齐恩伍,蒋丹,刘斌.前处理软件GAMBIT参数化建模功能增强的研究[J],2008,34(3):341-343.
    [72]陶文铨.计算传热学的近代发展.北京:科学出版社, 2001.
    [73]吴有金,吴亚雷,许晓慧等. PZT溶胶液静电雾化雾场模拟[J].中国科学技术大学学报,2006,36(7): 755-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700