基于聚乳酸的靶向药物释放载体材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着肿瘤发病率的不断提高,靶向药物治疗也得到了越来越多的关注,其中叶酸受体介导的靶向肿瘤药物释放系统也成为全球研究的热点。由叶酸介导的靶向药物释放系统和传统的药物释放系统相比较,前者对肿瘤细胞的生长增殖具有明显的抑制作用,并且对正常细胞来说具有较小的毒性,这为靶向药物治疗方案的发展提供了保证。然而,就目前的研究资料分析,对作为载体材料的纳米球与不同细胞之间的相互作用研究缺乏。由于普遍存在的一般细胞吞噬行为,所以正常细胞对靶向药物释放系统运输过程中的吞噬作用不容忽视,因为恰是这些正常细胞对载药粒子的吞噬引发了肿瘤化疗的毒副作用。因此,设计一种对肿瘤细胞具有很好的生长抑制作用而对正常细胞反之的纳米粒子将是一件有意义的事情。本研究拟以叶酸(FA),聚乳酸(PLA),聚乙二醇(PEG)为原料,在N,N-二环己基碳二亚胺(DCC)与N-羟基琥珀酰亚胺(NHS)或4-二甲氨基吡啶(DMAP)存在的条件下,利用活性酯溶液聚合法制备叶酸偶合的聚乙二醇-聚乳酸(FA-PEG-PLA)类材料,并通过傅里叶红外光谱仪(FTIR)、核磁共振波谱仪(1HNMR)、差式量热扫描仪(DSC)、接触角测定仪等对材料结构与有关性能进行定性及定量表征,初步考察了反应时间对偶合速率的影响;并以此制备材料为模型,采用溶剂挥发-纳米自组装法制备不同粒径的纳米球,初步考察了纳米球的溶血性能、降解性能、在一定体积水中聚合物胶束稳定存在的最大溶解度、降解液的体外细胞毒性、体外细胞的靶向选择性,并详细考察了不同粒径纳米球对正常细胞与肿瘤细胞生长增殖的不同影响,以此方法来筛选用于靶向肿瘤药物释放系统的合适纳米粒径等。主要研究内容与结论如下:
     (1)以FA,PEG,PLA为原料,在DCC与NHS或DMAP存在的条件下,采用活性酯溶液聚合法制备FA-PEG-PLA,其中重点考察了反应时间对聚合产物中FA偶联效率的影响。
     ①FTIR与1HNMR的定性定量检测分析结果表明,采用本研究所述实验条件可制备出基于FA,PEG,PLA的FA-PEG-PLA多组分聚合物。研究表明,随着反应时间的进行,聚合物中FA的偶联量也随之增加;在经过24h前的快速增长后,FA偶联速率开始逐渐下降,说明随着生成物的增加,反应物的减少,反应速率逐渐下降,这种现象符合反应平衡规律;
     ②1HNMR检测结果分析表明,在本研究所设定的实验条件下,聚合产物中FA的偶联率在约11.6%~15.7%(mol%)或0.39%~0.53%(wt%)之间;
     ③DSC结果分析表明,在PEG分子量一定的情况下,随着PLA分子量的增加,FA的引入,产物玻璃化转变温度(Tg)由一个转变为两个,聚合产物出现微相分离,且温差范围呈现向两原料各自Tg中间靠拢趋势,这也表明所制得的聚合产物由微结构相容良好转向为部分相容;而在以dol-PLA为原料制备靶向性材料过程中,FA的引入,使得偶合前后的材料微结构发生了质的变化,Tg由未引入前的一个变为引入后的两个,这是一个有意思的发现;
     结合②③的检测结果,分析表明所制备聚合物为多组分聚合物,微结构的相容程度主要由PEG与PLA链段长短决定;
     ④静态水接触角测试结果分析显示,材料的亲疏水性与FA的引入影响不大,其主要由PEG与PLA链段长度决定;
     结合③④的检测结果,分析表明:虽然FA的引入对材料偶联前后亲疏水性影响不大,但对多组分聚合物的相容程度有时却起着关键作用;
     ⑤纳米空球的降解实验显示,在前三周降解速度非常快,主要为链段中酯键的无序断裂以及后来的酰胺键的断裂,到第三周时残留物分子量为最初聚合物分子量的25%,在降解进行到第七周时,残余物的分子量为最初分子量的8.8%,而根据降解拟合曲线方程,该纳米球在第八周将降解完全。
     (2)以制备的FA-PEG-PLA为材料模型,采用溶剂挥发-纳米自组装法制备纳米粒子,并对其形态、粒径、表面电荷、临界胶束浓度(CMC)、稀释稳定性以及溶血性能等进行表征。
     ①通过FESEM观察得知所制备粒子呈现球状,不同条件制备纳米球粒径分别在65~160nm之间,球体表面携带负电荷;
     ②纳米球稀释稳定性实验表明,作为局部注射用药物释放系统载体,纳米球较小的CMC可以满足临床应用的要求,在生物体内保持聚合物胶束的稳定存在,以期避免药物“暴释”或“滞后”现象的发生;
     ③通过对纳米球制备工艺研究获知:聚合物纳米球在水溶液中稳定存在的最大浓度为18mg/20mL,在该条件下所制备纳米球的粒径在200nm以下;
     ④溶血性试验结果表明,采用该材料制备的纳米球具有很好的生物相容性,并且粒径大于120nm的粒子随浓度的升高,溶血率呈现降低趋势;
     (3)在体外细胞实验中,将纳米球浸提液与人血管内皮细胞(EC)和人乳腺癌细胞(MCF-7)共同培养,采用CCK-8方法初步考察浸提液对细胞增殖的影响,同时详细考察了不同粒径、不同浓度的纳米球对正常细胞与肿瘤细胞增殖的影响,以确定用于靶向肿瘤药物释放系统载体的合适粒径。
     ①FA-PEG-PLA纳米球浸提液对细胞增殖-毒性影响实验表明,MCF-7比EC对浸提液的反应更为敏感,在实验过程中,浸提液对MCF-7的细胞毒性一直处于1级水平,而随着时间的延续,对EC的细胞毒性分级变化为:0级→1级→0级,这也说明了浸提液的生物安全性和EC细胞对浸提液所产生的影响从感应到适应的变化过程;
     ②通过研究不同粒径粒子对MCF-7与EC增殖的影响来确定用于靶向药物释放系统合适的载体粒径。结果表明,粒子随作用对象不同呈现不同作用效果,并且通过不同粒径粒子对MCF-7与EC生长情况的影响,筛选出纳米粒径在120nm左右为靶向肿瘤药物释放系统载体的最佳粒子,在这个尺寸范围,在不考虑包埋药物的作用下,单纯的药物释放系统载体——纳米粒子的纳米特性对MCF-7细胞生长具有明显抑制性,而对EC的生长则没有影响,同时保证纳米球具有最大载药能力;
     ③根据不同浓度纳米球对细胞增殖的影响结果表明,在本研究实验范围内,浓度变化对EC生长影响不大,呈现差异无统计学意义;而MCF-7则对纳米球呈现浓度依赖性趋势,随浓度的增加影响更加明显,细胞增殖呈现差异显著性统计学意义。
The targeted therapies have been obtained more and more attention as the tumor incidence increases recently. Among of which, folate-mediated targeting-drug released system (FMTDRS) based on biodegradable and biocompatible polymers have been a hot point research throughout the world. Comparing with the conventional tumor therapies, FMTDRS have obviously targeting effect on tumor cells and have slightly inhibited effect to normal tissue cells, which provide a guarantee for targeting therapies. But to our knowledge, there is little research only pure without drug-loaded nanoparticles materials. Hereon, folate conjugated poly(ethylene glycol) block poly(D,L-lactic acid)(FA-PEG-PLA) was synthesized from poly(D,L-lactic acid)(PLA) with different molecular weight, amino-terminated poly(ethylene glycol)(NH2-PEG-NH2) and folic acid (FA), using dicyclo-hexylcarbodiimide (DCC) and N-hydroxy-succinimide (NHS) or4-dimethylaminopyrid (DMAP) as dehydrating agent and activating agent respectively. Fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectrometry (NMR), differential scanning calorimeter (DSC) and contact angle meter were employed to characterize the structures and properties of the obtained polymers. Nanoparticles (NPs) were further fabricated from FA-PEG-PLA by using solvent evaporation-induced interfacial self-assembly method, and thereafter, the hemolysis, biodegradation, cell proliferation and cytotoxicity, and selecting capability to different cells in vitro were investigated to nanoparticles. The main works and conclusions are summarized as follows:
     (1) FA-PEG-PLA was prepared of FA, NH2-PEG-NH2and PLA via active ester method using DCC and NHS or DMAP as dehydrating agent and activating agent respectively. Then, an extensive investigation effort was expended in understanding the effects of reaction time on grafting folate onto FA-PEG-PLA.
     ①FTIR,1H NMR analysis showed that FA-PEG-PLA was successfully synthesized by using above mentioned method. And as the reacting time, more and more FA grafted on copolymer. During the first24h of reacting time, the ratio of graftion increased more quickly but after that it became slowdown, which agreeing with the reaction balance law that reaction rate slowed down gradually along with the formation of product and the reduction of reactant;
     ②1H NMR analysis indicated that the percent grafting of FA onto FA-PEG-PLA was in the range of11.6%-15.7%(mol%) or0.39%-0.53%(wt%);
     ③DSC analysis showed that multicomponent polymer appeared the microphase-separation along with the increase of molecular weight of PLA in certain case, glass transition temperature (Tg) changing from one to two, and the difference temperature range appeared to two raw materials temperature intermediate closing tendency, all which also showed that the obtained materials was component polymer;
     The combination of the test results of②and③analysis showed that the obtained polymer was multicomponent polymer;
     ④The static water contact angle test results showed that the introduction of FA had little effect on material hydrophobicity, and which is mainly decided by composting of PEG and PLA chain length;
     The combination of the test results of③and④analysis indicated that:The introduction effect of FA on coupling material hydrophilic and hydrophobic property would-be ignored in most time but on the material microphase-separation sometimes maybe play a key role;
     ⑤The result of the degradation of nanoparticles showed that the nanoparticles degradation speed was very fast, mainly for the bond fracture in disorder in the first three weeks, and the residues molecular weight was25%of its initial value after three weeks. As the degradation, the ratio of bond fracture became slowdown and the residues molecular weight gradually decreased, reaching8.8%of its initial value after seven weeks. According to the fitting equation of a degradation curve, the nanoparticles will be degraded completely in eighth weeks.
     (2) The obtained FA-PEG-PLA was further used to fabricate nanoparticles by solvent evaporation-induced interfacial self-assembly method and the nanoparticles surface morphology, size, distribution, zeta potential, critical micelle concentration (CMC) and the dilution stability were characterized respectively.
     ①The particles prepared was spherical and size was in a range from65to160nm characterized by FESEM and DLS, and at the same time, nanoparticles surface carrying the negative charge;
     ②The dilution stability test result indicated that the CMC of nanoparticles could meet the requirements for clinical application and the nanoparticles could keep stable micelle structure in vivo as local injection of drug release system carrier, hoping to prevent drug "bursting" or "lagging" release;
     ③By the study on preparing technology of nanoparticles, we found the maximal stable concentration of the obtained FA-PEG-PLA nanoparticles was0.9mg/mL, and on this condition, the obtained nanoparticles size was below200nm;
     ④The hemolysis results showed that these nanoparticles have good biocompatibility, and which has not dose-dependent when the particle size was bigger than121nm.
     (3) The effect of polymer extraction solution on different cells was studied by cell counting kit-8(CCK-8), and then, an extensive investigation effort was made to determine the right particles size using for targeting tumor drug release system carrier, which was about the effect of different size/dose nanoparticles on EC and MCF-7cell proliferation and cytotoxicity in vitro.
     ①The cell proliferation and cytotoxicity of FA-PEG-PLA NPs extraction solution were evaluated by means of CCK-8assay using MCF-7and EC as model cells. The result showed that MCF-7whose cytotoxicity grade kept1was more sensitive than EC to extract, and that of EC changed from0to1to0according to the relationship between cell proliferation rate and cytotoxicity grade of USP, suggesting that extract is almost non-toxic to normal tissue cells;
     ②The effect of different size nanoparticles on MCF-7and EC cell proliferation were investigated according on①of (3) method to determine the right particles size for targeting drug release system. The result told that the difference was happened between two kinds of cells. And by this way, it was found that the particles size about121nm was the right size for targeting tumor drug release system, which affected MCF-7proliferation and not for EC, furthermore, it's a guarantee for nanoparticles promising higher drug encapsulation;
     ③In this study, MCF-7cell proliferation showed dose-dependence of nanoparticles but EC not.
引文
[1]Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting:opportunities and challengesy[J]. Curr. Nanosci.2005,1:47-64.
    [2]Wang X, Wang Y, Chen ZG, et al. Advances of cancer therapy by nanotechnology[J]. Cancer Res. Treat.2009,41:1-11.
    [3]Duncan R. Polymer conjugates as anticancer nanomedicinesy[J]. Nat. Rev. Cancer.2006,6:688-701.
    [4]Qiu LY, Bae YH. Polymer architecture and drug delivery[J]. Pharm. Res.2006,23:1-30.
    [5]Ya-Ping Li, Yuan-Ying Pei, Xian-Ying Zhang, et al. PEGylated PLGA nanoparticles as protein carriers:synthesis, preparation and biodistribution in ratsy[J]. J. Control. Rel.2001,71:203-211.
    [6]Suphiya Parveen, Ranjita Misra, Sanjeeb K. Sahoo. Nanoparticles:a boon to drug delivery, therapeutics, diagnostics and imaging[J]. Nanomed.:Nanotechnol.2012,8:147-166.
    [7]Christopher J. Sunderland, Matthias Steiert, James E. Talmadge, et al. Targeted nanoparticles for detecting and treating cancer[J]. Drug Develop. Res.2006,67:70-93.
    [8]Jae Hyung Park, Seulki Lee, Jong-Ho Kimb, et al. Polymeric nanomedicine for cancer therapy[J]. Prog. Polym. Sci.2008,33:113-137.
    [9]Ferrari M. Cancer nanotechnology:opportunities and challenges [J]. Nat. Rev. Cancer.2005,5:161-171.
    [10]Gaurav Sahay, Daria Y. Alakhova, Alexander V. Kabanov. Endocytosis of nanomedicines[J]. J. Control. Rel.2010,145:182-195.
    [11]Panyam J, Sahoo SK, Prabha S, et al. Fluorescence andelectron microscopy probes for cellular and tissue uptake of poly(D, L-lactide-coglycolide)nanoparticles[J]. Int. J. Pharm.2003,262:1-11.
    [12]L.E. van Vlerken, M.M. Amiji. Multi-functional polymeric nanoparticles fortumour-targeted drug delivery[J]. Expert. Opin. Drug Deliv.2006,3:205-216.
    [13]Zambaux MF, Bonneaux F, Gref R, et al. Influence of experiment alparameters on the characteristics of poly(lactic acid) nanoparticlesprepared by double emulsion method[J]. J. Control. Rel.1998,50:31-40.
    [14]Dong Y, Feng SS. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials,2005,26:6068-6076.
    [15]Yoo HS, Park TG. Folate receptor targeted biodegradable polymericdoxorubicin micelles[J]. J. Control. Rel.2004,96:273-83.
    [16]Wei JS, Zeng HB, Liu SQ, et al. Temperature and pH-sensitive core-shell nanoparticles self-assembled from poly(Nisopropylacrylamide-co-acrylic acid-co-cholesteryl acrylate) for intracellular delivery of anticancer drugs [J]. Front. Biosci.2005,10:3058-67.
    [17]Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loadedpoly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles:Their pharmaceutical characteristics and biological significance [J]. J. Control. Rel.2000,64:143-53.
    [18]Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymericmicelle[J]. Nano Lett.2005,5:325-9.
    [19]Zhang Y, Zhuo RX. Synthesis and in vitrodrug release behavior ofamphiphilic triblock copolymer nanoparticles based on poly(ethyleneglycol) and polycaprolactone[J]. Biomaterials,2005,26:6736-6742.
    [20]Zhang Y, Zhuo RX. Synthesis and drug release behavior of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylenecarbonate) nanoparticles [J]. Biomaterials,2005,26:2089-94.
    [21]Sahoo SK, Labhasetwar V. Nanotechapproaches to drug delivery and imaging[J]. Drug Discov. Today,2003,3:655-663.
    [22]Subbu S. Venkatraman, Pan Jie, Feng Min, et al. Micelle-like nanoparticles of PLA-PEG-PLA triblockcopolymer as chemotherapeutic carrier[J]. Inter. J. Pharm.2005,298:219-232.
    [23]Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery[J]. Drug Discov. Today,2008,13:144-151.
    [24]Weitman SD, Weinberg AG, Coney LR, et al. Cellular localization ofthe folate receptor.Protential role in drug toxicity and folate home costasis[J]. Cancer Res.1992,52(23):6708-6711.
    [25]Sarbari Acharya, Sanjeeb K. Sahoo. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect [J]. Adv. Drug Deliver. Rev.2011,63:170-183.
    [26]Koziara JM, Whisman TR, Tseng MT, et al. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors [J]. J. Control. Rel.2006,112:312-319.
    [27]Miyamoto Y, Oda T, Maeda H. Comparison of the cytotoxic effects of the highand low-molecular-weight anticancer agents on multidrug-resistant Chinese hamster ovary cells in vitro [J]. Cancer Res.1990,50:1571-1575.
    [28]Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptorsusing biodegradable nanoparticles [J]. Mol. Pharm.2004,1:77-84.
    [29]Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors:review of recent advances and future prospects[J]. J. Control. Rel.2003,91:17-29.
    [30]Pattyn F, Speieman F, De-Paepe A, et al. RTPrimerDB:the real-time PCR primer and probe database[J]. Nucieic Acids Res.2003,31(1):122-123.
    [31]Chrystal M.Paulos, Joseph A.Reddy, Christopher P. Ligand bindingand kinetics of folate receptor recycling in vivo:Impact on receptar-mediated drug delivery[J]. Mol. Pharmaco.2004,166:1406-1414.
    [32]Morshed KM, Ross DM, McMartin KE. Folate transport proteinsmediate the bi-directional transport of5-methyltetrahydrofalate in culturedhuman proximal tubule cells[J]. J. Nutr.1997,127:1137-1147.
    [33]Lee RJ, Low PS. Folate-targeted liposomes for drug delivery Forumon liposome targeting[J]. Liposome Res.1997,7:455-466.
    [34]Gabizon A, Catane R, Uziely B, et al. Prolonged cireula-amtion timeand enhanced accumulation in malignant exudates of doxorubicin encapsulatedin polyethylene-glycol coated liposomes[J]. Cancer Res.1994,54:987-992.
    [35]Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor[J]. Adv. Drug Deliv. Rev.2000,41(2):147-162.
    [36]Christopher P. Leamon, Joseph A. Reddy. Folate-targeted chemotherapy [J]. Adv. Drug Deliver. Rev.2004,56:1127-1141.
    [37]常雪灵,邢更妹,孙宝云.纳米技术的生物环境健康效应与相应的标准研究[J].中国标准化,2007,9:18-20.
    [38]李俊芳,闫妍,卢晓静等.纳米粒子的生物安全性研究进展[J].材料导报,2011,25(1):49-52.
    [39]Saber M. Hussain, Laura K. Braydich-Stolle, Amanda M. Schrand. Toxicity evaluation for safe use of nanomaterials:Recent achievements and technical challenges [J]. Adv. Mater.2009,21:1549-1559.
    [40]Jin Liang, Feng Li, Yong Fang, et al. Synthesis, characterization and cytotoxicity studies of chitosan-coated teapolyphenols nanoparticles [J]. Colloids Surf. B:Biointerfaces.2011,82:297-301.
    [41]Hong Yuan, Jing Miao, Yong-Zhong Du, et al. Cellular uptake of solid lipid nanoparticles and cytotoxicity ofencapsulated paclitaxel in A549cancer cells[J]. Inter. J. Pharm.2008,348:137-145.
    [42]Fang Li, Jianing Li, Xuejun Wen, et al. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles:An in vitro study [J]. Mater. Sci. Eng.2009,29:2392-2397.
    [43]Jing Zhang, Xi Guang Chen, Yan Yan Li, et al. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin[J]. Nanomed.:Nanotechnol.2007,3:258-265.
    [44]Kumaresh S. Soppimath, Tejraj M. Aminabhavi, Anandrao R. Kulkarni. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J. Control. Rel.2001,70:1-20.
    [45]Allemann E, Gurnay R, Doelker E. Preparation of aqueouspolymeric nanodispersions by a reversible salting-out process:influence of process parameters on particle size[J]. Int. J. Pharm.1992,87:247-253.
    [46]Allemann E, Leroux JC, Gurnay R, et al. Invitroextended-release properties of drug-loaded poly(D,L-lactic) acid nanoparticles produced by a salting-out procedure[J]. Pharm. Res.1993,10:1732-1737.
    [47]Sun Hwa Kim, Ji Hoon Jeong, Cheol O. Joe, et al. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate[J]. J. Control. Rel.2005,103:625-634.
    [48]Michael E. Werner, Shrirang Karve, Rohit Sukumar, et al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis [J]. Biomaterials,2011,32:8548-8554.
    [49]Jie Pan, Si-Shen Feng. Targeting and imaging cancer cells by Folate-decorated, quantum dots(QDs)-loaded nanoparticles of biodegradable polymers[J]. Biomaterials,2009,30:1176-1183.
    [50]Pengcheng Zhang, Zhiwen Zhang, Yongxin Yang, et al. Folate-PEG modified poly(2-(2-aminoethoxy)ethoxy)phosphazene/DNAnanoparticles for gene delivery:Synthesis, preparation and in vitro transfection efficiency [J]. Inter. J. Pharm.2010,392(1-2):241-248.
    [51]Yanhua Liu, Jin Sun, Wen Cao, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery[J]. Inter. J. Pharm.2011,421(1):160-169.
    [52]Natalia V. Nukolova, Hardeep S. Oberoi, Samuel M. Cohen, et al. Folate-decorated nanogels for targeted therapy of ovarian cancer[J]. Biomaterials,2011,32(23):5417-5426.
    [53]Mani Prabaharan, Jamison J. Grailer, Srikanth Pilla, et al. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn(?)H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery[J]. Biomaterials,2009,30:3009-3019.
    [54]Eun Kyoung Park, So Yeon Kim, Sang Bong Lee, et al. Folate-conjugated methoxypoly(ethylene glycol)/poly(ε-caprolactone)block copolymeric micelles fortumor-targeted drug delivery[J]. J. Control. Rel.2005,109:158-168.
    [55]Haizheng Zhao, Lin Yue Lanry Yung. Selectivity of folate conjugated polymer micellesagainst different tumor cells[J]. Inter. J. Pharm.2008,349:256-268.
    [56]Hyuk Sang Yoo, Tae Gwan Park. Folate receptor targeted biodegradable polymericdoxorubic in micelles[J]. J. Control. Rel.2004,96:273-283.
    [57]Mariano Licciardi, Gaetano Giammona, Jianzhong Du, et al. New folate-functionalized biocompatible block copolymer micellesas potential anti-cancer drug delivery systems [J]. Polymer,2006,47:2946-2955.
    [58]陈晓彬,张剑锋,周慧.单甲氧基聚乙二醇与丁二酸/酐的催化酯化反应研究[EB/01].中国科技论文在线,http://www.paper.edu.cn
    [59]P.S. Umare, G.L. Tembe,, K.V. Raob, et al. Catalytic ring-opening polymerization of L-lactide by titanium biphenoxy-alkoxide initiators [J]. J. Mol. Catal. A-Chem.2007,268:235-243.
    [60]Ming-Hsi Huang, Suming Li, Michel Vert. Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and D,L-lactide[J]. Polymer,2004,45:8675-8681.
    [61]Jie Du, Yuanyuan Fang, Yubin Zheng. Synthesis and characterization of poly(L-lactic acid) reinforced by biomesogenic units[J]. Polym. Degrad. Stabil.2008,93:838-845.
    [62]Zhuo Du, Shirong Pan, Qiao Yu, et al. Paclitaxel-loaded micelles composed of folate-poly(ethylene glycol) and poly(y-benzyl L-glutamate) diblock copolymer[J]. Colloids Surf. A:Physicochem. Eng. Aspects.2010,353:140-148.
    [63]潘祖仁.高分子化学(第二版)[M].北京:化学工业出版社,1997:105-106.
    [64]Yingjuan Lu, Philip S Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents[J]. Adv. Drug Deliv. Rev.2002,54:675-693.
    [65]王素军.新型药物控释材料——端羟基聚(丙交酯-co-对二氧环己酮)及其微球制备的研究[D].重庆.重庆大学.2008:17.
    [66]周晓力,罗智,唐大宗等.基于叶酸受体的靶向性钆造影剂的制备及弛豫性能的研究[J].中国药学杂志,2007,42(21):1640-1644.
    [67]Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethyl-ene glycol) copolymers[J]. Pharm. Res.1994,11:1800-1808.
    [68]Owens III D E, Peppas NA. Opsonization, biodistributionand pharmacokinetics of polymeric nanoparticles[J]. Inter. J. Pharm.2006,307(1):93-102.
    [69]Guosen He, Lwin Lwin Ma, Jie Pan, et al. ABA and BAB type triblock copolymers of PEG and PLA:A comparative study of drug release properties and "stealth" particle characteristics [J]. Inter. J. Pharm.2007,334:48-55.
    [70]Hamid Sahli, Jacqueline Tapon-Bretaudiere, Anne-Marie Fischer, et al. Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation svstem[J]. Biomaterials,1997,18:281-288.
    [71]Verrecchia T, Spenlehauer G, Bazile DV, et al. Non-stealth (poly(lactic acid/albumin)) and stealth(poly(lactic acid-polyethylene glycol)) nanoparticlesas injectable drug carriers[J]. J. Control. Rel.1995,36:49-61.
    [72]Hamid Sahli, Jacqueline Tapon-Bretaudiere, Anne-Marie Fischer, et al. Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation svstem[J]. Biomaterials,1997,18:281-288.
    [73]Verrecchia T, Spenlehauer G, Bazile DV, et al. Non-stealth (poly(lactic acid/albumin)) and stealth(poly(lactic acid-polyethylene glycol)) nanoparticlesas injectable drug carriers[J]. J. Control. Rel.1995,36:49-61.
    [74]Soo-Jin Park, Seung-Hak Kim. Preparation and characterization of biodegradable poly (1-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique[J]. J. Colloid Interf. Sci.2004,271:336-341.
    [75]Chognot D, Six JL, Leonard M, et al. Physicochemical evaluation of PLA nanoparticles stabilized by water-soluble MPEO-PLA block copolymers[J]. J. Colloid Interface Sci.2003,268:44-447.
    [76]Zambaux MF, Bonneaux F, Gref R, et al. MPEO-PLA nanoparticles:Effect of MPEO content on some of their surface properties [J]. J. Biomed. Mater. Res.1999,44:109-115.
    [77]林尚安,陆耘,梁兆熙.高分子化学[M].北京:科学出版社,1998:58-62.
    [78]顾雪蓉,陆云.高分子科学基础[M].北京:化学工业出版社,2003:84-87.
    [79]王国建,邱军.多组分聚合物结构与功能[M].北京:化学工业出版社,2010:14.
    [80]何曼君,张红东,陈维孝等.高分子物理(第三版)[M].上海:复旦大学出版社,2006:95.
    [81]朱诚身.聚合物结构与功能(第二版)[M].北京:科学出版社,2010:186.
    [82]郑强,赵铁军.多相/多组分聚合物动态流变行为与相分离的关系[J].材料研究学报,1998,12(3):225-232.
    [83]王国建,邱军.多组分聚合物结构与功能[M].北京:化学工业出版社,2010:21.
    [84]顾雪蓉,陆云.高分子科学基础[M]北京:化学工业出版社,2003:92-97.
    [85]Hutchinson FG, Furr BJA. Biodegradable carriers for the sustained release of polypeptides[J]. Trends Biotechnol.1987,5(4):102-106
    [86]杨宁,李为民,李悦等.生物可降解材料PLGA90/10的体外降解特性及生物相容性[J].生物医学工程研究,2009,28(2):100-103.
    [87]Amy C. Richards Grayson, Michael J. Cima, Robert Langer. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance [J]. Biomaterials,2005,26:2137-2145.
    [88]周超,闫玉华.聚乳酸-乙醇酸共聚物合成与降解[J].生物骨科材料与临床研究,2006,3(5):50-53.
    [89]Tae Gwan Park.Degradation of poly(d,l-lactic acid) microspheres:effect of molecular weight[J]. J. Control. Rel.1994,30(2):161-173.
    [90]Lan Wei, Chunhua Cai, Jiaping Lin, et al. Degradation controllable biomaterials constructed from lysozyme-loaded Ca-alginate microparticle/chitosan composites [J]. Polymer,2011,52:5139-5148.
    [91]Miechel L.T. Zweers, Gerard H.M. Engbers, Dirk W. Grijpma, et al. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide)[J]. J. Control. Rel.2004,100:347-356.
    [92]Jong Min Kim, Kwang Su Seo, et al. Co-effect of aqueous solubility of drugs and glycolide monomer on in vitro release rates from poly(D, L-lactide-co-glycolide) discs and polymer degradation[J]. J. Biomat. Sci.-polym. E.2005,8(116):87-102.
    [93]Duane T. Birnbaum, Lisa Brannon-Peppas. Molecular weight distribution changes during degradation and release of PLGA nanoparticles containing epirubicin HCI[J]. J. Biomat. Sci.-polym. E.2003,1(14):87-102.
    [94]Juha-Pekka Nuutinen, Tero Valimaa, Claude Clerc, et al. Mechanical properties and in vitro degradation of bioresorbable knitted stents[J]. J. Biomat. Sci.-polym. E.2002,12(13):1313-1323.
    [95]Miyamoto S, Takaoka K, Okaka T, et al. Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein[J]. Clin. Orthop.1992,278:274-282.
    [96]Achim Gopferich. Mechanisms of polymer degradation and erosion[J]. Biomaterials,1996,7:103-114.
    [97]Shi M, Yang YY, Chaw CS, et al. Double walled POE/PLGA microspheres:encapsulation of water-insoluble proteins and their release properties [J]. J. Contr. Rel.2003,89:167-177.
    [98]Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv. Drug Deliver. Rev.2001,46(1-3):3-26.
    [99]Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability [J]. J. Pharmacol. Toxicol. Methods.2000,44(1):235-49.
    [100]李仁利.药物构效关系[M].北京:中国医药科技出版社,2004.
    [101]盛春泉,马瑞,吕小伟等.三唑类抗真菌药物构效关系[J].药学进展,2003,27(6)336-340.
    [102]Jin Voller, Marek Zatloukal, Rene Lenobel, et al. Anticanceractivity of natural cytokinins:A structure-activity relationshipstudy[J]. Phytochemistry,2010,71(11-12):1350-1359.
    [103]Xu YC, Leung SWS, Yeung DKY, et al. Structure-activity relationshipsof flavonoids for vascular relaxation in porcine coronary artery[J]. Phytochemistry,2007,68(8):1179-1188.
    [104]张鲁明,赵秀杰.多肽蛋白药物制剂研究的几个热点[J].中国药师,2004,7(9):673-676.
    [105]Suphiya Parveen, Ranjita Misra, Sanjeeb K. Sahoo. Nanoparticles:a boon to drug delivery, therapeutics, diagnosticsand imaging[J]. Nanomed.:Nanotechnol.2012,8:147-166.
    [106]Barbara Haley, Eugene Frenkel. Nanoparticles for drug delivery in cancer treatment[J]. Urol. Oncol.:Semin.Ori.2008,26:57-64.
    [107]Kumaresh S. Soppimath, Tejraj M. Aminabhavi, Anandrao R. Kulkarni, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J. Control. Rel.2001,70:1-20.
    [108]Avnesh Kumari, Sudesh Kumar Yadav, Subhash C. Yadav. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids Surf. B:Biointerfaces.2010,75:1-18.
    [109]Lisa Brannon-Peppas, James O. Blanchette. Nanoparticle and targeted systems for cancer therapy[J]. Adv. Drug Deliver. Rev.2004,56:1649-1659.
    [110]SiChen, Sixue Cheng, Renxi Zhuo. Self-assembly atrategy for the preparation of polymer-based nanoparticles for drug and gene delivery[J]. Macromol. Biosci.2011,11:576-589.
    [111]Uttam Kedar, Prasanna Phutane, Supriya Shidhaye, et al. Advances in polymeric micelles for drug delivery and tumortargeting[J]. Nanomed.:Nanotechnol.2010,6(6):714-729.
    [112]Christopher P. Leamon, Joseph A. Reddy. Folate-targeted chemotherapy [J]. Adv. Drug Deliver. Rev.2004,56:1127-1141.
    [113]Kyung Chul Cho, Sun Hwa Kim, Ji Hoon Jeong, et al. Folate receptor-mediated gene delivery using Folate-Poly(ethylene glycol)-Poly(L-lysine) conjugate[J]. Macromol. Biosci.2005,5:512-519.
    [114]Sandrine Dufort, Lucie Sancey, Jean-Luc Coll. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution[J]. Adv. Drug Deliver. Rev.2012,64(2):179-189.
    [115]Veronica Lassalle, Maria Lujan Ferreira. PLA nano-and microparticles for drug delivery:an overview of the methods of preparation[J]. Macromol. Biosci.2007,7:767-783.
    [116]Yosahiaka K Hiromistu Y. Properties of a peptide containing DL-lactide/glycolide copolymernanosphere by novel emulsion solvent diffusion method[J]. Europe J. pharm. Biopharm.1998,45:41-48.
    [117]Tsang SC, Claridge JB. Recent advance in the conversion of methane to synthesis gas[J]. Catal Today,1995,23(1):3-15.
    [118]Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement[J]. Int. J. Pharm.1989,55:R1-R4.
    [119]Federica Lince, Daniele L. Marchisio, Antonello A. Barresi. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications [J]. J. Colloid. Interface Sci.2008,322(2):505-515.
    [120]任杰,宋金星,洪海.生物可降解PLA-PEG共聚物微球的制备及表征[J].同济大学学报,2003,31(2):191-194.
    [121]高正炎.叶酸-聚乙二醇-聚乳酸的合成及其纳米颗粒的制备研究[D].南京.东南大学.2009:12.
    [122]江明,刘国军,A.艾森伯格等.大分子自组装[M].北京:科学出版社,2006:3-6;
    [123]Hamidreza MA, Mahmud A, Annahita DS, et al. Micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A[J]. J. Control. Rel.2005,104:301-311.
    [124]Mi Y, Liu YT, Feng SS. Formulation of Docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate2000(Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy [J]. Biomaterials,2011,32:4058-4066.
    [125]曹俊,吴,陈元维等.叶酸受体靶向的聚乳酸共聚物胶束的制备及性质研究[J].功能材料,2010,3(41):418-424.
    [126]Lawrence MJ. Surfactant systems:their use in drug delivery[J]. Chem. Soc. Rev.1994,23:417-24.
    [127]GB/T16886.4-2003/IS010993-4:2002医疗器械生物学评价,第4部分:与血液相互作用试验选择[S].71.
    [128]Liu Wenwei, Wang Tao, Zhan Desong. Hemolysis test for evaluating the biocompatibility of SiC implant materials[J]. Clinic. Rehabilitative Tissue Engineer. Res.2008,12(10):1873-1875
    [129]严好.可作为靶向药物缓释载体的生物素改性聚乳酸材料的制备与性能研究[D].重庆.重庆大学.2011:46.
    [130]许海燕,王琛.纳米生物医学技术[M].北京:中国协和医科大学出版社,2009.
    [131]Helmut Goesmann, Claus Feldmann. Nanoparticulate functional materials[J]. Angew. Chem. Int. Ed.2010,49:2-36.
    [132]Sarit S. Agasti, Subinoy Rana, Myoung-Hwan Park, et al. Nanoparticles for detection and diagnosis[J]. Adv. Drug Deliver. Rev.2010,62(3):316-328.
    [133]Genevieve Gaucher, Marie-Hclcne Dufresne, Vinayak P. Sant, et al. Block copolymer micelles:preparation, characterizationand application in drug delivery[J]. J. Control. Rel.2005,109:169-188.
    [134]Johannes Pecher, Stefan Mecking. Nanoparticles of Conjugated Polymers[J]. Chem. Rev.2010,110:6260-6279.
    [135]Eun Seong Lee, Kun Na, You Han Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7tumor[J]. J. Control. Rel.2005,103:405-418.
    [136]Stefanie Wohlfart, Svetlana Gelperina, Jorg Kreuter. Transport of drugs across the blood-brain barrier by nanoparticles [J]. J. Control. Rel.2012,161(2):264-273.
    [137]温苑章.吉西他滨磁纳米微球的制备及对胰腺癌的杀伤实验研究[D].广州.中山大学.2008:35-39.
    [138]Hsiang-Fa Liang, Chiung-Tong Chen, Sung-Ching Chen, et al. Paclitaxel-loaded poly(y-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials,2006,27:2051-2059.
    [139]Yu Mi, Yutao Liu, Si-Shen Feng. Formulation of Docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate2000(Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy [J]. Biomaterials,2011,32:4058-4066.
    [140]Antonio J. Almeida, Eliana Souto. Solid lipid nanoparticles as a drug delivery system for peptides and proteins [J]. Adv. Drug Deliver. Rev.2007,59(6):478-490.
    [141]Xue-Qing Wang, Qiang Zhang. pH-sensitive polymericnanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs[J]. Eur. J. Pharm. Biopharm. http://dx.doi.org/10.1016/j.ejpb.2012.07.014
    [142]Shujun Shu, Xinge Zhang, Zhongming Wu, et al. Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan[J]. J. Control. Rel.2011,152(1):170-172.
    [143]Eidi H, Joubert O, Attik G, et al. Cytotoxicity assessment of heparin nanoparticles in NR8383macrophages[J]. Inter. J. Pharm.2010,396(1-2):156-165.
    [144]Rosenkranz P, Fernandez-Cruz ML, Conde E, et al. Effects of cerium oxide nanoparticles to fish and mammalian cell lines:An assessment of cytotoxicityand methodology [J]. Toxicol. in Vitro.2012,26(6):888-896.
    [145]Quaiser Saquib, Abdulaziz A. Al-Khedhairy, Maqsood A. Siddiqui, et al. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells[J]. Toxicol. in Vitro.2012,26(2):351-361.
    [146]Margriet V.D.Z. Park, Arianne M. Neigh, Jolanda P. Vermeulen, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles[J]. Biomaterials,2011,32(36):9810-9817.
    [147]Chen Z, Meng H, Xing G, et al. Acute toxicol cal efects of copper nanoparticles invivo[J]. Toxicol. Lett.2005,163:109-120.
    [148]Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification [J]. Nano Lett.2004,4:2163-2169.
    [149]Rahman Q, Lohani M, Dopp E, et al. Evidence that uhrafine titanium dioxide induces micronuclei and apoptosis in Syrianhamster embryo fibroblasts[J]. Environ. Health Perspect,2002,110:797-800.
    [150]Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials:single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environ. Sci. Technol.2005,39(5):1378-83.
    [151]Kaiyong Cai, Yanhua Hou, Yan Hu, et al. Correlation of the cytotoxicity of TiO2nanoparticleswith different particle sizes on a sub-200-nm scale[J]. Small,2011,7(21):3026-3031.
    [152]Lei Sun, Yang Li, Xiaomei Liu, et al. Cytotoxicityand mitochondrial damage caused by silicananoparticles[J]. Toxicol. in Vitro.2011,25(8):1619-1629.
    [153]Hongbo Ma, Phillip L. Williams, Stephen A. Diamond. Ecotoxicity of manufactured ZnO nanoparticles-Areview[J]. Environ. Pollut.2013,172:76-85.
    [154]Jeong Soon Jang, So Yeon Kim, Sang Bong Lee, et al. Poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: The role of charge group and molecular weight in particle formation, cytotoxicity and transfection[J]. J. Control. Rel.2006,113:173-182.
    [155]GB/T16886.5-2003医疗器械生物学评价第5部分:体外细胞毒性试验(ISO10993-5:1999)[S]
    [156]USP XXII24edition.Bilolgical Tests/Biological Reactivity Tests, Invivo[S].
    [157]由少华.解读GB/T16886《(医疗器械生物学评价》系列标准[J].中国医疗器械信息,2005,11(1):15-19.
    [158]Saber M. Hussain, Laura K. Braydich-Stolle, Amanda M. Schrand, et al. Toxicity evaluation for safe use of nanomaterials:Recent achievements and technical challenges [J]. Adv. Mater.2009,21,1549-1559.
    [159]Bengt Fadeel, Alfonso E. Garcia-Bennett. Better safe than sorry:Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications[J]. Adv. Drug Deliver. Rev.2010,62:362-374.
    [160]陈燕.叶酸受体在鼻咽癌、喉癌中的表达及临床意义[D].重庆.重庆医科大学.2007.
    [161]Gaurav Sahay, Daria Y. Alakhova, Alexander V. Kabanov. Endocytosis of nanomedicines[J]. J. Control. Rel.2010,145:182-195.
    [162]Jayanth Panyam, Sanjeeb K. Sahoo, Swayam Prabha,et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles [J]. Inter. J. Pharm.2003,262:1-11.
    [163]Christopher P. Leamon, Joseph A. Reddy. Folate-targeted chemotherapy [J]. Adv. Drug Deliver. Rev.2004,56:1127-1141.
    [164]Haizheng Zhao, Lin Yue Lanry Yung. Selectivity of folate conjugated polymer micelles against different tumor cells [J]. Inter. J. Pharm.2008,349:256-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700