CL-PEG-MnFe_2O_4纳米胶束介导的肿瘤微血管和微淋巴管双重靶向MRI成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     血行转移和淋巴转移是恶性肿瘤常见的转移途径。自Folkman于1971年首次提出肿瘤发生、发展呈血管依赖性以来,肿瘤血管生成和抗肿瘤血管生成治疗一直是肿瘤研究的热点。近年来,随着一系列淋巴管内皮细胞(LECs)标记物的发现,对肿瘤淋巴管生成的研究也逐渐深入到了分子水平。许多肿瘤(尤其是上皮来源的肿瘤),如乳腺癌等,容易同时发生血行转移和淋巴转移。肿瘤微血管密度(MVD)和微淋巴管密度(LVD)与肿瘤的转移和预后密切相关。对于这些肿瘤,只检测其中某一条转移途径,往往达不到综合判断肿瘤是否易于发生远处转移的目的。同时,为了准确客观地评价肿瘤血管生成和淋巴管生成,还必须将肿瘤新生微血管和微淋巴管与正常组织的微血管和微淋巴管区分开来。
     Endoglin又名CD105,是内皮细胞膜表达的糖蛋白,是转化生长因子-β(TGF-β)受体复合物的成分之一。它通过参与TGF-β受体的信号转导,调节内皮-间质的信号传递,参与血管生成,在再生组织、炎症及肿瘤组织的新生血管内皮细胞中过表达,并且Endoglin的表达水平与内皮细胞的增殖程度正相关;基于Endoglin染色的肿瘤MVD评估与肿瘤的预后密切相关。早期研究认为Endoglin仅在处于增殖状态的肿瘤组织血管内皮细胞(VECs)高表达,而在正常组织的VECs不表达或低表达,在LECs不表达。近来研究证明Endoglin也是LECs增殖的标记物,它在正常组织LECs不表达或低表达,而在肿瘤新生LECs高表达。因而,若将Endoglin作为分子靶标,应用于肿瘤的磁共振(MR)分子成像,则有望实现肿瘤微血管生成和微淋巴管生成的双重靶向成像。
     目前,国内外均未见采用一种MR对比剂实现肿瘤微血管和微淋巴管特异性检测的相关报道。因此,本研究拟通过高温热解法合成超敏感MnFe_2O_4纳米粒,并用PEG-PCL两嵌段聚合物自组装形成高弛豫率的PEG-PCL-MnFe_2O_4纳米胶束,并进一步通过交联反应耦连能与Endoglin特异性结合的多肽CL-1555(氨基酸序列为AHKHVHHVPVRL)制备成CL-PEG-MnFe_2O_4分子探针,通过体外和体内实验证实该分子探针与肿瘤VECs和LECs的特异性结合,阐明靶向Endoglin分子探针介导的肿瘤微血管和微淋巴管MR成像作用,评价MR成像定量分析肿瘤新生血管及淋巴管的可能性和准确性。
     研究内容及方法:
     1. PEG-PCL-MnFe_2O_4纳米胶束的合成及表征高温热解法合成MnFe_2O_4纳米粒,利用部分末端功能化的PEG两亲性嵌段聚合物包裹MnFe_2O_4纳米粒自组装形成水溶液中单一分散的PEG-PCL-MnFe_2O_4纳米胶束。并采用透射电子显微镜(TEM)、zeta-粒度仪、红外吸收光谱(IR)及电感耦合等离子体原子发射光谱(ICP-AES)对纳米粒及纳米胶束的形态、粒径、分散性、包被物及铁锰构成比进行表征。用磁共振测量纳米胶束的弛豫率。
     2. CL-PEG-MnFe_2O_4纳米胶束的构建及体外实验合成能与Endoglin特异性结合的短肽CL-1555,与PEG-PCL-MnFe_2O_4通过交联反应耦联制备靶向Endoglin的CL-PEG-MnFe_2O_4探针。将VECs及LECs与乳腺癌细胞共培养获取肿瘤源性VECs及LECs。以CL-PEG-MnFe_2O_4标记肿瘤源性VECs及LECs,普鲁士蓝染色及荧光显微镜观察探针与内皮细胞的结合情况,透射电子显微镜观察纳米粒进入胞浆的位置,以PEG-PCL-MnFe_2O_4胶束标记肿瘤源性VECs及LECs及CL-PEG-MnFe_2O_4标记人脐静脉内皮细胞(HUVECs)及LECs为对照。并对标记细胞进行MR成像,了解MR成像在检测标记细胞中的价值。CCK-8试剂盒检测CL-PEG-MnFe_2O_4对细胞增殖活性的影响。对标记后的细胞进行传代,观察传代后细胞标记的阳性率,测量传代细胞内锰、铁元素的量,并将每一代细胞进行MR扫描,观察随着细胞传代磁共振信号的变化规律。
     3.裸鼠乳腺癌移植瘤模型的建立及MR成像优化采用小关节线圈及专用小动物线圈对裸鼠移植瘤模型进行MR成像,并对成像序列的参数进行优化,以期评价临床常规磁共振在小动物成像中的实用价值。通过尾静脉及球后静脉两种方式静脉注射超顺磁性氧化铁(SPIO)纳米粒,评价两种方法在裸鼠磁性纳米粒静脉给药中的可行性。
     4. CL-PEG-MnFe_2O_4应用于裸鼠乳腺癌移植瘤模型的MR分子成像乳腺癌移植瘤模型经球后静脉注射CL-PEG-MnFe_2O_4探针,采用3.0T磁共振扫描仪进行SE T1WI、FSE T2WI、GRE T2*WI及T2mapping成像,以注射PEG-PCL-MnFe_2O_4为对照;扫描结束后,取肿瘤标本进行病理及免疫组化分析,并与MRI图像进行对照,了解CL-PEG-MnFe_2O_4探针对肿瘤新生血管及淋巴管的双重靶向效能。
     结果:
     1.所合成的MnFe_2O_4纳米粒呈圆形,粒径分布均匀,粒径在11nm左右,zeta-粒度仪结果显示纳米的大小为11.18±1.72nm,具有很好的单分散性。纳米粒的Fe/Mn摩尔浓度比为2.13:1。CL-PEG-MnFe_2O_4纳米胶束呈簇状及团状分布,由十几到几十个纳米粒聚集而成,胶束粒径为52-86nm, zeta平均粒径约78.8±12.4nm。IR显示在1710cm-1处出现一明显的羰基吸收峰。当铁摩尔浓度为:0mmol/L、0.01mmol/L、0.02mmol/L、0.03mmol/L、0.04mmol/L、0.06mmol/L、0.08mmol/L、0.1mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L和0.8mmol/L时,随着浓度的增加,在SE T1WI,信号强度先升高后降低;在FSE T2WI,信号强度逐渐下降;在GRE T2*WI,信号强度随浓度的增加显著降低,GRE T2*WI较SE T1WI和FSE T2WI对纳米粒的检测更敏感(P<0.05)。
     2.成功分离脐静脉内皮细胞(HUVECs)。经诱导后的VECs和LECs免疫荧光染色显示,VECs呈CD105阳性,诱导后的LECs在podoplanin和CD105双染下呈绿色(podoplanin)和红色(CD105)荧光,诱导后的VECs和LECs荧光强度强于未诱导的内皮细胞。在相同铁浓度下,CL-PEG-MnFe_2O_4纳米胶束标记的肿瘤源性VECs和LECs的标记率较PEG-PCL-MnFe_2O_4高。在铁浓度为0μg/mL、0.5μg/mL、1μg/mL、2μg/mL、5μg/mL、10μg/mL时,诱导后和未诱导的LECs的标记率分别为0%、26.95±4.38%、62.73±3.07%、82.34±3.67%、100%、100%和0%、15.61±3.42%、36.35±2.26%、52.31±3.23%、87.53±4.62%、100%。在电子显微镜下标记细胞胞膜上、胞浆内及溶酶体可见包含高电子密度的内吞囊泡和细小颗粒;核周部分次级溶酶体破裂,周围胞浆内可见细小颗粒。在MR成像SE T1WI,信号强度呈缓慢升高;在FSE T2WI,信号强度逐渐下降;在GRE T2*WI,信号强度随浓度的增加显著降低。T2mapping显示随着浓度增加T2值逐渐降低,相对于PEG-PCL-MnFe_2O_4纳米胶束标记肿瘤源性VECs及LECs和CL-PEG-MnFe_2O_4纳米胶束标记VECs及LECs,CL-PEG-MnFe_2O_4纳米胶束标记的肿瘤源性VECs及LECs的T2值降低更明显,但随着铁浓度的增加,两者的差异逐渐减小。CCK-8细胞活性检测显示,在浓度小于20μg/mL时,纳米胶束对VECs细胞增殖活性影响不大,当浓度增加到50μg/mL时,细胞活性受到轻度影响,当铁浓度达到100μg/mL,细胞增殖活性受到明显影响,活性细胞数明显减少。标记细胞的普鲁士蓝染色显示,在铁浓度为50μg/mL以下时,细胞生长良好,细胞形态无明显改变,当铁浓度为100μg/mL时,活细胞数明显减少,细胞出现皱缩。随着标记细胞的传代,标记阳性率逐渐降低,在T2WI,磁共振信号逐渐升高;在T1WI,P1代呈低信号,P2、P3代呈稍高信号,P4代在T1WI、T2WI均呈等信号,ICP-AES显示随着细胞的传代,铁元素迅速减少,而锰元素减少较铁慢,Mn/Fe摩尔浓度比逐渐升高。
     3.通过细胞悬液裸鼠皮下接种的方法建立乳腺癌动物模型操作简单、成瘤率为100%,肿瘤潜伏期约1-2周,所形成的肿瘤接近人体同类肿瘤本身的特性。采用小动物专用线圈所获得图像的信噪比、分辨率及对比度较关节小线圈高,图像信号显示更均匀。两周以内的移植瘤大小在1cm左右,肿瘤信号均匀,在T1WI呈稍低信号,T2WI呈较高信号,边界较清晰,可见包膜,与邻近结构无粘连;肿瘤生长三周过后,肿瘤内出现囊变、坏死,坏死区在T1WI呈低信号,T2WI呈高信号。球后静脉穿刺方法简单、易行,通过球后静脉注射SPIO后肝脏内纳米粒的蓄积符合纳米粒在血浆中的清除变化规律,球后静脉注射纳米粒肝脏的信号强度变化率较尾静脉注射大。
     4.经球后静脉注射靶向探针CL-PEG-MnFe_2O_4后即刻及5min,肿瘤周围区增强程度高于中央区;注射CL-PEG-MnFe_2O_4后1h,肿瘤周边区仍呈点状或片状增强;而注射PEG-PCL-MnFe_2O_4后1h,肿瘤信号与增强前肿瘤信号基本相同。普鲁士蓝染色显示在肿瘤周边区可见大量蓝染颗粒,CD105、CD34及Podoplanin免疫组化染色显示相应区域局部血管及淋巴管丰富,与MRI图像肿瘤增强区相对应。靶向增强组在注射对比剂后即刻信号降低,最大信号强度变化率约为16%,之后肿瘤信号强度缓慢回升,1h后信号变化不明显,信号强度约为峰值信号强度的48%,时间信号强度曲线(TIC)呈下降-上升-平台型。对照组注射对比剂即刻,肿瘤信号强度降低,随时间延长,信号强度逐渐回升;30min时,信号强度接近注射前水平,此时,肿瘤信号与增强前无明显差异,TIC呈下降-上升型。
     结论:
     1.通过高温热解法能够合成高品质的MnFe_2O_4纳米粒。采用两亲嵌段聚合物自组装形成的PEG-PCL-MnFe_2O_4纳米胶束,具有较强的T2弛豫效能,在相同条件下较PEG-PCL-Fe3O4弛豫性能更高,是较敏感的T2WI对比剂。
     2. HUVECs获取方便、分离方法简单、一次获取细胞量大,是研究内皮细胞特性可靠的细胞模型。通过内皮细胞与肿瘤细胞共培养能够使内皮细胞向肿瘤源性内皮细胞分化,是获取肿瘤源性内皮细胞的可靠方法。
     3.细胞悬液裸鼠皮下接种的方法建立乳腺癌动物模型操作简单、成瘤率高,所构建的乳腺癌肿瘤是研究血管及淋巴管生成可靠的动物模型。
     4.球后静脉穿刺较尾静脉穿刺更简单易行,是静脉注射磁性纳米粒可靠的给药途径。
     5.耦连靶向Endoglin的结合肽后所构建的CL-PEG-MnFe_2O_4纳米胶束能够与肿瘤源性的VECs及LECs特异性结合,静脉注射后能够结合到乳腺癌新生血管及淋巴管内皮,并可以通过磁共振进行检测。在一定的浓度范围内对细胞无明显毒性,为应用MR特异性显示肿瘤新生血管和淋巴管提供了可能。
     6. MnFe_2O_4纳米粒经细胞代谢后释放出顺磁性的锰离子(Mn2+),并能在细胞内较长时间停留,在一定浓度下可以通过T1WI成像进行检测,有望拓展MnFe_2O_4纳米粒在MR双对比领域的应用前景。
Background and Objective:
     Hematogenous and lymphatic metastasis is the most common form of metastasis inpatients with malignant tumor. The angiogenesis and anti-angiogenesis therapy is alwaysthe hot point in cancer research since Folkman first proposed the hypothesis of tumordevelopment was dependent vascular in1971. In recent years, lymphangiogenesisgradually in depth study at the molecular level with a series of lymphatic endothelial cells(LECs) markers found on tumor. Many tumors (especially tumors of epithelial origin, suchas breast cancer, et al.) likely to simultaneously led to hematogenous and lymphaticmetastasis. Microvessel density (MVD) and lymphatic vessel density (LVD) are closelyrelated to the metastasis and prognosis of tumor. So, it is difficult to determine whether thetumor has occurred metastasis or not if we only focus on one metastatic pathway. At thesame time, In order to evaluate the angiogenesis and lymphangiogenesis accurately, wemust differentiate the tumor neoangiogenesis and neonatal lymphatic vessels from themicrovessels in the normal tissue.
     Endoglin, also known as CD105, is a glycoprotein expressed in endothelial cellmembrane, is one of the transforming growth factor-β (TGF-β) receptor complex. Endoglinregulate the signal transduction between endothelial cell and interstitial tissue through theTGF-β, and promote the angiogenesis. Endoglin overexpressed in neonatal vascularendothelial cells in regenerated tissue, inflammation and tumor tissue. The expression levelsand degree of Endoglin is closely related to the endothelial cell proliferation. The MVDbased on Endoglin staining is closely related to the tumor prognosis. Endoglin is also theproliferation marker of LECs, which is overexpressed in neonatal lymphatic vessel, but notexpressed in the LECs of normal tissue. Thus, it is expected to achieve dual targeting imaging of breast cancer angiogenesis and lymphangiogenesis if Endoglin was used as amolecular target in magnetic resonance (MR) molecular imaging.
     To our knowledge, there is no relevant report on simultaneous detection of tumormicrovessel and microlymphatic vessel using a MR contrast agent. In this study, MnFe_2O_4nanoparticles were synthesized using thermal decomposition method. MnFe_2O_4nanoparticles were self-assembly with two block polymer of PEG-PCL to constructwater-soluble PEG-PCL-MnFe_2O_4nanomicelles. Endoglin specifically targeted polypeptideCL-1555was then bound to the surface of PEG-PCL-MnFe_2O_4nanomicelles,whosephysical properties were then studied. Using these nanomicelles, tumor angiogenesis andlymphangiogenesis were evaluated with MR imaging in vitro and in vivo, and the feasibilityof evaluating tumor angiogenesis and lymphangiogenesis in vivo were investigated in thisstudy.
     Contents and Methods:
     1. Synthesis and characterization of PEG-PCL-MnFe_2O_4nanomicelles
     MnFe_2O_4nanoparticles were synthesized using thermal decomposition method.MnFe_2O_4nanoparticles were self-assembled with two block polymer of PEG-PCL toconstruct water-soluble PEG-PCL-MnFe_2O_4nanomicelles. The characteristics of theMnFe_2O_4nanoparticles and PEG-PCL-MnFe_2O_4nanomicelles were tested usingtransmission electron microscope (TEM), zeta-particle analyzer, infrared absorptionspectrum and inductively coupled plasma atomic emission spectrometry. The relaxation rateof MnFe_2O_4nanomicelles were measured with MR scanner.
     2. Synthesis of CL-PEG-MnFe_2O_4nanomicelles and in vitro experiment
     Endoglin specifically targeted polypeptide CL-1555was synthesized, which wasbound to the surface of PEG-PCL-MnFe_2O_4nanomicelles to constructed CL-PEG-MnFe_2O_4nanomicelles by crosslinking reaction. In order for the VECs and LECs to acquire thecharacteristics of breast cancer, VECs and LECs were incubated with breast cancer cells inMillicell cell culture. The incubated VECs and LECs were co-cultured with CL-PEG-MnFe_2O_4nanomicelles at molar iron concentration of0mmol/L、0.01mmol/L、0.02mmol/L、0.03mmol/L、0.04mmol/L、0.06mmol/L、0.08mmol/L、0.1mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L and0.8mmol/L. The intracytoplasmic nanoparticleswere confirmed with Prussian blue iron staining,fluorescence microscopy and TEM. Non- incubated HDLECs and PEG-PCL-MnFe_2O_4nanomicelles were used as control. Labeledcells were suspended in PBS in EP tubes and axial MR imaging was performed on a3.0TMR scanner using an eight-channel phased-array head coil, with PBS as a control. Themorphologic features of cells in each concentration were observed to assess the toxicity ofCL-PEG-MnFe_2O_4nanomicelles on VECs. CCK-8assay kit was used to test the affect ofCL-PEG-MnFe_2O_4nanomicelles on cell proliferation activity. The labeled cells werepassaged, and the labeling efficiencies of labeled cells were observed. The contents ofmanganese and iron in passaged cells were measured using ICP-AES instrument, and theMR imaging were performed to observe the variation of MR signals.
     3. Establishment of breast cancer xenograft and optimization of MR imaging
     MR imaging were performed with small joints coil and dedicated small animal coil, andthe parameters for MR imaging were optimized to evaluate the practical value ofconventional MR scanner in nude mice. Superparamagnetic iron oxide (SPIO) nanoparticleswere intravenous through tail vein and retrobulbar vein. The value of retrobulbar veininjection of magnetic nanoparticles was evaluated using MR imaging.
     4. MR molecular imaging of breast cancer xenograft based on CL-PEG-MnFe_2O_4nanomecelles
     CL-PEG-MnFe_2O_4nanomicelles were intravenous administrated by retrobulbar vein.MR imaging was performed on a3.0T MR scanner using dedicated small animal coil. TheMR imaging sequences included spin echo (SE) T1-weighted imaging (T1WI), fast spinecho (FSE) T2-weighted imaging (T2WI), gradient echo (GRE) T2*-weighted imaging andFSE T2mapping with16echos, with PEG-PCL-MnFe_2O_4as a control. Rats were sacrificedafter MR imaging. Pathological and immunohistochemical analysis were performed in thearea consistent with the ROI of the MR images. Finally, the value of Endoglin-targeted MRimaging in detecting the angiogenesis and lymphangiogenesis in breast cancer wasevaluated by comparatively analyzing the MR images and pathological andimmunohistochemical results.
     Results:
     1. MnFe_2O_4nanoparticles appeared as round under TEM. The average size ofGoldMag particles was11nm with good monodisperse, zeta-particle size was11.18±1.72nm. The molar ratio of iron/manganese was2.13:1. After MnFe_2O_4nanoparticles were self-assembled with two block polymer of PEG-PCL, the size of PEG-PCL-MnFe_2O_4nanomicelles was enlarged, ranging from52nm to86nm, with a mean size of78.8±12.4nm. The absorption peak of the C=O around1710cm-1under the IR indicates the presenceof PEG. With increasing iron concentration, signal intensity (SI) decreasing after increasingfirst in SE T1WI, and decreased in FSE T2WI and GRE T2*WI. The signal intensity changesin FSE T2WI and GRE T2*WI were significantly stronger than that in SE T1WI, especiallyin GRE T2*WI (P<0.05).
     2. The human umbilical vein endothelial cells (HUVECs) were isolated successfully.Incubated VECs were positive for CD105immunofluorescence staining, and the incubatedLECs showed red and green fluorescence after double staining with podoplanin and CD105.The fluorescence intensity of incubated VECs and LECs was significantly stronger than thatof non-incubated VECs and LECs. The cell labeling ratio with CL-PEG-MnFe_2O_4nanomicelles was significantly higher than that of PEG-PCL-MnFe_2O_4nanomicelles. Atiron concentrations of0ug/mL,0.5ug/mL,1ug/mL,2ug/mL,5ug/mL,10ug/mL,the labelingratios were, respectively,0%,26.95±4.38%,62.73±3.07%,82.34±3.67%,100%and100%forincubated HDLECs, and0%,15.61±3.42%,36.35±2.26%,52.31±3.23%,87.53±4.62%and100%for non-incubated HDLECs. Under the TEM, high electron density particles werefound in cytoplasm and lysosomes. SI gradually increased in SE T1WI, and decreased inFSE T2WI and GRE T2*WI. The signal intensity changes in GRE T2*WI were significantlystronger than that in FSE T2WI (P<0.05). The T2relaxation time decreased with increasingiron concentration. The SI of labeling cells with CL-PEG-MnFe_2O_4nanomicelles was lowerthan that with PEG-PCL-MnFe_2O_4nanomicelles, and the SI of incubated cell suspensionswas lower than that of non-incubated cells. The proliferative activity of VECs was affectedlittle when the iron concentration was lower than20ug/mL. When the iron concentrationreached50ug/mL, the proliferative activity of VECs was affected to some degree, and cellproliferation significantly affected when iron concentration reached100ug/mL, the activecells decreased significantly. As the cell passaging, labeling efficiency decreased. SIgradually increased in FSE T2WI. In SE T1WI, the SI of passage1(P1) cells was lower thanthat of PBS. However, the SI of P2and P3cells was higher than that of PBS. The P4cellsshowed isointense both in T1WI and T2WI. As the labeled cell passaging, the amount of irondecreased faster than manganese, and the molar ratio of iron/manganese gradually increased.
     3. The establishment of breast cancer xenograft model by subcutaneous inoculationcell suspension was a simple operation. The tumor formation rate was100%, and the tumorincubation period was about1-2weeks. The characteristics of xenograft were similar to thatof human breast cancer. The signal to noise ratio (SNR), resolution and contrast withdedicated small animal coil were higher than that with small joints coil. The size ofxenograft in two weeks is about1cm3, and the SI of tumor is homogeneous. The tumordisplayed slightly hypointense in T1WI and hyperintense in T2WI images. The boundary ofthe tumor was clear, and no adhesion with adjacent structures. Necrosis occurred in largertumor (usually after3weeks), and the necrotic area showed hyperintense in T2WI images.The means of retrobulbar vein puncture is simple and easy. After injection of magneticnanoparticles by retrobulbar vein, nanoparticles accumulated in liver consistent with theclearance of nanoparticles in the plasma.
     4. The enhancement degree at peripheral area of the tumor is higher than that in thecentral area after intravenous administration of CL-PEG-MnFe_2O_4nanomicelles. After60min clearance, the tumor displayed patchy or spot-like enhancement, which was mainlylimited to the peripheral areas of the tumors. However, the SI returned to the baseline after a60min recovery when the contrast agent was PEG-PCL-MnFe_2O_4nanomicelles. Under themicroscope, the blue-stained iron particles were observed around the cancer cell nest withPrussian blue iron staining. In the same area, blood vessels and lymphatics with brownstaining were observed, corresponding to immunohistochemical staining for CD105, CD34and podoplanin, respectively, indicating that the nanoparticles were combined with bloodvessels and lymphatic vessels of breast cancer. After intravenous injection ofCL-PEG-MnFe_2O_4nanomicelles, SI decreased immediately and the relative SI on T2WIweighted images were16%, thereafter, relative SI returned to about48%of the peak valueafter a60min recovery. However, the SI returned to the baseline after a30min recoverywhen the contrast was PEG-PCL-MnFe_2O_4nanomicelles.
     Conclusion:
     1. High quality MnFe_2O_4nanoparticles can be synthesized by thermal decomposition.The self-assembly PEG-PCL/MnFe_2O_4nanomicelles coated with amphiphilic blockcopolymer are more sensitive contrast agent for T2WI, which have stronger T2relaxivity than PEG-PCL/Fe3O4nanomicelles.
     2. The separation method of HUVECs is convenient, simple, and can get many cells inone time. The HUVECs is a reliable cell for characterized study of endothelial cell. Themethod is a reliable way for gaining tumor-derived endothelial cells by co-culture ofendothelial cells and tumor cells. After sequence optimization, conventional clinical MRscanner could be used to image nude mice combining with a dedicated small animal coils.
     3. Establishment of breast cancer xenograft by subcutaneous inoculation of cellsuspension in nude mice is simple, and the tumor formation rate is higher. The constructedbreast cancer is a reliable animal model for research of angiogenesis and lymphangio-genesis.
     4. Venipuncture in the retrobulbar vein is more simple than the tail vein puncture,which is reliable route for intravenous administration of magnetic nanoparticles.
     5. The CL-PEG-MnFe_2O_4nanomicelles combined with Endoglin targeting peptidescan specifically bind to tumor-derived VECs and LECs, which can bind to neovascularendothelial cells and lymphatic endothelial cells after intravenous injection, which could bedetected by MR imaging. The CL-PEG-MnFe_2O_4nanomicelles show no toxicity to cellswithin a certain concentration, which have potential application for target MR imaging oftumor neovascular and lymphatic vessels.
     6. The paramagnetic manganese ions (Mn2+) can be released from MnFe_2O_4nanoparticles metabolized in cytoplasm, which can stay longer in the cell and could bedetected with T1WI imaging in a certain concentration. That is to say, the MnFe_2O_4nanoparticles are expected to apply for double-contrast agent of MR imaging.
引文
1Raica M, Cimpean AM,Ribatti D. The role of podoplanin in tumor progression and metastasis [J]. Anticancer research,2008,28(5B):2997-3006.
    2Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression [J]. Modern pathology,2004,18(1):143-152.
    5Algire GH, Chalkley HW, Legallais FY, et al. Vasculae Reactions of Normal and Malignant Tissues in Vivo. Vascular Reactions of Mice to Wounds and to Normal and Neoplastic Transplants [J]. Journal of the National Cancer Institute,1945,6(1):73-85.
    4Folkman J, Cole RZimmerman S. Tumor behavior in isolated perfused organs:in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment [J]. Annals of surgery,1966,164(3):491-502.
    1Wong ML, Prawira A, Kaye AH, et al. Tumour angiogenesis:its mechanism and therapeutic implications in malignant gliomas [J]. Journal of Clinical Neuroscience,2009,16(9):1119-1130.
    2Thompson W, Shiach K, Fraser R, et al. Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth [J]. The Journal of pathology,1987,151(4):323-332.
    3Ehrmann RL,Knoth M. Choriocarcinoma:Transfilter stimulation of vasoproliferation in the hamster cheek pouch—studied by light and electron microscopy[J]. Journal of the National Cancer Institute,1968,41(6):1329-1341.
    4Greenblatt M,Philippe SK. Tumor angiogenesis:transfilter diffusion studies in the hamster by the transparent chamber technique [J]. Journal of the National Cancer Institute,1968,41(1):111-124.
    5Folkman J. Tumor angiogenesis:therapeutic implications[J]. N Engl j Med,1971,285:1182-1186.
    6Gullino PM. Angiogenesis and oncogenesis [J]. Journal of the National Cancer Institute,1978,61(3):639-643.
    7Gullino PM. Angiogenesis and oncogenesis [J]. Journal of the National Cancer Institute,1978,61(3):639-643.
    8Ausprunk DH,Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis[J]. Microvascular research,1977,14(1):53-65.
    9Ljubimova JY, Fujita M, Khazenzon NM, et al. Changes in laminin isoforms associated with brain tumor invasion and angiogenesis [J]. Frontiers in bioscience:a journal and virtual library,2006,11:81-88.
    10Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells [J]. Clinical cancer research.2003.9(6):2157-2165.
    11Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells [J]. Clinical cancer research,2003,9(6):2157-2165.
    1Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells [J]. Clinical cancer research,2003,9(6):2157-2165.
    2Zagzag D, Amirnovin R, Greco MA, et al. Vascular apoptosis and involution in gliomas precede neovascularization:a novel concept for glioma growth and angiogenesis [J]. Laboratory Investigation,2000,80(6):837-849.
    5Zagzag D, Hooper A, Friedlander DR, et al. In Situ Expression of Angiopoietins in Astrocytomas Identifies Angiopoietin-2as an Early Marker of Tumor Angiogenesis [J]. Experimental neurology,1999,159(2):391-400.
    1Alitalo K,Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease [J]. Cancer cell,2002,1(3):219-227.
    2Witte MH, Way D, Witte C, et al. Lymphangiogenesis:mechanisms, significance and clinical implications [J]. EXS,1997,79:65-112.
    3Kubo H, Cao R, Brakenhielm E, et al. Blockade of vascular endothelial growth factor receptor-3signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea [J]. Proceedings of the National Academy of Sciences,2002.99(13):8868-8873.
    4Leak L. The structure of lymphatic capillaries in lymph formation [J]. Fed Proc,1976,35(8):1863-1871.
    1Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig[J]. American Journal of Anatomy,1902,1(3):367-389.
    2Wigle JT,Oliver G. Proxl Function Is Required for the Development of the Murine Lymphatic System [J]. Cell,1999,98(6):769-778.
    3Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase4gene becomes restricted to lymphatic endothelium during development [J]. Proceedings of the National Academy of Sciences,1995,92(8):3566-3570.
    4Schneider M, Othman-Hassan K, Christ B, et al. Lymphangioblasts in the avian wing bud [J]. Developmental Dynamics,2000,216(4-5):311-319.
    1Carmeliet P,Jain RK. Angiogenesis in cancer and other diseases [J].Nature,2000,407(6801):249-257.
    2Jain RK,Carmeliet PF. Vessels of death or life [J]. Scientific American,2001,285(6):38-45.
    3Schulte-Merker S, Sabine A,Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease [J]. The Journal of cell biology,2011,193(4):607-618.
    4Fukumura D, Duda DG, Munn LL, et al. Tumor Microvasculature and Microenvironment:Novel Insights Through Intravital Imaging in Pre-Clinical Models [J]. Microcirculation,2010,17(3):206-225.
    5Alitalo K,Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease [J]. Cancer cell,2002,1(3):219-227.
    1Jackson DG, Prevo R, Clasper S, et al. LYVE-1, the lymphatic system and tumor lymphangiogenesis [J]. Trends in immunology,2001,22(6):317-321.
    2Jain RK,Fenton BT. Intratumoral lymphatic vessels:a case of mistaken identity or malfunction?[J]. Journal of the National Cancer Institute,2002,94(6):417-421.
    3Llorca O, Trujillo A, Blanco FJ, et al. Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia[J]. Journal of molecular biology,2007,365(3):694-705.
    4杨华,邹利光.Endoglin (CD105)在肿瘤新生血管靶向诊断及治疗中的应用[J].临床肿瘤学杂志,2011,16(12):1130-1132
    5Hanyu A, Kojima K, Hatake K, et al. Functional in vivo optical imaging of tumor angiogenesis, growth, and metastasis prevented by administration of anti-human VEGF antibody in xenograft model of human fibrosarcoma HT1080cells [J]. Cancer science,2009,100(11):2085-2092.
    6K Seon B, Haba A, Matsuno F, et al. Endoglin-targeted cancer therapy [J]. Current drug delivery,2011,8(1):135-143.
    7Yoshitomi H, Kobayashi S, Ohtsuka M, et al. Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer [J]. Pancreas,2008,37(3):275-281.
    1毕仙民,梁志清,侍立峰Endoglin结合肽功能性亲和常数的测定[J].第三军医大学学报,2007,29(8):685-687.
    2Llorca O, Trujillo A, Blanco FJ, et al. Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia [J]. Journal of molecular biology,2007,365(3):694-705.
    1Seon BK, Matsuno F, Haruta Y, et al. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin [J]. Clinical cancer research,1997,3(7):1031-1044.
    2毕仙民,梁志清,侍立峰Endoglin结合肽功能性亲和常数的测定[J].第三军医大学学报,2007,29(8):685-687.
    3毕仙民,梁志清,侍立峰Endoglin特异性结合短肽筛选及功能分析[J].重庆医科大学学报,2007,32(3):232-235.
    4毕仙民,梁志清,侍立峰.应用噬菌体肽库筛选Endoglin的结合肽[J].第三军医大学学报,2007,29(7):582-584.
    5杨华,邹利光.Endoglin (CD105)在肿瘤新生血管靶向诊断及治疗中的应用[J].临床肿瘤学杂志,2011,16(12):1130-1132.
    6Fonsatti E, Jekunen AP, Kairemo KJ, et al. Endoglin is a suitable target for efficient imaging of solid tumors:in vivo evidence in a canine mammary carcinoma model [J]. Clinical cancer research,2000,6(5):2037-2043.
    7Bredow S, Lewin M, Hofmann B, et al. Imaging of tumour neovasculature by targeting the TGF-β binding receptor endoglin[J]. European journal of cancer,2000,36(5):675-681.
    8Costello B, Li C, Duff S, et al. Perfusion of99Tcm-labeled CD105Mab into kidneys from patients with renal carcinoma suggests that CD105is a promising vascular target [J]. International journal of cancer,2004,109(3):436-441.
    1Korpanty G, Carbon JG, Grayburn PA, et al. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature [J]. Clinical cancer research,2007,13(1):323-330.
    2Zhang D, Feng X-Y, Henning TD, et al. MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105[J]. European journal of radiology,2009,70(1):180-189.
    3Weissleder R. Molecular Imaging:Exploring the Next Frontier [J]. Radiology,1999,212(3):609-614.
    4申宝忠,王维.分子影像学2011年度进展报告[J].中国继续医学教育,2011,3(8):132-166.
    5Liu S, Jia B, Qiao R, et al. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application [J]. Molecular pharmaceutics,2009,6(4):1074-1082.
    6Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature biotechnology,2004,22(8):969-976.
    7Wang Y-XJ, Hussain SM,Krestin GP. Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging [J]. European radiology,2001,11(11):2319-2331.
    1Corot C, Robert P, Idee J-M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging [J]. Advanced drug delivery reviews,2006,58(14):1471-1504.
    2Liu S, Jia B, Qiao R, et al. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application [J]. Molecular pharmaceutics,2009,6(4):1074-1082.
    3Qiao R, Yang C,Gao M. Superparamagnetic iron oxide nanoparticles:from preparations to in vivo MRI applications [J]. Journal of Materials Chemistry,2009,19(35):6274-6293.
    4Liu Y, Yang Y,Zhang C. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3with magnetic probes [J]. International journal of nanomedicine,2013,8:1083-1093.
    1Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging [J]. Nature medicine,1998,4(5):623-626.
    2Lanza GM, Winter PM, Caruthers SD, et al. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles [J].2006,1(3):321-329.
    3Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2rabbit tumors using a novel αvβ3-targeted nanoparticle and1.5tesla magnetic resonance imaging [J]. Cancer research,2003,63(18):5838-5843.
    4Mulder WJ, Strijkers GJ, Van Tilborg GA, et al. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging [J]. NMR in Biomedicine,2006,19(1):142-164.
    5Liu Y, Yang Y,Zhang C. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3with magnetic probes [J]. International journal of nanomedicine,2013,8:1083-1093.
    6Jiang T, Zhang C, Zheng X, et al. Noninvasively characterizing the different αvβ3expression patterns in lung cancers with RGD-USPIO using a clinical3.0T MR scanner [J]. International journal of nanomedicine,2009,4:241-249.
    7Xu F, Lei D, Du X, et al. Modification of MR molecular imaging probes with cysteine-terminated peptides and their potential for in vivo tumour detection [J]. Contrast Media&Molecular Imaging,2011,6(1):46-54.
    8Zhang C, Xie X, Liang S, et al. Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging [J]. Nanomedicine:Nanotechnology, Biology and Medicine,2012,8(6):996-1006.
    9Kluza E, Jacobs I, Hectors SJ, et al. Dual-targeting of αvβ3and galectin-1improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo [J]. Journal of Controlled Release,2012,158(2):207-214.
    1Proulx ST,Detmar M. Molecular mechanisms and imaging of lymphatic metastasis [J]. Experimental cell research,2013, doi:10.1016/j.yexcr.2013.03.009.
    2Tafreshi NK, Bui MM, Bishop K, et al. Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases Ⅸ and Ⅻ targeted imaging probes [J]. Clinical cancer research,2012,18(1):207-219.
    3Yang H, Zou LG, Zhang S, et al. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles [J]. Clinical Radiology,2013,68(12):1233-1240.
    4杨华,邹利光.超顺磁性纳米粒在靶向显像和药物释放中的应用[J].放射学实践,2011,26(12):1329-1331.
    5Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nature medicine,2006,13(1):95-99.
    6Huh Y-M, Jun Y-W, Song H-T, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals [J]. Journal of the American Chemical Society,2005,127(35):12387-12391.
    1龚明福,杨华,邹利光.锰对比剂磁共振成像研究进展[Jl.中国医学影像技术,2013,29(001):142-145.
    2Yang J, Gunn J, Dave SR, et al. Ultrasensitive detection and molecular imaging with magnetic nanoparticles [J]. Analyst,2008,133(2):154-10.
    3杨华,邹利光.超顺磁性纳米粒在靶向显像和药物释放中的应用[J].放射学实践,2011,26(12):1329-1331.
    4Liu S, Lee CM, Wang S, et al. A new bioimaging carrier for fluorescent quantum dots:phospholipid nanoemulsion mimicking natural lipoprotein core [J]. Drug delivery,2006,13(2):159-164.
    5Liong M, Shao H, Haun JB, et al. Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications [J].Advanced Materials,2010,22(45):5168-5172.
    6Johnson GA, Cofer GP, Fubara B, et al. Magnetic resonance histology for morphologic phenotyping [J]. Journal of Magnetic Resonance Imaging,2002,16(4):423-429.
    1Pillai DR, Heidemann RM, Kumar P, et al. Comprehensive small animal imaging strategies on a clinical3T dedicated head MR-scanner; adapted methods and sequence protocols in cns pathologies [J]. PloS one,2011,6(2):e16091.
    2Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nature medicine,2006,13(1):95-99.
    1Gao J, Gu H,Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications[J]. Accounts of chemical research,2009,42(8):1097-1107.
    2Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nature medicine,2006,13(1):95-99.
    3Joshi HM, Lin YP, Aslam M, et al. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation [J].The Journal of Physical Chemistry C,2009,113(41):17761-17767.
    4Hu Y, Jiang X, Ding Y, et al. Preparation and drug release behaviors of nimodipine-loaded poly (caprolactone)-poly (ethylene oxide)-polylactide amphiphilic copolymer nanoparticles [J]. Biomaterials,2003,24(13):2395-2404.
    1Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging[J]. Biomaterials,2009,30(15):2919-2928.
    1Cheng F-Y, Su C-H, Yang Y-S, et al. Characterization of aqueous dispersions of Fe3O4nanoparticles and theirbiomedical applications [J]. Biomaterials,2005,26(7):729-738.
    Na HB, Lee JH, An K, et al. Development of a T1contrast agent for magnetic resonance imaging using MnOnanoparticles [J]. Angewandte Chemie,2007,119(28):5493-5497.
    1Naidek KP, Bianconi F, Da Rocha TCR, et al. Structure and morphology of spinel MFe2O4(M=Fe, Co, Ni) nanoparticleschemically synthesized from heterometallic complexes [J]. Journal of Colloid and Interface Science,2011,358(1):39-46.
    1姜艳霞,陈卫,廖宏刚,等.钯纳米粒子及其团聚体特殊红外性能的CO分子探针红外光谱[J].科学通报,2004,249(14):1363-1367.
    Yang H, Zhang C, Shi X, et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonanceimaging [J]. Biomaterials,2010,31(13):3667-3673.
    1Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging[J]. Biomaterials,2009,30(15):2919-2928.
    2Wan Y, Zhao H, Yu R, et al. Synthesis and Characterization of Multifunctional Iron Oxide Nanoparticles [J]. Journal ofNanoscience and Nanotechnology,2012,12(3):2456-2461.
    3Qiao R, Yang C,Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications [J].Journal of Materials Chemistry,2009,19(35):6274-6293.
    4Ashjari M, Khoee S, Mahdavian AR, et al. Self-assembled nanomicelles using PLGA–PEG amphiphilic block copolymerfor insulin delivery: a physicochemical investigation and determination of CMC values [J]. Journal of Materials Science:Materials in Medicine,2012,23(4):943-953.
    5Xiao Y, Hong H, Javadi A, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positronemission tomography imaging [J]. Biomaterials,2012,33(11):3071-3082.
    6龚明福,杨华,邹利光,等.包被材料对磁性纳米粒胶束MRI信号和弛豫效能的影响[J].第三军医大学学报,2013,35(001):5-9.
    1Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging[J]. Biomaterials,2009,30(15):2919-2928.
    2Qiao R, Yang C,Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications [J].Journal of Materials Chemistry,2009,19(35):6274-6293.
    3龚明福,杨华,邹利光,等.包被材料对磁性纳米粒胶束MRI信号和弛豫效能的影响[J].第三军医大学学报,2013,35(001):5-9.
    4Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging[J]. Nature medicine,2006,13(1):95-99.
    Huh Y-M, Jun Y-W, Song H-T, et al. In vivo magnetic resonance detection of cancer by using multifunctional magneticnanocrystals [J]. Journal of the American Chemical Society,2005,127(35):12387-12391.
    1Yang H, Zou LG, Zhang S, et al. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles [J]. Clinical Radiology,2013,68(12):1233-1240.
    2Hanahan D,Weinberg RA. Hallmarks of cancer:the next generation [J]. Cell,2011,144(5):646-674.
    3Price S,Gillard J. Imaging biomarkers of brain tumour margin and tumour invasion [J]. British Journal of Radiology,2011,84(Special Issue2):S159-S167.
    4Dassler K, Roohi F, Lohrke J, et al. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles [J]. Investigative Radiology,2012,47(7):383-391.
    5杨华,邹利光.Endoglin (CD105)在肿瘤新生血管靶向诊断及治疗中的应用[J].临床肿瘤学杂志,2011,16(12):1130-1132
    6K Seon B, Haba A, Matsuno F, et al. Endoglin-targeted cancer therapy [J]. Current drug delivery,2011,8(1):135-143.
    7Yoshitomi H, Kobayashi S, Ohtsuka M, et al. Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer[J]. Pancreas,2008,37(3):275-281.
    8毕仙民,梁志清,侍立峰. Endoglin结合肽功能性亲和常数的测定[J].第三军医大学学报,2007,29(8):685-687.
    1毕仙民,梁志清,侍立峰. Endoglin结合肽功能性亲和常数的测定[J].第三军医大学学报,2007,29(8):685-687.
    2毕仙民,梁志清,侍立峰. Endoglin特异性结合短肽筛选及功能分析[J].重庆医科大学学报,2007,32(3):232-235.
    3毕仙民,梁志清,侍立峰.应用噬菌体肽库筛选Endoglin的结合肽[J].第三军医大学学报,2007,29(7):582-584.
    4Choi D, Han A, Park JP, et al. Fabrication of MnxFe1–xO Colloidal Solid Solution as a DualMagnetic‐R esonance‐Contrast Agent [J]. Small,2009,5(5):571-573.
    Silva AC, Lee JH, Aoki I, et al. Manganese‐enhanced magnetic resonance imaging (MEMRI): methodological andpractical considerations [J]. NMR in Biomedicine,2004,17(8):532-543.
    1武新英,张景峰,林冰影,等. RGD标记纳米氧化铁的肿瘤血管生成分子影像学研究[J].科学通报,2010(19):1891-1899.
    2丁永梅,周彩存,赵印敏,等. cRGD-氧化铁纳米粒的构建及应用于核磁共振成像诊断中的动物研究[J].肿瘤,2010,30(4):277-282.
    1Baudin B, Bruneel A, Bosselut N, et al. A protocol for isolation and culture of human umbilical vein endothelial cells [J].Nature protocols,2007,2(3):481-485.
    Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identificationby morphologic and immunologic criteria [J]. Journal of Clinical Investigation,1973,52(11):2745.
    1Goldsmith J, Mccormick J,Yen A. Endothelial cell cycle kinetics. Changes in culture and correlation with endothelial properties[J]. Laboratory investigation; a journal of technical methods and pathology,1984,51(6):643.
    2Dimmeler S,Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression [J]. Circulation research,2000,87(6):434-439.
    3Baudin B, Bruneel A, Bosselut N, et al. A protocol for isolation and culture of human umbilical vein endothelial cells [J]. Nature protocols,2007,2(3):481-485.
    4Reinders JH, Vervoorn RC, Verweij CL, et al. Perturbation of cultured human vascular endothelial cells by phorbol ester or thrombin alters the cellular von Willebrand factor distribution [J]. Journal of cellular physiology,1987,133(1):79-87.
    5Chen Z, Htay A, Dos Santos W, et al. In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells[J]. Journal of neuro-oncology,2009,92(2):121-128.
    6Garmy-Susini B, Makale M, Fuster M, et al. Methods to study lymphatic vessel integrins [J]. Methods in enzymology,2007,426:415-438.
    7Khodarev NN, Yu J, Labay E, et al. Tumour-endothelium interactions in co-culture:coordinated changes of gene expression profiles and phenotypic properties of endothelial cells [J]. Journal of cell science,2003,116(6):1013-1022.
    8Mikhaylova M, Mori N, Wildes FB, et al. Hypoxia increases breast cancer cell-induced lymphatic endothelial cell migration [J]. Neoplasia (New York, NY),2008,10(4):380.
    1胡玲,张裕英,高长有.聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J].化学进展,2009,21(6):1254-1267.
    Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers [J]. Internationaljournal of nanomedicine,2012,7:3445-3471.
    1Arbab AS, Wilson LB, Ashari P, et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles:implications for cellular magnetic resonance imaging [J]. NMR in Biomedicine,2005,18(6):383-389.
    2Liu G, Yang H, Zhang XM, et al. MR imaging for the longevity of mesenchymal stem cells labeled with poly-L-lysine-Resovist complexes[J]. Contrast Media&Molecular Imaging,2010,5(2):53-58.
    3Selim KK, Xing Z-C, Choi M-J, et al. Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer[J]. Nanoscale research letters,2011,6(1):1-9.
    4Arbab AS, Wilson LB, Ashari P, et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles:implications for cellular magnetic resonance imaging [J]. NMR in Biomedicine,2005,18(6):383-389
    5Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro [J]. Investigative Radiology,1995,30(10):604-610.
    1Richardson DR,Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1997,1331(1):1-40.
    2Burton NC,Guilarte TR. Manganese neurotoxicity:lessons learned from longitudinal studies in nonhuman primates [J]. Environmental health perspectives,2009,117(3):325-332.
    3Cai T, Yao T, Li Y, et al. Proteasome inhibition is associated with manganese-induced oxidative injury in PC12cells [J]. Brain research,2007,1185:359-365.
    4Gavin C, Gunter K,Gunter T. Manganese and calcium transport in mitochondria:implications for manganese toxicity [J]. Neurotoxicology,1998,20(2-3):445-453.
    5Yang H, Sun Y,Zheng X. Manganese-induced apoptosis in rat myocytes [J]. Journal of biochemical and molecular toxicology,2007,21(3):94-100.
    6Yin Z, Jiang H, Lee ESY, et al. Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation [J]. Journal of neurochemistry,2010,112(5):1190-1198.
    7Dreβler J, Schulz K, Klemm M, et al. Lethal manganese-cadmium intoxication. A case report [J]. Archives of toxicology,2002,76(8):449-451.
    1Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and itsspecial applications [J]. Radiographics,2009,29(5):1433-1449.
    1胡玲,张裕英,高长有.聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J].化学进展,2009,21(6):21254-1267.
    Meng W, Parker T, Kallinteri P, et al. Uptake and metabolism of novel biodegradable poly (glycerol-adipate)nanoparticles in DAOY monolayer [J]. Journal of Controlled Release,2006,116(3):314-321.
    1Arbab AS, Bashaw LA, Miller BR, et al. Characterization of Biophysical and Metabolic Properties of Cells Labeled withSuperparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging [J]. Radiology,2003,29(3):838-846.
    2Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent forcellular magnetic resonance imaging after cell transplantation: methods and techniques [J]. Transplantation,2003,76(7):1123-1130.
    1Silva AC,Bock NA. Manganese-enhanced MRI: an exceptional tool in translational neuroimaging [J]. Schizophreniabulletin,2008,34(4):595-604.
    2Tambalo S, Daducci A, Fiorini S, et al. Experimental protocol for activation‐i nduced manganese‐enhanced MRI(AIM‐M RI) based on quantitative determination of Mn content in rat brain by fastT1mapping [J]. Magnetic Resonancein Medicine,2009,62(4):1080-1084.
    1Liu CH, D'arceuil HE,De Crespigny AJ. Direct CSF injection of MnCl2for dynamic manganese‐enhanced MRI [J].Magnetic Resonance in Medicine,2004,51(5):978-987.
    1Benveniste H,Blackband S. MR microscopy and high resolution small animal MRI: applications in neuroscience research[J]. Progress in neurobiology,2002,67(5):393-420.
    2Pillai DR, Heidemann RM, Kumar P, et al. Comprehensive small animal imaging strategies on a clinical3T dedicatedhead MR-scanner; adapted methods and sequence protocols in cns pathologies [J]. PloS one,2011,6(2): e16091.
    Johnson GA, Cofer GP, Fubara B, et al. Magnetic resonance histology for morphologic phenotyping [J]. Journal ofMagnetic Resonance Imaging,2002,16(4):423-429.
    1韩鸿宾.掌握磁共振成像序列设计,合理科学运用MR技术解决临床与科研工作中的实际问题[J].中国医学影像技术,2004,20(7):979-980.
    1Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice [J]. Lab animal,2011,40(5):155-160.
    1Adolphi NL, Butler KS, Lovato DM, et al. Imaging of Her2‐targeted magnetic nanoparticles for breast cancer detection:comparison of SQUID‐detected magnetic relaxometry and MRI [J]. Contrast Media&Molecular Imaging,2012,7(3):308-319.
    2冯仕庭,孙灿辉,蔡华崧,等.建立荷人结肠癌裸鼠移植瘤模型及MRI成像检查[J].中国组织工程研究与临床康复,2010,14(20):3696-3700.
    1Brockmann MA, Kemmling A,Groden C. Current issues and perspectives in small rodent magnetic resonance imagingusing clinical MRI scanners [J]. Methods,2007,43(1):79-87.
    1张安君,赵喜,王国年,等.小孔径正交相控阵线圈与临床表面柔性线圈小动物MRI成像质量的比较研究[J].中国中西医结合影像学杂志,2010,8(3):196-198.
    2Suckow MA, Danneman P,Brayton C. The laboratory mouse [M]. CRC Press Inc.2001.
    1Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice [J]. Lab animal,2011,40(5):155-160.
    2Abdelhalim MaK,Mady MM. Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: Afluorescence study [J]. Lipids in health and disease,2011,10(1):1-9.
    3Yoo J-W, Chambers E,Mitragotri S. Factors that control the circulation time of nanoparticles in blood: challenges,solutions and future prospects [J]. Current pharmaceutical design,2010,16(21):2298-2307.
    4Xiao W, Lin J, Li M, et al. Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles forblood pool contrast agents [J]. Contrast Media&Molecular Imaging,2012,7(3):320-327.
    1Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice [J]. Lab animal,2011,40(5):155-160.
    2Fox JG, Barthold S, Davisson M, et al. The mouse in biomedical research: diseases [M]. Academic Press.2006.
    1Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice [J]. Lab animal,2011,40(5):155-160.
    1Desantis C, Siegel R, Bandi P, et al. Breast cancer statistics,2011[J]. CA:a cancer journal for clinicians,2011,61(6):408-418.
    2Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer,1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates [J]. Cancer,2010,116(3):544-573.
    3Kerbel RS. Reappraising antiangiogenic therapy for breast cancer [J]. The Breast,2011,20:S56-S60.
    4Martin M. Understanding the value of antiangiogenic therapy in metastatic breast cancer [J].Current Opinion in Oncology,2011,23:S1.
    5Desantis C, Siegel R, Bandi P, et al. Breast cancer statistics,2011[J]. CA:a cancer journal for clinicians,2011,61(6):408-418.
    6Roth BJ, Krilov L, Adams S, et al. Clinical cancer advances2012:Annual report on progress against cancer from the American Society of Clinical Oncology [J]. Journal of Clinical Oncology,2013,31(1):131-161.
    7Berman AT, Thukral AD, Hwang W-T, et al. Incidence and Patterns of Distant Metastases for Patients With Early-Stage Breast Cancer After Breast Conservation Treatment [J]. Clinical breast cancer,2013,13(2):88-94.
    8Berman AT, Thukral AD, Hwang W-T, et al. Incidence and Patterns of Distant Metastases for Patients With Early-Stage Breast Cancer After Breast Conservation Treatment [J]. Clinical breast cancer,2013,13(2):88-94.
    9Ribatti D. Antiangiogenic therapy accelerates tumor metastasis [J]. Leukemia Research,2011,35(1):24-26.
    10Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis [J]. Nature medicine,2001,7(2):192-198.
    11Lee A, Pinder S, Macmillan R, et al. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma [J]. European journal of cancer,2006,42(3):357-362.
    12Lee E, Koskimaki JE, Pandey NB, et al. Inhibition of Lymphangiogenesis and Angiogenesis in Breast Tumor Xenografts and Lymph Nodes by a Peptide Derived from Transmembrane Protein45A [J]. Neoplasia (New York, NY),2013,15(2):112-124.
    1Bergers QHanahan D. Modes of resistance to anti-angiogenic therapy [J]. Nature Reviews Cancer,2008,8(8):592-603.
    2Meulmeester E,Ten Dijke P. The dynamic roles of TGF-β in cancer [J]. The Journal of pathology,2011,223(2):206-219.
    3K Seon B, Haba A, Matsuno F, et al. Endoglin-targeted cancer therapy[J]. Current drug delivery,2011,8(1):135-143.
    4Hanyu A, Kojima K, Hatake K, et al. Functional in vivo optical imaging of tumor angiogenesis, growth, and metastasis prevented by administration of anti-human VEGF antibody in xenograft model of human fibrosarcoma HT1080cells [J]. Cancer science,2009,100(11):2085-2092.
    5Yoshitomi H, Kobayashi S, Ohtsuka M, et al. Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer[J]. Pancreas,2008,37(3):275-281.
    6Massoud TF,Gambhir SS. Molecular imaging in living subjects:seeing fundamental biological processes in a new light [J]. Genes&development,2003,17(5):545-580.
    1Ottobrini L, Ciana P, Biserni A, et al. Molecular imaging: a new way to study molecular processes in vivo [J]. Molecularand cellular endocrinology,2006,246(1):69-75.
    Schulte-Merker S, Sabine A,Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease [J].The Journal of cell biology,2011,193(4):607-618.
    1Cailleau R, Young R, Olive M, et al. Breast tumor cell lines from pleural effusions [J]. Journal of the National Cancer Institute,1974,53(3):661-674.
    2Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature,2001,410(6824):50-56.
    3Lee E, Koskimaki JE, Pandey NB, et al. Inhibition of Lymphangiogenesis and Angiogenesis in Breast Tumor Xenografts and Lymph Nodes by a Peptide Derived from Transmembrane Protein45A [J]. Neoplasia (New York, NY),2013,15(2):112-124.
    1洪国斌,梁碧玲,沈君,等.制备裸鼠皮下移植瘤动物模型:3种建模方法及MR成像比较[J].中国医学影像技术,2010,26(2):205-208.
    1Hoult DI,Lauterbur PC. The sensitivity of the zeumatographic experiment involving human samples [J]. J. Magn. Reson.,1979,34:425-433.
    2Laniado M, Weinmann H, Schorner W, et al. First use of GdDTPA/dimeglumine in man [J]. Physiological chemistry and physics and medical NMR,1984,16(2):157-165.
    3Aime S, Castelli DD, Crich SG, et al. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications [J].Accounts of chemical research,2009,42(7):822-831.
    4Caravan P. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents:design and mechanism of action [J]. Accounts of chemical research,2009,42(7):851-862.
    5Geraldes CF,Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging [J]. Contrast Media&Molecular Imaging,2009,4(1):1-23.
    1Weissleder R,Mahmood U. Molecular imaging [J]. Radiology,2001,219(2):316-333.
    2Terreno E, Dastru W, Delli Castelli D, et al. Advances in metal-based probes for MR molecular imaging applications [J]. Current medicinal chemistry,2010,17(31):3684-3700.
    3Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nature medicine,2006,13(1):95-99.
    4Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging [J]. Biomaterials,2009,30(15):2919-2928.
    5Gombos Z, Xu X, Chu CS, et al. Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix [J]. Clinical cancer research,2005,11(23):8364-8371.
    6El-Gohary YM, Metwally G, Saad RS, et al. Prognostic significance of intratumoral and peritumoral lymphatic density and blood vessel density in invasive breast carcinomas [J]. American journal of clinical pathology,2008,129(4):578-586.
    1Hu F, Joshi HM, Dravid VP, et al. High-performance nanostructured MR contrast probes [J]. Nanoscale,2010,2(10):1884-1891.
    2Hu F, Joshi HM, Dravid VP, et al. High-performance nanostructured MR contrast probes [J]. Nanoscale,2010,2(10):1884-1891.
    3Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size [J]. Cancer research,1995,55(17):3752-3756.
    4Matsumura Y,Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs [J]. Cancer research,1986,46(12Part1):6387-6392.
    5Schulte-Merker S, Sabine A,Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease [J]. The Journal of cell biology,2011,193(4):607-618.
    6Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels [J]. The Journal of experimental medicine,2007,204(10):2349-2362.
    7Alitalo K, Tammela T,Petrova TV. Lymphangiogenesis in development and human disease [J]. Nature,2005,438(7070):946-953.
    1Zhang D, Feng X-Y, Henning TD, et al. MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPAliposomes targeted to CD105[J]. European journal of radiology,2009,70(1):180-189.
    2Kessinger CW, Togao O, Khemtong C, et al. Investigation of in vivo targeting kinetics of αvβ3-specificsuperparamagnetic nanoprobes by time-resolved MRI [J]. Theranostics,2011,1:263.
    3Yang H, Zou LG, Zhang S, et al. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis usingPolyethylene glycol-GoldMag nanoparticles [J]. Clinical Radiology,2013,68(12):1233-1240.
    1. Raica M, Cimpean AM,Ribatti D. The role of podoplanin in tumor progression andmetastasis [J]. Anticancer research,2008,28(5B):2997-3006.
    2. Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvesseldensity in breast carcinoma: correlation with clinicopathologic parameters andVEGF-family gene expression [J]. Modern pathology,2004,18(1):143-152.
    3. Algire GH, Chalkley HW, Legallais FY, et al. Vasculae Reactions of Normal andMalignant Tissues in Vivo. Vascular Reactions of Mice to Wounds and to Normal andNeoplastic Transplants [J]. Journal of the National Cancer Institute,1945,6(1):73-85.
    4. Folkman J, Cole P,Zimmerman S. Tumor behavior in isolated perfused organs: in vitrogrowth and metastases of biopsy material in rabbit thyroid and canine intestinalsegment [J]. Annals of surgery,1966,164(3):491-502.
    5. Wong ML, Prawira A, Kaye AH, et al. Tumour angiogenesis: its mechanism andtherapeutic implications in malignant gliomas [J]. Journal of Clinical Neuroscience,2009,16(9):1119-1130.
    6. Thompson W, Shiach K, Fraser R, et al. Tumours acquire their vasculature by vesselincorporation, not vessel ingrowth [J]. The Journal of pathology,1987,151(4):323-332.
    7. Ehrmann RL,Knoth M. Choriocarcinoma: Transfilter stimulation of vasoproliferation inthe hamster cheek pouch—studied by light and electron microscopy [J]. Journal of theNational Cancer Institute,1968,41(6):1329-1341.
    8. Greenblatt M,Philippe SK. Tumor angiogenesis: transfilter diffusion studies in thehamster by the transparent chamber technique [J]. Journal of the National CancerInstitute,1968,41(1):111-124.
    9. Folkman J. Tumor angiogenesis: therapeutic implications [J]. N Engl j Med,1971,285:1182-1186.
    10. Gullino PM. Angiogenesis and oncogenesis [J]. Journal of the National Cancer Institute,1978,61(3):639-643.
    11. Dvorak H. Angiogenesis: update2005[J]. Journal of Thrombosis and Haemostasis,2005,3(8):1835-1842.
    12. Ausprunk DH,Folkman J. Migration and proliferation of endothelial cells in preformedand newly formed blood vessels during tumor angiogenesis [J]. Microvascular research,1977,14(1):53-65.
    13. Ljubimova JY, Fujita M, Khazenzon NM, et al. Changes in laminin isoforms associatedwith brain tumor invasion and angiogenesis [J]. Frontiers in bioscience: a journal andvirtual library,2006,11:81-88.
    14. Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in theangiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillarytube formation of brain microvascular endothelial cells [J]. Clinical cancer research,2003,9(6):2157-2165.
    15. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue?—GHA Clowes Memorial Award Lecture [J]. Cancer research,1986,46(2):467-473.
    16. Holash J, Maisonpierre P, Compton D, et al. Vessel cooption, regression, and growth intumors mediated by angiopoietins and VEGF [J]. Science,1999,284(5422):1994-1998.
    17. Zagzag D, Amirnovin R, Greco MA, et al. Vascular apoptosis and involution in gliomasprecede neovascularization: a novel concept for glioma growth and angiogenesis [J].Laboratory Investigation,2000,80(6):837-849.
    18. Zagzag D, Hooper A, Friedlander DR, et al. In Situ Expression of Angiopoietins inAstrocytomas Identifies Angiopoietin-2as an Early Marker of Tumor Angiogenesis [J].Experimental neurology,1999,159(2):391-400.
    19. Alitalo K,Carmeliet P. Molecular mechanisms of lymphangiogenesis in health anddisease [J]. Cancer cell,2002,1(3):219-227.
    20. Witte MH, Way D, Witte C, et al. Lymphangiogenesis: mechanisms, significance andclinical implications [J]. EXS,1997,79:65-112.
    21. Kubo H, Cao R, Br kenhielm E, et al. Blockade of vascular endothelial growth factorreceptor-3signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis inmouse cornea [J]. Proceedings of the National Academy of Sciences,2002,99(13):8868-8873.
    22. Leak L. The structure of lymphatic capillaries in lymph formation [J]. FedProc,1976,35(8):1863-1871.
    23. Sabin FR. On the origin of the lymphatic system from the veins and the development ofthe lymph hearts and thoracic duct in the pig [J]. American Journal of Anatomy,1902,1(3):367-389.
    24. Wigle JT,Oliver G. Prox1Function Is Required for the Development of the MurineLymphatic System [J]. Cell,1999,98(6):769-778.
    25. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase4gene becomes restricted to lymphatic endothelium during development [J].Proceedings of the National Academy of Sciences,1995,92(8):3566-3570.
    26. Schneider M, Othman‐Hassan K, Christ B, et al. Lymphangioblasts in the avian wingbud [J]. Developmental Dynamics,2000,216(4‐5):311-319.
    27. Carmeliet P,Jain RK. Angiogenesis in cancer and other diseases [J]. Nature,2000,407(6801):249-257.
    28. Jain RK,Carmeliet PF. Vessels of death or life [J]. Scientific American,2001,285(6):38-45.
    29. Schulte-Merker S, Sabine A,Petrova TV. Lymphatic vascular morphogenesis indevelopment, physiology, and disease [J]. The Journal of cell biology,2011,193(4):607-618.
    30. Fukumura D, Duda DG, Munn LL, et al. Tumor Microvasculature andMicroenvironment: Novel Insights Through Intravital Imaging in Pre-Clinical Models[J]. Microcirculation,2010,17(3):206-225.
    31. Jackson DG, Prevo R, Clasper S, et al. LYVE-1, the lymphatic system and tumorlymphangiogenesis [J]. Trends in immunology,2001,22(6):317-321.
    32. Jain RK,Fenton BT. Intratumoral lymphatic vessels: a case of mistaken identity ormalfunction?[J]. Journal of the National Cancer Institute,2002,94(6):417-421.
    33. Llorca O, Trujillo A, Blanco FJ, et al. Structural model of human endoglin, atransmembrane receptor responsible for hereditary hemorrhagic telangiectasia [J].Journal of molecular biology,2007,365(3):694-705.
    34.杨华,邹利光. Endoglin (CD105)在肿瘤新生血管靶向诊断及治疗中的应用[J].临床肿瘤学杂志,2011,16(12):1130-1132.
    35. Hanyu A, Kojima K, Hatake K, et al. Functional in vivo optical imaging of tumorangiogenesis, growth, and metastasis prevented by administration of anti‐humanVEGF antibody in xenograft model of human fibrosarcoma HT1080cells [J]. Cancerscience,2009,100(11):2085-2092.
    36. K Seon B, Haba A, Matsuno F, et al. Endoglin-targeted cancer therapy [J]. Current drugdelivery,2011,8(1):135-143.
    37. Yoshitomi H, Kobayashi S, Ohtsuka M, et al. Specific expression of endoglin (CD105)in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer [J].Pancreas,2008,37(3):275-281.
    38.毕仙民,梁志清,侍立峰. Endoglin结合肽功能性亲和常数的测定[J].第三军医大学学报,2007,29(8):685-687.
    39. Seon BK, Matsuno F, Haruta Y, et al. Long-lasting complete inhibition of human solidtumors in SCID mice by targeting endothelial cells of tumor vasculature withantihuman endoglin immunotoxin [J]. Clinical cancer research,1997,3(7):1031-1044.
    40.毕仙民,梁志清,侍立峰. Endoglin特异性结合短肽筛选及功能分析[J].重庆医科大学学报,2007,32(3):232-235.
    41.毕仙民,梁志清,侍立峰.应用噬菌体肽库筛选Endoglin的结合肽[J].第三军医大学学报,2007,29(7):582-584.
    42. Fonsatti E, Jekunen AP, Kairemo KJ, et al. Endoglin is a suitable target for efficientimaging of solid tumors: in vivo evidence in a canine mammary carcinoma model [J].Clinical cancer research,2000,6(5):2037-2043.
    43. Bredow S, Lewin M, Hofmann B, et al. Imaging of tumour neovasculature by targetingthe TGF-β binding receptor endoglin [J]. European journal of cancer,2000,36(5):675-681.
    44. Costello B, Li C, Duff S, et al. Perfusion of99Tcm‐labeled CD105Mab into kidneysfrom patients with renal carcinoma suggests that CD105is a promising vascular target[J]. International journal of cancer,2004,109(3):436-441.
    45. Korpanty G, Carbon JG, Grayburn PA, et al. Monitoring response to anticancer therapyby targeting microbubbles to tumor vasculature [J]. Clinical cancer research,2007,13(1):323-330.
    46. Zhang D, Feng X-Y, Henning TD, et al. MR imaging of tumor angiogenesis usingsterically stabilized Gd-DTPA liposomes targeted to CD105[J]. European journal ofradiology,2009,70(1):180-189.
    47. Weissleder R. Molecular Imaging: Exploring the Next Frontier [J]. Radiology,1999,212(3):609-614.
    48.申宝忠,王维.分子影像学2011年度进展报告[J].中国继续医学教育,2011,3(8):132-166.
    49. Liu S, Jia B, Qiao R, et al. A novel type of dual-modality molecular probe for MR andnuclear imaging of tumor: preparation, characterization and in vivo application [J].Molecular pharmaceutics,2009,6(4):1074-1082.
    50. Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots [J]. Nature biotechnology,2004,22(8):969-976.
    51. Wang Y-XJ, Hussain SM,Krestin GP. Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging [J]. Europeanradiology,2001,11(11):2319-2331.
    52. Corot C, Robert P, Idée J-M, et al. Recent advances in iron oxide nanocrystaltechnology for medical imaging [J]. Advanced drug delivery reviews,2006,58(14):1471-1504.
    53. Qiao R, Yang C,Gao M. Superparamagnetic iron oxide nanoparticles: from preparationsto in vivo MRI applications [J]. Journal of Materials Chemistry,2009,19(35):6274-6293.
    54. Liu Y, Yang Y,Zhang C. A concise review of magnetic resonance molecular imaging oftumor angiogenesis by targeting integrin αvβ3with magnetic probes [J]. Internationaljournal of nanomedicine,2013,8:1083-1093.
    55. Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivoby αvβ3-targeted magnetic resonance imaging [J]. Nature medicine,1998,4(5):623-626.
    56. Lanza GM, Winter PM, Caruthers SD, et al. Nanomedicine opportunities forcardiovascular disease with perfluorocarbon nanoparticles [J].2006,1(3):321-329.
    57. Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis innascent Vx-2rabbit tumors using a novel ανβ3-targeted nanoparticle and1.5teslamagnetic resonance imaging [J]. Cancer research,2003,63(18):5838-5843.
    58. Mulder WJ, Strijkers GJ, Van Tilborg GA, et al. Lipid‐based nanoparticles forcontrast‐enhanced MRI and molecular imaging [J]. NMR in Biomedicine,2006,19(1):142-164.
    59. Jiang T, Zhang C, Zheng X, et al. Noninvasively characterizing the different αvβ3expression patterns in lung cancers with RGD-USPIO using a clinical3.0T MRscanner [J]. International journal of nanomedicine,2009,4:241-249.
    60. Xu F, Lei D, Du X, et al. Modification of MR molecular imaging probes withcysteine‐terminated peptides and their potential for in vivo tumour detection [J].Contrast Media&Molecular Imaging,2011,6(1):46-54.
    61. Zhang C, Xie X, Liang S, et al. Mono-dispersed high magnetic resonance sensitivemagnetite nanocluster probe for detection of nascent tumors by magnetic resonancemolecular imaging [J]. Nanomedicine: Nanotechnology, Biology and Medicine,2012,8(6):996-1006.
    62. Kluza E, Jacobs I, Hectors SJ, et al. Dual-targeting of αvβ3and galectin-1improves thespecificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo [J].Journal of Controlled Release,2012,158(2):207-214.
    63. Proulx ST,Detmar M. Molecular mechanisms and imaging of lymphatic metastasis [J].Experimental cell research,2013, doi:10.1016/j.yexcr.2013.03.009.
    64. Tafreshi NK, Bui MM, Bishop K, et al. Noninvasive detection of breast cancer lymphnode metastasis using carbonic anhydrases IX and XII targeted imaging probes [J].Clinical cancer research,2012,18(1):207-219.
    65. Yang H, Zou LG, Zhang S, et al. Feasibility of MR imaging in evaluating breast cancerlymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles [J]. ClinicalRadiology,2013,68(12):1233-1240.
    66.杨华,邹利光.超顺磁性纳米粒在靶向显像和药物释放中的应用[J].放射学实践,2011,26(12):1329-1331.
    67. Lee J-H, Huh Y-M, Jun Y-W, et al. Artificially engineered magnetic nanoparticles forultra-sensitive molecular imaging [J]. Nature medicine,2006,13(1):95-99.
    68. Huh Y-M, Jun Y-W, Song H-T, et al. In vivo magnetic resonance detection of cancer byusing multifunctional magnetic nanocrystals [J]. Journal of the American ChemicalSociety,2005,127(35):12387-12391.
    69.龚明福,杨华,邹利光.锰对比剂磁共振成像研究进展[J].中国医学影像技术,2013,29(001):142-145.
    70. Yang J, Gunn J, Dave SR, et al. Ultrasensitive detection and molecular imaging withmagnetic nanoparticles [J]. Analyst,2008,133(2):154-160.
    71. Liu S, Lee CM, Wang S, et al. A new bioimaging carrier for fluorescent quantum dots:phospholipid nanoemulsion mimicking natural lipoprotein core [J]. Drug delivery,2006,13(2):159-164.
    72. Liong M, Shao H, Haun JB, et al. Carboxymethylated polyvinyl alcohol stabilizesdoped ferrofluids for biological applications [J]. Advanced Materials,2010,22(45):5168-5172.
    73. Johnson GA, Cofer GP, Fubara B, et al. Magnetic resonance histology for morphologicphenotyping [J]. Journal of Magnetic Resonance Imaging,2002,16(4):423-429.
    74. Pillai DR, Heidemann RM, Kumar P, et al. Comprehensive small animal imagingstrategies on a clinical3T dedicated head MR-scanner; adapted methods and sequenceprotocols in cns pathologies [J]. PloS one,2011,6(2): e16091.
    75. Gao J, Gu H,Xu B. Multifunctional magnetic nanoparticles: design, synthesis, andbiomedical applications [J]. Accounts of chemical research,2009,42(8):1097-1107.
    76. Joshi HM, Lin YP, Aslam M, et al. Effects of shape and size of cobalt ferritenanostructures on their MRI contrast and thermal activation [J]. The Journal of PhysicalChemistry C,2009,113(41):17761-17767.
    77. Hu Y, Jiang X, Ding Y, et al. Preparation and drug release behaviors of nimodipine-loaded poly (caprolactone)–poly (ethylene oxide)–polylactide amphiphilic copolymernanoparticles [J]. Biomaterials,2003,24(13):2395-2404.
    78. Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites asMRI contrast agent for liver imaging [J]. Biomaterials,2009,30(15):2919-2928.
    79. Cheng F-Y, Su C-H, Yang Y-S, et al. Characterization of aqueous dispersions of Fe3O4nanoparticles and their biomedical applications [J]. Biomaterials,2005,26(7):729-738.
    80. Na HB, Lee JH, An K, et al. Development of a T1contrast agent for magneticresonance imaging using MnO nanoparticles [J]. Angewandte Chemie,2007,119(28):5493-5497.
    81. Naidek KP, Bianconi F, Da Rocha TCR, et al. Structure and morphology of spinelMFe2O4(M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometalliccomplexes [J]. Journal of Colloid and Interface Science,2011,358(1):39-46.
    82.姜艳霞,陈卫,廖宏刚,等.钯纳米粒子及其团聚体特殊红外性能的CO分子探针红外光谱[J].科学通报,2004,49(14):1363-1367.
    83. Yang H, Zhang C, Shi X, et al. Water-soluble superparamagnetic manganese ferritenanoparticles for magnetic resonance imaging [J]. Biomaterials,2010,31(13):3667-3673.
    84. Wan Y, Zhao H, Yu R, et al. Synthesis and Characterization of Multifunctional IronOxide Nanoparticles [J]. Journal of Nanoscience and Nanotechnology,2012,12(3):2456-2461.
    85. Ashjari M, Khoee S, Mahdavian AR, et al. Self-assembled nanomicelles usingPLGA–PEG amphiphilic block copolymer for insulin delivery: a physicochemicalinvestigation and determination of CMC values [J]. Journal of Materials Science:Materials in Medicine,2012,23(4):943-953.
    86. Xiao Y, Hong H, Javadi A, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging [J]. Biomaterials,2012,33(11):3071-3082.
    87.龚明福,杨华,邹利光,等.包被材料对磁性纳米粒胶束MRI信号和弛豫效能的影响[J].第三军医大学学报,2013,35(001):5-9.
    88. Hanahan D,Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell,2011,144(5):646-674.
    89. Price S,Gillard J. Imaging biomarkers of brain tumour margin and tumour invasion [J].British Journal of Radiology,2011,84(Special Issue2): S159-S167.
    90. Dassler K, Roohi F, Lohrke J, et al. Current limitations of molecular magneticresonance imaging for tumors as evaluated with high-relaxivity CD105-specific ironoxide nanoparticles [J]. Investigative Radiology,2012,47(7):383-391.
    91. Choi D, Han A, Park JP, et al. Fabrication of MnxFe1–xO Colloidal Solid Solution as aDual Magnetic‐Resonance‐C ontrast Agent [J]. Small,2009,5(5):571-573.
    92. Silva AC, Lee JH, Aoki I, et al. Manganese‐enhanced magnetic resonance imaging(MEMRI): methodological and practical considerations [J]. NMR in Biomedicine,2004,17(8):532-543.
    93.武新英,张景峰,林冰影,等. RGD标记纳米氧化铁的肿瘤血管生成分子影像学研究[J].科学通报,2010(19):1891-1899.
    94.丁永梅,周彩存,赵印敏,等. cRGD-氧化铁纳米粒的构建及应用于核磁共振成像诊断中的动物研究[J].肿瘤,2010,30(4):277-282.
    95. Baudin B, Bruneel A, Bosselut N, et al. A protocol for isolation and culture of humanumbilical vein endothelial cells [J]. Nature protocols,2007,2(3):481-485.
    96. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derivedfrom umbilical veins. Identification by morphologic and immunologic criteria [J].Journal of Clinical Investigation,1973,52(11):2745.
    97. Goldsmith J, Mccormick J,Yen A. Endothelial cell cycle kinetics. Changes in cultureand correlation with endothelial properties [J]. Laboratory investigation; a journal oftechnical methods and pathology,1984,51(6):643.
    98. Dimmeler S,Zeiher AM. Endothelial cell apoptosis in angiogenesis and vesselregression [J]. Circulation research,2000,87(6):434-439.
    99. Reinders JH, Vervoorn RC, Verweij CL, et al. Perturbation of cultured human vascularendothelial cells by phorbol ester or thrombin alters the cellular von Willebrand factordistribution [J]. Journal of cellular physiology,1987,133(1):79-87.
    100.Chen Z, Htay A, Dos Santos W, et al. In vitro angiogenesis by human umbilical veinendothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastomacells [J]. Journal of neuro-oncology,2009,92(2):121-128.
    101.Garmy‐Susini B, Makale M, Fuster M, et al. Methods to study lymphatic vesselintegrins [J]. Methods in enzymology,2007,426:415-438.
    102.Khodarev NN, Yu J, Labay E, et al. Tumour-endothelium interactions in co-culture:coordinated changes of gene expression profiles and phenotypic properties ofendothelial cells [J]. Journal of cell science,2003,116(6):1013-1022.
    103.Mikhaylova M, Mori N, Wildes FB, et al. Hypoxia increases breast cancer cell-inducedlymphatic endothelial cell migration [J]. Neoplasia (New York, NY),2008,10(4):380.
    104.胡玲,张裕英,高长有.聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J].化学进展,2009,21(6):1254-1267.
    105.Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatformsas drug carriers [J]. International journal of nanomedicine,2012,7:3445-3471.
    106.Arbab AS, Wilson LB, Ashari P, et al. A model of lysosomal metabolism of dextrancoated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellularmagnetic resonance imaging [J]. NMR in Biomedicine,2005,18(6):383-389.
    107.Arbab AS, Bashaw LA, Miller BR, et al. Characterization of Biophysical and MetabolicProperties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles andTransfection Agent for Cellular MR Imaging [J]. Radiology,2003,229(3):838-846.
    108.Liu G, Yang H, Zhang XM, et al. MR imaging for the longevity of mesenchymal stemcells labeled with poly-L-lysine–Resovist complexes [J]. Contrast Media&MolecularImaging,2010,5(2):53-58.
    109.Selim KK, Xing Z-C, Choi M-J, et al. Reduced cytotoxicity of insulin-immobilized CdSquantum dots using PEG as a spacer [J]. Nanoscale research letters,2011,6(1):1-9.
    110.Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypicalmagnetic iron oxide label in vitro [J]. Investigative Radiology,1995,30(10):604-610.
    111.Richardson DR,Ponka P. The molecular mechanisms of the metabolism and transport ofiron in normal and neoplastic cells [J]. Biochimica et Biophysica Acta (BBA)-Reviewson Biomembranes,1997,1331(1):1-40.
    112.Burton NC,Guilarte TR. Manganese neurotoxicity: lessons learned from longitudinalstudies in nonhuman primates [J]. Environmental health perspectives,2009,117(3):325-332.
    113.Cai T, Yao T, Li Y, et al. Proteasome inhibition is associated with manganese-inducedoxidative injury in PC12cells [J]. Brain research,2007,1185:359-365.
    114.Gavin C, Gunter K,Gunter T. Manganese and calcium transport in mitochondria:implications for manganese toxicity [J]. Neurotoxicology,1998,20(2-3):445-453.
    115.Yang H, Sun Y,Zheng X. Manganese‐induced apoptosis in rat myocytes [J]. Journal ofbiochemical and molecular toxicology,2007,21(3):94-100.
    116.Yin Z, Jiang H, Lee ESY, et al. Ferroportin is a manganese‐responsive protein thatdecreases manganese cytotoxicity and accumulation [J]. Journal of neurochemistry,2010,112(5):1190-1198.
    117.Dre ler J, Schulz K, Klemm M, et al. Lethal manganese-cadmium intoxication. A casereport [J]. Archives of toxicology,2002,76(8):449-451.
    118.Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications ofT2*-based MR imaging and its special applications [J]. Radiographics,2009,29(5):1433-1449.
    119.Meng W, Parker T, Kallinteri P, et al. Uptake and metabolism of novel biodegradablepoly (glycerol-adipate) nanoparticles in DAOY monolayer [J]. Journal of ControlledRelease,2006,116(3):314-321.
    120.Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells withferumoxides and transfection agent for cellular magnetic resonance imaging after celltransplantation: methods and techniques [J]. Transplantation,2003,76(7):1123-1130.
    121.Silva AC,Bock NA. Manganese-enhanced MRI: an exceptional tool in translationalneuroimaging [J]. Schizophrenia bulletin,2008,34(4):595-604.
    122.Tambalo S, Daducci A, Fiorini S, et al. Experimental protocol for activation‐inducedmanganese‐e nhanced MRI (AIM‐MRI) based on quantitative determination of Mncontent in rat brain by fast T1mapping [J]. Magnetic Resonance in Medicine,2009,62(4):1080-1084.
    123.Liu CH, D'arceuil HE,De Crespigny AJ. Direct CSF injection of MnCl2for dynamicmanganese‐enhanced MRI [J]. Magnetic Resonance in Medicine,2004,51(5):978-987.
    124.Benveniste H,Blackband S. MR microscopy and high resolution small animal MRI:applications in neuroscience research [J]. Progress in neurobiology,2002,67(5):393-420.
    125.韩鸿宾.掌握磁共振成像序列设计,合理科学运用MR技术解决临床与科研工作中的实际问题[J].中国医学影像技术,2004,20(7):979-980.
    126.Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice [J]. Labanimal,2011,40(5):155-160.
    127.Adolphi NL, Butler KS, Lovato DM, et al. Imaging of Her2‐targeted magneticnanoparticles for breast cancer detection: comparison of SQUID‐detected magneticrelaxometry and MRI [J]. Contrast Media&Molecular Imaging,2012,7(3):308-319.
    128.冯仕庭,孙灿辉,蔡华崧,等.建立荷人结肠癌裸鼠移植瘤模型及MRI成像检查[J].中国组织工程研究与临床康复,2010,14(20):3696-3700.
    129.Brockmann MA, Kemmling A,Groden C. Current issues and perspectives in smallrodent magnetic resonance imaging using clinical MRI scanners [J]. Methods,2007,43(1):79-87.
    130.张安君,赵喜,王国年,等.小孔径正交相控阵线圈与临床表面柔性线圈小动物MRI成像质量的比较研究[J].中国中西医结合影像学杂志,2010,8(3):196-198.
    131.Suckow MA, Danneman P,Brayton C. The laboratory mouse [M]. CRC Press Inc.2001.
    132.Abdelhalim MaK,Mady MM. Liver uptake of gold nanoparticles after intraperitonealadministration in vivo: A fluorescence study [J]. Lipids in health and disease,2011,10(1):1-9.
    133.Yoo J-W, Chambers E,Mitragotri S. Factors that control the circulation time ofnanoparticles in blood: challenges, solutions and future prospects [J]. Currentpharmaceutical design,2010,16(21):2298-2307.
    134.Xiao W, Lin J, Li M, et al. Prolonged in vivo circulation time by zwitterionicmodification of magnetite nanoparticles for blood pool contrast agents [J]. ContrastMedia&Molecular Imaging,2012,7(3):320-327.
    135.Fox JG, Barthold S, Davisson M, et al. The mouse in biomedical research: diseases [M].Academic Press.2006.
    136.Desantis C, Siegel R, Bandi P, et al. Breast cancer statistics,2011[J]. CA: a cancerjournal for clinicians,2011,61(6):408-418.
    137.Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status ofcancer,1975-2006, featuring colorectal cancer trends and impact of interventions (riskfactors, screening, and treatment) to reduce future rates [J]. Cancer,2010,116(3):544-573.
    138.Kerbel RS. Reappraising antiangiogenic therapy for breast cancer [J]. The Breast,2011,20: S56-S60.
    139.Martín M. Understanding the value of antiangiogenic therapy in metastatic breastcancer [J]. Current Opinion in Oncology,2011,23: S1.
    140.Roth BJ, Krilov L, Adams S, et al. Clinical cancer advances2012: Annual report onprogress against cancer from the American Society of Clinical Oncology [J]. Journal ofClinical Oncology,2013,31(1):131-161.
    141.Berman AT, Thukral AD, Hwang W-T, et al. Incidence and Patterns of DistantMetastases for Patients With Early-Stage Breast Cancer After Breast ConservationTreatment [J]. Clinical breast cancer,2013,13(2):88-94.
    142.Tanne JH. FDA cancels approval for bevacizumab in advanced breast cancer [J]. BMJ,2011,343:d7684.
    143.Ribatti D. Antiangiogenic therapy accelerates tumor metastasis [J]. Leukemia Research,2011,35(1):24-26.
    144.Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis byVEGF-C promotes breast cancer metastasis [J]. Nature medicine,2001,7(2):192-198.
    145.Lee A, Pinder S, Macmillan R, et al. Prognostic value of lymphovascular invasion inwomen with lymph node negative invasive breast carcinoma [J]. European journal ofcancer,2006,42(3):357-362.
    146.Lee E, Koskimaki JE, Pandey NB, et al. Inhibition of Lymphangiogenesis andAngiogenesis in Breast Tumor Xenografts and Lymph Nodes by a Peptide Derivedfrom Transmembrane Protein45A [J]. Neoplasia (New York, NY),2013,15(2):112-124.
    147.Bergers G,Hanahan D. Modes of resistance to anti-angiogenic therapy [J]. NatureReviews Cancer,2008,8(8):592-603.
    148.Meulmeester E,Ten Dijke P. The dynamic roles of TGF‐β in cancer [J]. The Journal ofpathology,2011,223(2):206-219.
    149.Massoud TF,Gambhir SS. Molecular imaging in living subjects: seeing fundamentalbiological processes in a new light [J]. Genes&development,2003,17(5):545-580.
    150.Ottobrini L, Ciana P, Biserni A, et al. Molecular imaging: a new way to study molecularprocesses in vivo [J]. Molecular and cellular endocrinology,2006,246(1):69-75.
    151.Cailleau R, Young R, Olive M, et al. Breast tumor cell lines from pleural effusions [J].Journal of the National Cancer Institute,1974,53(3):661-674.
    152.Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancermetastasis [J]. Nature,2001,410(6824):50-56.
    153.洪国斌,梁碧玲,沈君,等.制备裸鼠皮下移植瘤动物模型:3种建模方法及MR成像比较[J].中国医学影像技术,2010,26(2):205-208.
    154.Hoult DI,Lauterbur PC. The sensitivity of the zeumatographic experiment involvinghuman samples [J]. J. Magn. Reson.,1979,34:425-433.
    155.Laniado M, Weinmann H, Sch rner W, et al. First use of GdDTPA/dimeglumine in man[J]. Physiological chemistry and physics and medical NMR,1984,16(2):157-165.
    156.Aime S, Castelli DD, Crich SG, et al. Pushing the sensitivity envelope oflanthanide-based magnetic resonance imaging (MRI) contrast agents for molecularimaging applications [J]. Accounts of chemical research,2009,42(7):822-831.
    157.Caravan P. Protein-targeted gadolinium-based magnetic resonance imaging (MRI)contrast agents: design and mechanism of action [J]. Accounts of chemical research,2009,42(7):851-862.
    158.Geraldes CF,Laurent S. Classification and basic properties of contrast agents for magneticresonance imaging [J]. Contrast Media&Molecular Imaging,2009,4(1):1-23.
    159.Weissleder R,Mahmood U. Molecular imaging [J]. Radiology,2001,219(2):316-333.
    160.Terreno E, Dastru W, Delli Castelli D, et al. Advances in metal-based probes for MRmolecular imaging applications [J]. Current medicinal chemistry,2010,17(31):3684-3700.
    161.Gombos Z, Xu X, Chu CS, et al. Peritumoral lymphatic vessel density and vascularendothelial growth factor C expression in early-stage squamous cell carcinoma of theuterine cervix [J]. Clinical cancer research,2005,11(23):8364-8371.
    162.El-Gohary YM, Metwally G, Saad RS, et al. Prognostic significance of intratumoral andperitumoral lymphatic density and blood vessel density in invasive breast carcinomas[J]. American journal of clinical pathology,2008,129(4):578-586.
    163.Hu F, Joshi HM, Dravid VP, et al. High-performance nanostructured MR contrastprobes [J]. Nanoscale,2010,2(10):1884-1891.
    164.Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumorvessels: role of tumor type and microenvironment [J]. Proceedings of the NationalAcademy of Sciences,1998,95(8):4607-4612.
    165.Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumorxenograft: molecular size dependence and cutoff size [J]. Cancer research,1995,55(17):3752-3756.
    166.Matsumura Y,Maeda H. A new concept for macromolecular therapeutics in cancerchemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumoragent smancs [J]. Cancer research,1986,46(12Part1):6387-6392.
    167.Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions betweenendothelial cells of lymphatic vessels [J]. The Journal of experimental medicine,2007,204(10):2349-2362.
    168.Alitalo K, Tammela T,Petrova TV. Lymphangiogenesis in development and humandisease [J]. Nature,2005,438(7070):946-953.
    169. Kessinger CW, Togao O, Khemtong C, et al. Investigation of in vivo targeting kineticsof αvβ3-specific superparamagnetic nanoprobes by time-resolved MRI [J]. Theranostics,2011,1:263.
    1. Gao J,Gu H,Xu B.Multifunctional magnetic nanoparticles:design,synthesis,andbiomedical applications[J].Acc Chem Res,2009,42(8):1097-1107.
    2. Corot C, Robert P, Idée JM,et al. Recent advances in iron oxide nanocrystal technologyfor medical imaging[J].Adv Drug Deliv Rev,2006,58(14):1471-1504.
    3. Cushing BL,Kolesnichenko VL,O'Connor CJ. Recent advances in the liquid-phasesyntheses of inorganic nanoparticles[J].Chem Rev,2004,104(9):3893-3946.
    4. Murakami T, Tsuchida K. Recent advances in inorganic nanoparticle-based drugdelivery systems[J].Mini Rev Med Chem,2008,8(2):175-183.
    5. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles forbiomedical applications[J].Biomaterials,2005,26(18):3995-4021.
    6. Lee JH, Huh YM, Jun YW,et al. Artificially engineered magnetic nanoparticles forultra-sensitive molecular imaging[J].Nat Med,2007,13(1):95-99.
    7. Park J, An K, Hwang Y,et al.Ultra-large-scale syntheses of monodisperse nanocrystals[J].Nat Mater,2004,3(12):891-895.
    8. Xie J, Chen K, Lee HY,et al. Ultrasmall c(RGDyK)-coated Fe3O4nanoparticles andtheir specific targeting to integrin alpha(v)beta3-rich tumor cells[J].J Am ChemSoc,2008,130(24):7542-7543.
    9. Peng S, Wang C, Xie J,et al. Synthesis and stabilization of monodisperse Fenanoparticles [J].J Am Chem Soc,2006,128(33):10676-10677.
    10. Chaubey GS, Barcena C, Poudyal N,et al. Synthesis and stabilization of FeConanoparticles [J].J Am Chem Soc,2007,129(23):7214-7215.
    11. Yang J, Gunn J, Dave SR,et al. Ultrasensitive detection and molecular imaging withmagnetic nanoparticles[J].Analyst,2008,133(2):154-160.
    12. Robinson DB, Persson HH, Zeng H,et al. DNA-functionalized MFe2O4(M=Fe, Co, orMn) nanoparticles and their hybridization to DNA-functionalized surfaces [J]. Langmuir,2005,21(7):3096-3103.
    13. Liu S, Lee CM, Wang S,et al. A new bioimaging carrier for fluorescent quantum dots:phospholipid nanoemulsion mimicking natural lipoprotein core[J].Drug Deliv,2006,13(2):159-164.
    14. Liong M, Shao H, Haun JB,et al.Carboxymethylated polyvinyl alcohol stabilizes dopedferrofluids for biological applications[J].Adv Mater,2010,22(45):5168-5172.
    15. Quaglia F, Ostacolo L, De Rosa G,et al. Nanoscopic core-shell drug carriers made ofamphiphilic triblock and star-diblock copolymers[J].Int J Pharm,2006,324(1):56-66.
    16. Xiao RZ, Zeng ZW, Zhou GL,et al. Recent advances in PEG-PLA block copolymernanoparticles [J].Int J Nanomedicine,2010,5:1057-1065.
    17. Xu C, Sun S. Superparamagnetic nanoparticles as targeted probes for diagnostic andtherapeutic applications[J].Dalton Trans,2009,(29):5583-5591.
    18. Son KR, Chung SY, Kim HC. MRI of magnetically labeled mesenchymal stem cells inhepatic failure model[J].World J Gastroenterol,2010,16(44):5611-5615.
    19. Xu C, Xie J, Ho D,et al. Au-Fe3O4dumbbell nanoparticles as dual-functionalprobes[J].Angew Chem Int Ed Engl,2008,47(1):173-176.
    20. Huh YM, Jun YW, Song HT,et al.In vivo magnetic resonance detection of cancer byusing multifunctional magnetic nanocrystals[J].J Am Chem Soc,2005,127(35):12387-12391.
    21. Wang J, Chen Y, Chen B,et al. Pharmacokinetic parameters and tissue distribution ofmagnetic Fe(3)O(4) nanoparticles in mice[J].Int J Nanomedicine,2010,5:861-866.
    22. Kanjickal DG, Lopina ST. Modeling of drug release from polymeric delivery systems-areview[J].Crit Rev Ther Drug Carrier Syst,2004,21(5):345-386.
    23. Kohler N, Sun C, Fichtenholtz A,et al. Methotrexate-immobilized poly(ethylene glycol)magnetic nanoparticles for MR imaging and drug delivery[J].Small,2006,2(6):785-792.
    24. Wang B, Xu C, Xie J,et al. pH controlled release of chromone from chromone-Fe3O4nanoparticles[J].J Am Chem Soc,2008,130(44):14436-14437.
    1. Lopez-Novoa JM, Bernabeu C.The physiological role of endoglin in the cardiovascularsystem. Am J Physiol Heart Circ Physiol.2010;299(4):959-974.
    2. Bernabeu c, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-betasuperfamily coreceptors in cancer. Biochim Biophys Acta.2009;1792(10):954-973.
    3. Gougos A, Letarte M. Primary structure of endoglin, an RGD-containing glycoproteinof human endothelial cells.J Biol Chem.1990;265(15):8361-8364.
    4. Llorca O, Trujillo A, Blanco FJ,et al. Structural model of human endoglin, atransmembrane receptor responsible for hereditary hemorrhagic telangiectas. J Mol Biol.2007;365(3):694-705.
    5. Yamashita H, Ichijo H, Grimsby S,et al. Endoglin forms a heteromeric complex with thesignaling receptors for transforming growth factor-beta. J Biol Chem.1994;269(3):1995-2001.
    6. She X, Matsuno F, Harada N, et al.Synergy between anti-endoglin (CD105) monoclonalantibodies and TGF-beta in suppression of growth of human endothelial cells. Int JCancer.2004;108(2):10251-10257.
    7. Pérez-Gómez E, Eleno N, López-Novoa JM, et al.Characterization of murine S-endoglinisoform and its effects on tumor development. Oncogene2005;24(27):4450-4461.
    8. Valeria B, Maddalena G, Enrica V,et al. Endoglin (CD105) expression in the humanheart throughout gestation: an immunohistochemical study. Reprod Sci.2008;15(10):1018-1026.
    9. Li DY, Sorensen LK, Brooke BS, et al.Defective angiogenesis in mice lacking endoglin.Science.1999;284(5419):1534-1537.
    10. Dallas NA, Samuel S, Xia L, Endoglin (CD105): a marker of tumor vasculature andpotential target for therapy. Clin Cancer Res.2008;14(7):1931-1937.
    11. Fonsatti E, Nicolay HJ, Altomonte M,et al.Targeting cancer vasculature viaendoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solidtumours. Cardiovasc Res.2010;86(1):12-19.
    12. Nagatsuka H, Hibi K,Gunduz M,et al.Various immunostaining patterns of CD31,CD34and endoglin and their relationship with lymph node metastasis in oral squamouscell carcinomas. J Oral Pathol Med.2005;34(2):70-76.
    13. Warrington K, Hillarby MC, Li C,et al. Functional role of CD105in TGF-beta1signalling in murine and human endothelial cells. Anticancer Res.2005;25(3B):1851-1864.
    14. Lu Q, Patel B, Harrington EO,et al.Transforming growth factor-beta1causes pulmonarymicrovascular endothelial cell apoptosis via ALK5. Am J Physiol Lung Cell MolPhysiol.2009;296(5):825-838.
    15. Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology anddysfunction. Cell Res.2009;19(1):116-127.
    16. Düwel A, Eleno N, Jerkic M, Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol.2007;28(1):1-8.
    17. Davis DW, Inoue K, Dinney CP,et al.Regional effects of an antivascular endothelialgrowth factor receptor monoclonal antibody on receptor phosphorylation and apoptosisin human253J B-V bladder cancer xenografts. Cancer Res.2004;64(13):4601-4610.
    18. Henriksen R, Gobl A, Wilander E, et al.Expression and prognostic significance ofTGF-beta isotypes, latent TGF-beta1binding protein, TGF-beta type I and type IIreceptors, and endoglin in normal ovary and ovarian neoplasms. Lab Invest.1995;73(2):213-220.
    19. Bredow S, Lewin M, Hofmann B,et al. maging of tumour neovasculature by targetingthe TGF-beta binding receptor endoglin. Eur J Cancer.2000;36(5):675-681.
    20. Fonsatti E, Jekunen AP, Kairemo KJ,et al. Endoglin is a suitable target for efficientimaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. ClinCancer Res.2000;6(5):2037-2043.
    21. Costello B, Li C, Duff S,et al. Perfusion of99Tcm-labeled CD105Mab into kidneysfrom patients with renal carcinoma suggests that CD105is a promising vascular target.Int J Cancer.2004;109(3):436-441.
    22. Korpanty G, Carbon JG, Grayburn PA,et al. Monitoring response to anticancer therapyby targeting microbubbles to tumor vasculature. Clin Cancer Res.2007;13(1):323-330.
    23. Zhang D, Feng XY, Henning TD,et al. MR imaging of tumor angiogenesis usingsterically stabilized Gd-DTPA liposomes targeted to CD105. Eur J Radiol.2009;70(1):180-189.
    24. Korn T, Müller R, Kontermann RE. Bispecific single-chain diabody-mediated killing ofendoglin-positive endothelial cells by cytotoxic T lymphocytes. J Immunother.2004;27(2):99-106.
    25. Ahmadvand D, Rasaee MJ, Rahbarizadeh F,et al. Production and characterization of ahigh-affinity nanobody against human endoglin. Hybridoma(Larchmt).2008;27(5):353-360.
    26. Tsujie M, Tsujie T, Toi H,et al. Anti-tumor activity of an anti-endoglin monoclonalantibody is enhanced in immunocompetent mice. Int J Cancer.2008;122(10):2266-2273.
    27. Uneda S, Toi H, Tsujie T,et al. Anti-endoglin monoclonal antibodies are effective forsuppressing metastasis and the primary tumors by targeting tumor vasculature. Int JCancer.2009;125(6):1446-1453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700