面向磁共振成像应用的Fe_3O_4纳米颗粒/团簇的可控制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe_3O_4纳米材料以其独特的理化性质,被广泛的应用于生物医学领域,其中,磁共振成像是Fe_3O_4纳米材料的一个重要应用领域。在磁共振成像中,Fe_3O_4纳米颗粒可加速周边氢质子的横向弛豫,降低其磁共振信号,增强磁共振成像的图像对比度。Fe_3O_4纳米颗粒在磁共振成像中的对比增强效率通常用其水相分散液的横向弛豫率来表征,与材料的理化性质,如粒径,磁化强度等紧密相关,因此,实现材料的可控制备,对Fe_3O_4纳米材料在磁共振成像领域的应用具有重要意义。本文分别采用共沉淀法和多元醇法可控制备了水相分散稳定的Fe_3O_4纳米颗粒和纳米团簇,研究了影响产物性质的各种因素,考察了Fe_3O_4纳米颗粒/团簇在磁共振成像分子诊断和细胞成像中的应用效果。
     针对目前超顺磁成像对比剂制备过程中磁性纳米颗粒由于粒径小、磁性弱,难以进行分离、洗涤的问题,采用絮凝-再分散法制备了粒径5 nm左右的超顺磁性Fe_3O_4纳米颗粒,通过控制纳米颗粒在液相中的絮凝/分散状态,使得制备的Fe_3O_4纳米颗粒可以在较弱的磁场(200 mT)下实现快速分离和洗涤,经过再分散处理后的纳米颗粒具有很好的胶体稳定性。将制备的Fe_3O_4纳米颗粒与抗体耦联后用于肿瘤的分子诊断,取得了较好的结果。
     采用多元醇法制备了粒径为5~35 nm、单分散性好、磁化强度高、水相分散稳定的Fe_3O_4纳米颗粒,研究了多元醇和分散剂对颗粒性质的影响,结果表明多元醇分子的还原性和分散剂的结构对颗粒的形成和生长有重要影响。与商品化的超顺磁成像对比剂的横向弛豫率(<200 mM~(-1)s~(-1))相比,多元醇法制备的Fe_3O_4纳米颗粒分散液具有更高的横向弛豫率(263 mM~(-1)s~(-1)),对质子横向弛豫的增强作用更明显,在磁共振成像领域具有很好的应用前景。
     采用多元醇法制备了一系列高磁性物质含量、表面亲水性的单分散Fe_3O_4纳米团簇,发现纳米团簇的形成是颗粒间斥力与颗粒/溶剂间表面张力共同作用的结果,研究了分散剂浓度和结构、反应物中水和前驱体的浓度、反应时间和温度等对于Fe_3O_4纳米团簇的影响,通过调节上述反应因素,可控制备了粒径从30 nm至450 nm、不同表面电性和结构的Fe_3O_4纳米团簇。
     以多元醇法制备的Fe_3O_4纳米团簇为材料,研究了Fe_3O_4纳米团簇粒径与质子横向弛豫率的关系,并且与理论预测结果作比较,结果表明粒径为60 nm左右的磁性纳米团簇对质子横向弛豫的增强作用最明显,其分散液中质子的横向弛豫率高达665 mM~(-1)s~(-1),远高于商品化的超顺磁成像对比剂,也明显高于目前已报道的关于Fe_3O_4分散液的横向弛豫率数值(一般为400 mM~(-1)s~(-1)左右)。将制备的Fe_3O_4纳米团簇用于细胞标记和成像,证实Fe_3O_4纳米团簇可以显著的提高磁共振细胞成像的灵敏度,在细胞成像领域具有很好的应用前景。
Magnetic iron oxide nanoparticles have been widely used as contrast agent in magnetic resonance imaging (MRI), owing to their significant enhancement on the relaxation of protons. The efficiency of magnetic nanoparticles as contrast agent is usually quantified by the transverse relaxivity of the particles suspension. The transverse relaxivity is closely related with the physicochemical properties of magnetic nanoparticles, such as the size, surface property, magnetic property, and so on. The main challenge for the application of magnetic nanoparticles in this area is how to precisely tune the physicochemical properties of materials in a controllable way. In this dissertation, we have synthesized a series of magnetite nanoparticles and nanocrystal clusters with tunable properties and used them as contrast agents in MRI.
     We have developed a novel flocculation-redispersion method to synthesize superparamagnetic magnetite nanoparticles. By controlling the flocculation and release of magnetite nanoparticles in aqueous solution, the magnetite nanoparticles with size of ~5 nm can be separated and purified by magnetic sedimentation conveniently. It greatly simplifies the post-processing in the production of the commercial superparamagtnetic contrast agent and avoids the tedious ultrafiltration process. After conjugation with monoclonal antibody, the magnetite nanoparticles have been used in the molecular diagnosis of tumor in mice in vivo and the desired result has been achieved.
     To improve the magnetization and uniformity of magnetite nanoparticles, we synthesized the magnetite nanoparticles with sizes ranging from 5~35 nm by a facile polyol process. The effects of the parameters on the properties of magnetite nanoparticles, have been studied carefully to obtain the efficient tools for tailoring the physicochemical properties of magnetite nanoparticles. The as-synthesized magnetite nanoparticles, with uniform size and high magnetization, possess the higher transverse relaxivity (263 mM~(-1)s~(-1)) than that of magnetite nanoparticles synthesized by traditional coprecipitation method (<200 mM~(-1)s~(-1)).
     We have developed a facile polyol process to synthesize the magnetite nanocrystal clusters with ultra-high magnetic content and hydrophilic surface. A new mechanism based on the interaction between the repulsion force and surface tension has been introduced to explain the formation of magnetic nanospheres in polyol process. By varying the reaction parameters to break the balance between the repulsion force and the surface tension, we obtained a series of magnetite nanospheres with sizes ranging from 30 to 450 nm. The structure and surface property of the nanospheres can be tuned tby the same way, too.
     The valuable exploration has been carried out on the relationship between the transverse relaxivity of magnetic nanospheres suspension and the diameter of the nanosphere. The transverse relaxivity of suspensions of magnetite nanospheres with size of 60 nm is 665 mM~(-1)s~(-1), which is the highest value being published up to date. The synthesized magnetite nanopsheres with different coating materials have been used as cellular probe to visualize the cells in vitro and in vivo and the expected result has been proved by MRI.
引文
[1]张立德,牟季美,纳米材料和纳米结构科学出版社,2001
    [2]李德才,磁性液体理论及应用,科学出版社,2003
    [3]宛德福,马兴隆,磁性物理学,黑龙江科学技术出版社,1990
    [4]杜桂焕,磁性纳米颗粒的表面修饰及其生物学应用研究[学位论文],华中科技大学,2006
    [5]郑虹,磁性纳米颗粒的制备和性能研究[学位论文],兰州大学,2008
    [6] Krestin G., Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. [J]. Eur. Radiol, 2001, 11: 2319-2331.
    [7] Jun Y. W., Seo J. W., Cheon A., Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. [J]. Accounts of Chemical Research, 2008, 41(2): 179-189.
    [8] Zheng Y., Cheng Y., Bao F., et al. Synthesis and magnetic properties of Fe3O4 nanoparticles. [J]. Materials Research Bulletin, 2006, 41(3): 525-529.
    [9] Zhang L., Dou Y., Gu, H., Sterically induced shape control of magnetite nanoparticles. [J]. Journal of Crystal Growth, 2006, 296(2): 221-226.
    [10] Jung C., Jacobs P., Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. [J]. Magnetic Resonance Imaging, 1995, 13(5): 661-665
    [11] Mornet S., Vasseur S., Grasset F., et al. Magnetic nanoparticle design for medical diagnosis and therapy. [J]. Journal of Materials Chemistry, 2004, 14(14): 2161-2175.
    [12] Chan D., Kirpotin D., Bunn P., Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. [J]. Journal of magnetism and magnetic materials, 1993, 122(1-3): 374-378.
    [13] Kuhara M., Takeyama H., Tanaka T., et al. Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. [J]. Analytical Chemistry, 2004, 76(21): 6207-6213.
    [14] Haik Y., Pai V., Chen C., Development of magnetic device for cell separation. [J]. Journal of magnetism and magnetic materials, 1999, 194: 254-261.
    [15] Sonti S., Bose A., Cell separation using protein-A-coated magnetic nanoclusters. [J]. Journal of colloid and interface science, 1995, 170(2): 575-585.
    [16] Berensmeier S., Magnetic particles for the separation and purification of nucleic acids. [J]. Applied microbiology and biotechnology, 2006, 73(3): 495-504.
    [17] Franzreb M., Siemann-Herzberg M., Hobley T., et al. Protein purification using magnetic adsorbent particles. [J]. Applied microbiology and biotechnology, 2006, 70(5): 505-516.
    [18] Pankhurst Q., Connolly J., Jones S., et al. Applications of magnetic nanoparticles in biomedicine. [J]. Journal of Physics D-Applied Physics, 2003, 36(13): 167-181.
    [19] Son S., Reichel J., He B., et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. [J]. Journal of the American Chemical Society, 2005, 127(20): 7316-7317.
    [20] Laurent S., Forge D., Port M., et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. [J]. Chemical reviews, 2008, 108(6): 2064-2110.
    [21] Berry C., Curtis A., Functionalisation of magnetic nanoparticles for applications in biomedicine. [J]. Journal of Physics D-Applied Physics, 2003, 36(13): 198-206.
    [22]赵喜平,磁共振成像系统的原理及其应用,科学出版社,2000
    [23] McRobbie D., Moore E., Graves M., et al. MRI from Picture to Proton. Cambridge University Press, 2003
    [24]熊国欣,李立本,核磁共振成像原理,华东示范大学出版社,2007
    [25]詹松华,吴沛宏,杨振燕,MRI临床医师必读,科学出版社,2003
    [26]俞开潮,王国平,丁尚武,等,用于磁共振成像对比增强的造影剂研发进展. [J].波谱学杂志, 2004, 21(004): 505-525.
    [27] Jung C. W., Surface properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. [J]. Magnetic Resonance Imaging, 1995, 13(5): 675-691.
    [28] Weinmann H., Ebert W., Misselwitz B., et al. Tissue-specific MR contrast agents. [J]. European journal of radiology, 2003, 46(1): 33-44.
    [29] Castoldi M., Fauda V., Scaramuzza D., et al. Hepatic and hepatocarcinoma magnetic resonance: comparison of the results obtained with paramagnetic (gadolinium) and superparamagnetic (iron oxide particles) contrast media. [J]. La Radiologia medica, 2000, 100(3): 160. [30 Grimm J., Karger N., Lusse, S., et al. Characterization of ultrasmall, paramagnetic magnetite particles as superparamagnetic contrast agents in MRI. [J]. Investigative Radiology, 2000, 35(9): 553.
    [31] Mornet S., Vasseur S., Grasset F., et al. Magnetic nanoparticle design for medical applications. [J]. Progress in Solid State Chemistry, 2006, 34(2-4): 237-247.
    [32]胡朝芬,罗来华,磁共振成像造影剂的增强机制与临床应用,[J].实用放射学杂志, 2002, 18(005): 431-434.
    [33]徐辉碧,纳米医药,清华大学出版社,2004
    [34] Weissleder R., Mahmood U., Molecular Imaging1. [J]. Radiology, 2001, 219(2): 316.
    [35] Artemov D., Molecular magnetic resonance imaging with targeted contrast agents. [J]. Journal of cellular biochemistry, 2003, 90(3): 518-524.
    [36] Ito A., Hibino E., Honda H., et al. A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. [J]. Biochemical Engineering Journal, 2004, 20(2-3): 119-125.
    [37] Hoehn M., Wiedermann D., Justicia C., et al. Cell tracking using magnetic resonance imaging. [J]. Journal of Physiology, 2007, 584(1): 25-30.
    [38] Hoehn M., Himmelreich U., Kruttwig K., et al. Molecular and cellular MR imaging: Potentials and challenges for neurological applications. [J]. Journal of Magnetic Resonance Imaging, 2008, 27(5): 941-954.
    [39] Shapiro E. M., Skrtic S., Koretsky A. P., Sizing it up: Cellular MRI using micron-sized iron oxide particles. [J]. Magnetic Resonance in Medicine, 2005, 53(2): 329-338.
    [40] Roch A., Gossuin Y., Muller R., et al. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. [J]. Journal of magnetism and magnetic materials, 2005, 293(1): 532-539.
    [41] Grimm S., Schultz M., Barth S., et al. Flame pyrolysis–a preparation route for ultrafine pureγ-Fe2O3 powders and the control of their particle size and properties. [J]. Journal of Materials Science, 1997, 32(4): 1083-1092.
    [42]宋庆峰,纳米四氧化三铁的制备、修饰及磁场的影响[学位论文],河北师范大学,2008
    [43] Ernest V. G, Timothy B. F., Howard B., et al. Heat stable colloidal iron oxides coated with reduced carbohydrates and carbohydrate derivatives. [J]. US Patent, 2003, 6599498B1.
    [44] Gupta A., Gupta M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. [J]. Biomaterials, 2005, 26(18): 3995-4021.
    [45] Tartaj P., del Puerto Morales M., Veintemillas-Verdaguer S., et al. The preparation of magnetic nanoparticles for applications in biomedicine. [J]. Journal of Physics D-Applied Physics, 2003, 36(13): 182-197.
    [46]李凤生,超细粉体技术,国防工业出版社,2000
    [47] Lee Y., Lee J., Bae C., et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. [J]. Advanced Functional Materials, 2005, 15(3): 503-509.
    [48] Park J., Joo J., Kwon S. G., et al. Synthesis of monodisperse spherical nanocrystals. [J]. Angewandte Chemie-International Edition, 2007, 46(25): 4630-4660.
    [49] Park J., Lee E., Hwang N., et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. [J]. Angewandte Chemie, 2005, 117(19): 2932-2937.
    [50] Zeng H., Rice P., Wang S., et al. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. [J]. Journal of the American Chemical Society, 2004, 126(37): 11458-11459.
    [51] Li Z., Chen H., Bao H., et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals. [J]. Scr. Mater, 2002, 47: 589-594
    [52] Li Z., Wei L., Gao M., et al. One-pot reaction to synthesize biocompatible magnetite nanoparticles. [J]. Advanced Materials(FRG), 2005, 17(8): 1001-1005.
    [53]施尔畏,夏长泰,水热法的应用与发展. [J].无机材料学报, 1996, 11(002): 193-206.
    [54] Liang X., Wang X., Zhuang J., et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. [J]. Advanced Functional Materials, 2006, 16(14): 1805.
    [55] Hinotsu T., Jeyadevan B., Chinnasamy C., et al. Size and structure control of magnetic nanoparticles by using a modified polyol process. [J]. Journal of Applied Physics, 2004, 95: 7477-7483.
    [56] Ge J., Hu Y., Biasini M., et al. One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. [J]. Chemistry-a European Journal,, 2007, 13(25): 7153.
    [57] Wang L., Bao J., Zhang, F., et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. [J]. Chemistry-a European Journal, 2006, 12(24): 6341.
    [58] Jeyadevan B., Shinoda K., Justin R., et al. Polyol Process for Fe-Based Hard (fct-FePt) and Soft (FeCo) Magnetic Nanoparticles. [J]. IEEE Transactions on Magnetics, 2006, 42(10): 3030-3035.
    [59] Cai W., Wan J., Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. [J]. Journal of colloid and interface science, 2007, 305(2): 366-370.
    [60] Wan J., Cai W., Meng X., et al. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. [J]. Chemical Communications, 2007,2007(47): 5004-5006.
    [61] Lu Y., Yin Y., Mayers B., et al. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol- Gel Approach. [J]. Nano Letters, 2002, 2(3): 183-186.
    [62] Zhao W., Gu J., Zhang L., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. [J]. J. Am. Chem. Soc, 2005, 127(25): 8916-8917.
    [63] Xu H., Tong N., Cui L., et al. Preparation of hydrophilic magnetic nanospheres with high saturation magnetization. [J]. Journal of magnetism and magnetic materials, 2007, 311(1): 125-130.
    [64]徐宏,单分散,高饱和磁化强度超顺磁性微球的可控制备与生物医学应用[学位论文],上海交通大学,2008
    [65] Xu H., Cui L., Tong N., et al. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. [J]. Journal of the American Chemical Society, 2006, 128(49): 15582.
    [66] Bahar T., Celebi S., Immobilization of glucoamylase on magnetic poly (styrene) particles. [J]. Journal of Applied Polymer Science, 1999, 72(1): 69-73.
    [67] Xu H., Cui L., Tong N., et al. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. [J]. Journal of the American Chemical Society, 2006, 128(49): 15582-15583.
    [68] Deng H., Li X., Peng Q., et al. Monodisperse magnetic single-crystal ferrite microspheres. [J]. Angewandte Chemie, 2005, 117(18): 2842-2845.
    [69] Ge J., Hu Y., Biasini M., et al. Superparamagnetic magnetite colloidal nanocrystal clusters. [J]. Angewandte Chemie, 2007, 119(23): 4420-4425
    [70] Weissleder R., Monocrystalline iron oxide particles for studying biological tissues. US Patent, 1996, 5492814.
    [71] Zhang L., He R., Gu H., Oleic acid coating on the monodisperse magnetite nanoparticles. [J]. Applied Surface Science, 2006, 253(5): 2611-2617.
    [72]李彩虹,一种制备单分散纳米粉体的液相沉淀法及其结晶动力学[学位论文],天津大学,2004
    [73] Yavuz C., Mayo J., Yu W., et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. [J]. Science, 2006, 314(5801): 964-969
    [74] Friedman G., Yellen B., Magnetic separation, manipulation and assembly of solid phase in fluids. [J]. Current Opinion in Colloid & Interface Science, 2005, 10(3-4): 158-166.
    [75] Hubbuch J., Matthiesen D., Hobley T., et al. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. [J]. Bioseparation, 2001, 10(1): 99-112.
    [76] Carmen Bautista M., Bomati-Miguel O., del Puerto Morales, M., et al. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. [J]. Journal of magnetism and magnetic materials, 2005, 293(1): 20-27.
    [77] Kawaguchi S., Yekta A., Winnik M., Surface Characterization and Dissociation Properties of Carboxylic Acid Core–Shell Latex Particle by Potentiometric and Conductometric Titration. [J]. Journal of colloid and interface science, 1995, 176(2): 362-369.
    [78]孙宁,陈笃行,古宏晨,等,超顺磁性纳米Fe3O4颗粒感生的横向弛豫. [J].材料科学与工程学报, 2009, 27(004): 505-509.
    [79]黄志良,张联盟,刘羽,等,水热法合成4A沸石的相变/纳米聚合生长过程及其机理研究. [J].无机材料学报, 2005, 20(002): 401-406.
    [80]高濂,刘阳桥,孙静,纳米粉体的分散及表面改性,化学工业出版社,2003.
    [81] Jiang J., Li L., Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. [J]. Materials Letters, 2007, 61(27): 4894-4896.
    [82] Ely T., Amiens C., Chaudret B., et al. Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly (vinylpyrrolidone) chain length on their magnetic properties. [J]. Chem. Mater, 1999, 11(3): 526-529.
    [83] Joseyphus R., Kodama D., Matsumoto T., et al. Role of polyol in the synthesis of Fe particles. [J]. Journal of magnetism and magnetic materials, 2007, 310(2P3): 2393-2395.
    [84] Jia B., Gao L., Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field. [J]. Journal of Physical Chemistry C, 2008, 112(3): 666-671.
    [85] Zeng H. C., Synthetic architecture of interior space for inorganic nanostructures. [J]. Journal of Materials Chemistry, 2006, 16(7): 649-662.
    [86] Yang H., Zeng H., Preparation of hollow anatase TiO 2 nanospheres via ostwald ripening. [J]. Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces, & biophysical chemistry, 2004, 108(11): 3492-3495.
    [87]申少华,李爱玲,张术根,等,A型沸石的水热制备及生长机制研究. [J].硅酸盐学报, 2003, 31(008): 732-737.
    [88] Yin Y., Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. [J]. Nature, 2005, 437(7059): 664-670.
    [89] Xu C., Sun, S., Monodisperse magnetic nanoparticles for biomedical applications. [J]. Polymer International, 2007, 56(7): 821-826.
    [90] Rockenberger J., Scher E., Alivisatos, A., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. [J]. J. Am. Chem. Soc, 1999, 121(49): 11595-11596.
    [91] Hu H., Ni Y., Mandal S., et al. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. [J]. The journal of physical chemistry. B, 2005, 109(10): 4285-4289.
    [92]张伟,沈辉,夏建汉,等,聚乙烯亚胺改性水基磁性液体的吸附特性. [J].纳米技术与精密工程, 2007, 5(002): 125-128.
    [93] Wang Y, Hussain S., Krestin, G. P., Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. [J]. European Radiology, 2001, 11(11): 2319-2331.
    [94] Rohrer M., Bauer H., Mintorovitch J., et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. [J]. Investigative Radiology, 2005, 40(11): 715-724.
    [95] Allkemper T., Bremer C., Matuszewski L., et al. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: Effect of size and dose on vascular contrast enhancement in rabbits. [J]. Radiology, 2002, 223(2): 432-438.
    [96] Matsumoto Y., Jasanoff A., T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. [J]. Magnetic Resonance Imaging, 2008, 26(7): 994-998.
    [97] Chen D., Sun N., Huang Z., et al. Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: Effects of polymer coating thickness and over-low 1/T2. [J]. Journal of magnetism and magnetic materials, 2009.
    [98] Gillis P., Moiny F., Brooks, R., On T~ 2-Shortening by Strongly Magnetized Spheres: A Partial Refocusing Model. [J]. Magnetic Resonance in Medicine, 2002, 47(2): 257-263.
    [99] Brooks R., Moiny F., Gillis P., On T~ 2-Shortening by Weakly Magnetized Particles: The Chemical Exchange Model. [J]. Magnetic Resonance in Medicine, 2001, 45(6): 1014-1020.
    [100] Bulte J., Kraitchman D. L., Iron oxide MR contrast agents for molecular and cellular imaging. [J]. Nmr in Biomedicine, 2004, 17(7): 484-499.
    [101] Ramirez L., Landfester K., Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. [J]. Macromolecular Chemistry and Physics, 2003, 204(1): 22-31.
    [102] Holzapfel V., Lorenz M., Weiss C., et al. Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. [J]. Journal of Physics: Condensed Matter, 2006, 18: S2581-S2594.
    [103] Ge J. P., Hu Y. X., Biasini M., et al. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. [J]. Angewandte Chemie International Edition, 2007, 46(23): 4342-4345.
    [104] Liu J., Sun Z., Deng Y., et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. [J]. Angewandte Chemie (International ed. in English), 2009.
    [105] Luna C., Morales M., Serna C., et al. Effects of surfactants on the particle morphology and self-organization of Co nanocrystals. [J]. Materials Science & Engineering C, 2003, 23(6-8): 1129-1132.
    [106] Qi H., Ye J., Tao N., et al. Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. [J]. Journal of Crystal Growth, 2009, 311(2): 394-398.
    [107] De Faria D., Venancio Silva S., De Oliveira M., Raman microspectroscopy of some iron oxides and oxyhydroxides. [J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878.
    [108] Lu H., Kim J., Son S., et al. Structure, chemical stability and electrical conductivity of perovskite La0. 6Sr0. 4M0. 3Fe0. 7O3-δ(M= Co, Ti) oxides. [J]. Materials Science & Engineering B, 2009, in press
    [109] Cao S. W., Zhu Y. J., Chang J., Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol-water system. [J]. New Journal of Chemistry, 2008, 32(9): 1526-1530.
    [110] Penn R. L., Banfield J. F., Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. [J]. Science, 1998, 281(5379): 969-971.
    [111] He T., Chen D. R., Jiao X. L., Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. [J]. Chemistry of Materials, 2004, 16(4): 737-743.
    [112] Yu D. B., Sun X. Q., Zou J. W., et al. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. [J]. Journal of Physical Chemistry B, 2006, 110(43): 21667-21671.
    [113]邹涛,郭灿雄,段雪等,强磁性Fe3O4纳米粒子的制备及其性能表征. [J].精细化工, 2002, 19(12): 707~710.
    [114] Stoeva S., Klabunde K. J., Sorensen C. M., et al. Gram-scale synthesis of monodisperse goldcolloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. [J]. Journal of the American Chemical Society, 2002, 124(10): 2305-2311.
    [115] Chang Y., Teo J., Zeng H., Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. [J]. Langmuir, 2005, 21(3): 1074-1079.
    [116] Zhang L., Dou Y., Gu, H., Synthesis of Ag–Fe3O4 heterodimeric nanoparticles. [J]. Journal of colloid and interface science, 2006, 297(2): 660-664.
    [117]姚望,陈光华,邢光建,等,水热法制备硫化镉(CdS)纳米颗粒和纳米棒. [J].功能材料, 2004, 1-5.
    [118]徐建,韩霞,周丽绘,等,水热合成法制备高长径比的银纳米线. [J].过程工程学报, 2006, 6(002): 323-326.
    [119] Qu Y., Yang H., Yang N., et al. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. [J]. Materials Letters, 2006, 60(29-30): 3548-3552.
    [120] Cornell R., Schwertmann U., The iron oxides. VCH Weinheim, 1996.
    [121] Taboada E., Solanas R., Rodriguez E., et al. Supercritical-Fluid-Assisted One-Pot Synthesis of Biocompatible Core(gamma-Fe2O3)/Shell(SiO2) Nanoparticles as High Relaxivity T-2-Contrast Agents for Magnetic Resonance Imaging. [J]. Advanced Functional Materials, 2009, 19(14): 2319-2324.
    [122] Barick K. C., Aslam M., Lin Y. P., et al. Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. [J]. Journal of Materials Chemistry, 2009, 19(38): 7023-7029.
    [123] Kim J., Lee J. E., Lee S. H., et al. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. [J]. Advanced Materials, 2008, 20(3): 478-482.
    [124] Chen D., Sun N., Gu, H., Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging. [J]. Journal of Applied Physics, 2009, 106: 063906.
    [125] Bowen C. V., Zhang X. W., Saab G., et al. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. [J]. Magnetic Resonance in Medicine, 2002, 48(1): 52-61.
    [126] Yablonskiy D., Haacke E., Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. [J]. Magnetic Resonance in Medicine, 1994, 32(6): 749-763.
    [127] Greenberg A., Kamel I., Kinetics of anhydride formation in poly (acrylic acid) and its effect on the properties of a PAA-alumina composite. [J]. Journal of Polymer Science Polymer Chemistry Edition, 1977, 15(9): 2137-2149.
    [128] Sun N., Chen D., Gu H., et al. Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: Waiting time dependence. [J]. Journal of magnetism and magnetic materials, 2009.
    [129] Chen D., Sanchez A., Xu H., et al. Size-independent residual magnetic moments of colloidal FeO-polystyrene nanospheres detected by ac susceptibility measurements. [J]. Journal of Applied Physics, 2008, 104: 093902.
    [130] Brigger I., Dubernet C., Couvreur P., Nanoparticles in cancer therapy and diagnosis. [J]. Advanced Drug Delivery Reviews, 2002, 54(5): 631-651.
    [131] Kostarelos K., Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. [J]. Advances in Colloid and Interface Science, 2003, 106: 147-168.
    [132] Weissleder R., Bogdanov A., Neuwelt E., et al. Long-circulating iron oxides for MR imaging. [J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 321-334.
    [133] Simon B., Ando H., Gupta, P., Circulation time and body distribution of protein A-coated amino modified polystyrene nanoparticles in mice. [J]. International Journal of Pharmaceutics, 1995, 121(2): 233-237.
    [134] Wunderbaldinger P., Josephson L., Weissleder R., Crosslinked iron oxides (CLIO): A new platform for the development of targeted MR contrast agents. [J]. Academic Radiology, 2002, 9: S304-S306.
    [135] Tiefenauer L., Kuehne G., Andres R., Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. [J]. Bioconjugate chemistry, 1993, 4(5): 347-352.
    [136] Toma A., Otsuji E., Kuriu Y., et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. [J]. British Journal of Cancer, 2005, 93(1): 131-136.
    [137] Hermanson, G., Bioconjugate techniques. Academic Press, 2008
    [138] Bulte J. W. M., Magnetic nanoparticles as markers for cellular MR imaging. [J]. Journal of magnetism and magnetic materials, 2005, 289: 423-427.
    [139] Bulte J. W. M., Douglas T., Witwer B., et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. [J]. Nature Biotechnology, 2001, 19(12): 1141-1147.
    [140] Bulte J., Kostura L., Mackay A., et al. Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. [J]. Academic Radiology, 2005, 12(5S): 2-6.
    [141] Frank J. A., Miller B. R., Arbab A. S.,et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents (vol 228, pg 480, 2003). [J]. Radiology, 2003, 229(2): 610-610.
    [142] Jendelova P., Herynek V., Urdzikova L., et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. [J]. Journal of Neuroscience Research, 2004, 76(2): 232-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700