高性能注塑机关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是科技的世纪,随着材料技术的发展,伺服电机的性能得到了很大的提高,为注塑机的高速、高精度提供了可能。先进控制技术的进一步发展和完善,为实现电机和泵联接的注塑机驱动系统伺服控制提供了理论依据。微控制器,特别是芯片技术的提高以及专用DSP的出现为算法控制技术的实现提供了可能。
     节能、高速、高精度、低噪声是高性能注塑机控制系统的发展方向。然而,高速度和高精度、低噪声往往是两个互相矛盾的方向。控制方法的优化对解决节能以及高速、高精度有重要的意义,因此有必要对注塑机的控制方法进行研究。注塑机节能液压系统,正在从过去的流量比例和压力比例的双控制走向负载敏感自适应控制,走向变频调速控制、伺服控制及伺服闭环控制。高端的节能动力驱动系统是高性能注塑机不可缺少的系统。
     针对上述问题,本论文首先采用模糊预测的方法对注塑机驱动电机—异步电机的转速控制进行了研究;其次,利用内模控制的方法对注塑机驱动电机—永磁同步伺服电机的电流调节器进行了深入的研究;第三,将模糊控制用于电机和变量泵的协调控制;第四,针对高速度、高精度和低噪声之间的矛盾,对不同的电机和变量柱塞泵之间的联接方式进行了研究;最后分析了注塑机伺服电机变量泵驱动系统节能的原理并和阀控系统节能进行了比较。
     论文主要内容包含以下几个方面:
     1)异步电机转速控制器的设计。在异步电机的控制中,电阻、电抗等参数对转速控制产生较大的误差影响,从而影响控制精度和动态响应速度。基于感应电机的数学模型,将模糊逻辑系统引入预测控制。针对异步电机的强耦合特性,提出模糊预测控制的方法,并用模糊预测控制的方法设计了高性能的转速控制器。
     2)基于磁场定向的控制原理,提出了永磁同步电机电流调节器的内模控制(IMC)设计。在永磁同步伺服电机的矢量控制中,电机的调速范围很宽时,电阻、电抗等参数对d,q轴电流的控制产生较大的误差影响,从而影响控制精度和动态响应速度。用矩阵奇异值分析了IMC电流调节器的鲁棒性,并将其应用于永磁同步电机转子磁场定向的矢量控制中。对电流调节器的传递函数进行了仿真并用DSP实现电机矢量控制的运行实验,实验表明,用IMC电流调节器实现的电机调速,能够获得良好的跟踪性能和较高的稳态精度,从而提高了电机的控制能力并验证了IMC电流调节器的在宽调速时对电机参数依赖性小的良好性能。
     3)从模糊控制的理论出发,提出了将模糊控制方法用于伺服电机和变量泵的协调控制。解决了注塑机变频调速时出现的低速特性差,动态响应慢,调速精度不易保证等问题。用模糊内模协调控制的方法解决了转速波动的问题。
     4)针对高速度、高精度和低噪声之间的矛盾,对电机和变量柱塞泵之间的联接方式进行了研究。说明联轴器对伺服电机泵系统的响应和噪声有重大的影响。
     5)分析了伺服电机加变量泵系统节能的原理,通过实验对伺服电机加变量泵系统和比例阀控系统进行了比较。
The 21st century is a technological century, with the development of material technology, servo motor performance has been improved for injection molding machines high-speed, high-precision. The advance control technology for the further development and for the implementation of motor and pump join moulding machine driven system servo control provides the theoretical basis. The development of microcontroller, especially the development of chip technology, and the appearance of specialties DSP, has made the implementation of control algorithms possible.
     Energy-saving,high-speed,high-precision, low-noise is high-performance injection machine control system direction of development. However, high speed and high-precision is often contradictory against low noise. Control method optimization is meaningful in solving the energy-saving and high-speed, high-precision. It is necessary for injection molding machine control methods to be studied. Injection molding machines energy-saving hydraulic systems, from flow and pressure in the proportion of dual control in the past towards load sensitive adaptive control, then frequency converter speed control, servo control and servo close control. Advanced energy-saving power-driven system is very necessary in high-performance injection molding machines.
     Focusing on the problems above, the first this thesis taking the advantages of the fuzzy prodictive control theory, analyzes the speed controller of induction motor for the injection molding machine; Secondly, using the internal model control methods, the author deeply researched the current regulator of Permanent magnet synchronous motor; Thirdly, fuzzy control is used for motor and variables pump co-ordination control; Fourthly, to the conflicts of high-speed, and high-precision against low noise, the different joint ways of the motor and variable pump is studied; Finally energy-saving principles of servo motors variable pump-driven system for the injection molding machine are studied; The experiment has been done to compare it with valve-control systems.
     The main points of this papers are as follows:
     1)A speed controller is designed for induction motor. In the contol of induction motor, great errors will be produced in speed control due to the parameters of the resistance and reactance. Based on the model of induction motor, a fuzzy predictive control method for the nonlinear discrete systems is presented by introducing fuzzy logic system into predictive control strategy, a high performance speed controller is designed using fuzzy predictive control method.
     2) Based on the conventional theory of rotor oriented vector control for permanent magnet synchronous machine, the internal mode control approach is applied to the current regulation of indirect rotor flux oriented control of permanent magnet synchronous machine. In the vector contol of permanent magnet synchronous machine, great errors will be produced in current control of the axis of d and q due to the parameters of the resistance and reactance in a wider speed range. The design methodology of current regulator is presented and its dynamic and robust characteristics is analyzed using matrix singular values. Finally, the simulating and experimental results indicate that the system utilizing internal mode control current regulator has better tracking performance and higher steady precision, and improves the motor control effect, it also verifies the good performance of the IMC (internal model current control) in the indirect rotor flux oriented control of permanent magnet synchronous machine, especially less dependence to the motor parameters on the wide range of speed.
     3) Based on the fuzzy control theory, it is proposed that fuzzy control method is used in servo motor and variables pump co-ordination control. The problem of low-speed features, slow dynamic response, and precision being not easily assured are solved when variable frequency speed-control of the injection molding machine. The shortage of speed fluctuations is solved by fuzzy internal-model-co-ordinating control.
     4) To the conflicts between high-speed, high-precision and low-noise, the different joint ways of the motor and variable pump are researched. The result shows the coupling has a significant impact on servo motor pump system's response and noise.
     5) Energy-saving principle for the servo motor with variable pump system is studied. Based on them, comparison between servo motor with variable pump system and proportional valve system is done though experiment.
引文
[1]魏世化.变频器在注塑机节能改造中的应用[J].变频器世界,2005(6):87-89
    [2]周孚宏.变频器用于注塑机节能改造[J].电气传动,2005(2):88-90
    [3]张友根.我国注塑机的特点及发展方向.上海塑料,2004(1):4-8
    [4]张友根.注塑机节能技术的分析研究(上)[J].橡塑技术与装备2008,34(3):52-60
    [5]张友根.注塑机节能技术的分析研究(下)[J].橡塑技术与装备2008,34(3):57-65
    [6]黄步明.世纪之争—全液压式与全电动式注塑机的比较[J].中国塑料,2001,15(3):1-4
    [7]张友根.电动注塑机与液压注塑机共创注塑机新发展[J].工程塑料应用,2006,34(6):56-58
    [8]张友根.HH-4000节能超大型注塑机的开发[J].现代制造,2006(34):68-69
    [9]权龙,李凤兰,王祥.伺服电机定量泵驱动差动液压缸系统效率的研究[J].中国电机工程学报,2006,26(8):93-98
    [10]胡长生,林平,张仲超.变频调速系统集成化中的分时技术[J].中国电机工程学报,2005,25(5):79-82
    [11]关慧,赵争鸣,孟朔等.变频调速异步机的优化设计[J].中国电机工程学报,2004,24(7):194-199
    [12]崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究[J].中国电机工程学报,2005,25(11):118-123
    [13]马瑞卿,李声晋,周青苗等.稀土永磁同步电动机变频调速关键技术研究[J].中国电机工程学报,1998,18(5):330-334
    [14]#12
    [15]中村一郎.総论油压ェレベ一タ[J].油空压技术,1998,37(13):1-9
    [16]小川雅也.ェレベ一タの油压机器[J].油空压技术,1998,37(12):20-26
    [17]Littmann K,Wachter R, Zschocke G. Gerauscharmer Drehzahl Dariabler Pumpenantrieb[J]. O+P Olhydraulik und Pneumatik 1995,9(11-12):828-834
    [18]Nagel G,Exner P.Variabler Forderstrom Mit constant Pumpen[J]. O+P 01 hydraulic and Pneumatik,1996,40(4):238-242
    [19]Achim H.Kunststoff-Spritzgieb Maschine Mit Elektrisch Hydrostati Schem Antrieb[J]. O+P Oelhydraulik and Pneumaatik,2003,47(6):414-418
    [20]Quan Long, Neubert Th. Hochdynamische lage regelung fuer differentialzylinder mit zwei drehzahlgeregelten pumpen [J]. O+P Oelhydraulik und Pneumaatik,2000,44(9):562-567
    [21]Kazmeier B. Energieverbrauchsoptimierte Regelung eines elektro-hydraulischen Linearantriebes kleiner Leistung mit drehzahlger-egeltem Elektromotor And Verstellpumpe [D]. Germany:TU Hamburg-Harburg,1998
    [22]Neubert Th. Untersuchungen von drehzahlveraenderbaren pumpen [D]. Germany:TU-Dresden,2002
    [23]张德明.浅谈液压传动系统的节能设计[J].液压气动与密封,2006(5):54-56
    [24]邓荣,皮佑国.液压注塑机油泵电机节能控制系统设计[J].电工技术,2005(3):52-53
    [25]张友根.变频调速技术在注塑机上的应用工[J].变频器世界2005(6):96-98
    [26]王敏.注塑机节能改造的趋向[J].塑料助剂,2007(4):54-55
    [27]中国机械工业年鉴编辑委员会,中国液压气动密封件工业协会.2005中国液压气动密封工业年鉴[J],2005(11):5-46,75-77
    [28]祁冠芳,虞万海.日本液压技术的发展与新动向[J].液压与气动,2004(1):34-36
    [29]TANAICA H. Fluid power control technology-present and near future[J]. JSME International Journal.Series C,1994,37(4) :629-637
    [30]蔡文海.未来战斗机的液压系统[J].液压与气动,2002(3):36-38
    [31]李运华,史维祥.液压技术现状及发展趋势[J].机床与液压,1994(4):187-193
    [32]张友根.注塑机节能液压系统应用分析与研究[J].2008(1):44-47
    [33]倪卫涛.注塑机节能系统的应用与发展[J].橡胶技术与装备,2004,30(12):21-24
    [34]汪存亮.注塑机节能控制技术之应用[J].塑料工业,2005:36
    [35]文生平,汪剑强.注塑机节能控制技术的最新发展与应用[J].工程塑料应用,2006,34(5):59-62
    [36]饶启琛,张涛.比例变量泵系统在注塑机上的应用[J].橡塑技术与装备,2002,28(4):53
    [37]钟汉如.注塑机控制系统.北京:化学工业出版社,2004.2
    [38]N.Matsui. Permanent magnet motor drives[J]. IEEE Transactions on Industrial Electronics,1996,43(2):300-308
    [39]LA Jones, J.H.Lang. A State Observer for the Permanet Magnet Synchronous Motors[J]. IEEE Transactions Industry Electronics,1989:36(3):374-382
    [40]B. K.Bose. Expert System, Fuzzy logic, and Neural Network Applications in Power Electronics and Motion Control[J]. Proceedings of the IEEE.1994,82(8):1303-1323
    [41]S.K.Sin and R.J.P.Defigueiredo. Fuzzy system design through fuzzyclustering and optimal predefuzzification[J].In proc. of the 2nd IEEE conf.on Fuzzy Systems, San Francisco,CA, March 1993:190-195
    [42]L.A.Zadeh. Fuzzy Set[J].Informoation and control.1965,8(2):338-358
    [43]Peter Dahmann. Closed loop speed and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation [J].3rd International Fluid Power Conference [C]. Aachen,Germany,2002
    [44]W.A.Kwong and K.M.Passino.Dynamically focused fuzzy learning control[J]. IEEE Trans. On Systems, Man, and Cybernetics,1996,26(1):53-74
    [45]E.G.Laukonen and K.M.Passino.Training fuzzy systems to perform estimation and identification[J]. Engineering Applications of ArtificialIntelligence,8(5):499-514,1995
    [46]S.K.Sin and R.J.P.Defigueiredo. Fuzzy system design through fuzzyclustering and optimal predefuzzification[J]. In proc.of the 2nd IEEE conf.on Fuzzy Systems,pages 190-195,San Francisco,CA,March 1993
    [47]J.M.Mendel. Fuzzy logic systems for engineering:A tutorial[J]. Proc.ofthe IEEE,Special Issue on Fuzzy Logic in Engineering Applications,1995,83(3):345-377
    [48]W.Kickert and H.Van Nauta Lemake.Application of a fuzzy controller in a warm water plant[J]. Automatica,1976,12(4):301-308,April 1976
    [49]李俊明,付维坊,程子键等.液压系统自适应模糊控制的学习机制与方法,机电工程,1999(6):14-15
    [50]张曾科.模糊数字在自动化技术中的应用[M].北京:清华大学出版社,1997.2
    [51]Helbiga. Injection molding machine with electric-hydrostaticdrives[C].3rd International fluid power conference. Aachen:Shaker Verlag,2002:67-82
    [52]舒前迪.预测控制系统及其应用[M].北京:机械工业出版社,1996.2
    [53]陈荣,严仰光.交流永磁伺服系统控制策略研究[J].电机与控制学报,2004,8(3):1-4
    [54]庄圣贤,陈永校.基于自适应内模控制的异步电机电流调节[J].电工技术学报,2001,15(2):61-65
    [55]陈志辉,严仰光.IMC控制在双凸极发电机电压调节中的应用.电工技术杂志,2000(6):28-30
    [56]谢宝昌,任永德.电动机的DSP控制技术及其应用[M].北京:北京航空航天大学出版社,2005.3
    [57]周渊深,姜建国.异步电动机的动态解耦控制.中小型电机,2001(2):22-26
    [58]V.B.Honsinger. Permanent Magnet Machine:Asynchronous Operation[J]. IEEE Trans,1980,99(4):1503-1509
    [59]V.B.Honsinger. Performance of Polyphase Permanent Magnet Machines[J]. IEEE Trans,1980,99(4):1510-1518
    [60]M.A.Rahman,A.M.Osheiba. Performance of Large Line Start Permanent Magnet Synchronous Motors[J]. IEEE Trans on Energy Convension,Mar.1990:211-217
    [61]M.A.Rahman. Analytical Models for Exterior Type Permanet Magnet Synchronous Motors[J].IEEE Trans on Magnetics, 1987,23(5):3625-3627
    [62]A.V.Gumaste, G.R.gemon.Steady State Analysis of Permanet Magnet Synchronous Motor Drive with Voltage Source Inverters[J]. IEEE Trans,1981(2):10-17
    [63]K. R. Shouse,D. G. Taylor. Observer-based control of permanent magnet synchronous motors[J]. IEEE Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, Power Electronics and Motion Control,1992(3):1482-1487
    [64]D Naunin.Space-phasor Representation of Damper Currents in Synchronous Machines at Different Waveforms[J]. Electric Machines and Power Systems 1985:27-37
    [65]D.Naunin. Ling Forward to the Intelligent Electrical Machine[J]. Journal of Circuits,Systems,and Computers.1995,5(1):45-63
    [66]B.K.Bose.Technology trends in Microcomputer Control of Electrical Machines[j]. IEEE Trans. on Ind. Electronics,1988,35(1):160-177
    [67]Jin Zhao,B.K.Bose. Evaluation of Membership Functions on Fuzzy Logic-Controled Induction Motor Drive[J]. IEEE IECON Conference Rec.2002:229-234
    [68]Jin Zhao, B.K.Bose. Neural Network Based Woveform Processing and Delayless Filtering in Power Flectronics and AC Drives[J]. IEEE Transactions on Industrial Electronics,2004:981-991
    [69]R.B.Sepe.Real-time Adaptive Control of the Permanent Magnet Synchronous Motor [J]. IEEE Transactions on Industry Applications,1991,27(4):706-714
    [70]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006.3
    [71]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.5
    [72]Yuzuru Ohba, Kiyoshi Ohishi and Seiichiro Katsura, Koichi Kageyama. Sensor-Less Force Control for Injection Molding Machine Using Reaction Torque Observer[J].
    [73]Engr.Syed Faiz Ahmed.A New approach in Industrial automation "Embedded System desing for Injection molding machine"[J]
    [74]E.J.Swider, G.Wszolek, W.Csrvalho, Example of the System Prepared to be Controlled by the Controller Based on Microcontroller[C]. in:12 International Scientific Conference-Achieverments in Mechanical and Materials Engineering, Gliwice-Zakopare. Poland,2003:965-970
    [75]N.Akasaka, Design Method of a Load SimuLator based on the SimiL arity Law at the Electric-Motor Driven Injection Molding Machine[J]. Cortrol Machanical Engineering Congress, Japan,2002:275-276
    [76]N.Akasaka,Study of Similarity Law between Electric-Motor Driven Injection Molding Machine and Similator at Injection Velocity Control[J].Trans of JSME-C,2003:69-682
    [77]N.Akasaka. Study of Similarity Law between Electric-Motor Driven Injection Molding Machine and Simulator [J].Mechanical Engineering Congres,Japan,2002:273-274
    [78]N.Akasaka. A Synchronous Position Control Method at Pressure Control between Multi-AC Servomotors Driven in Injection Molding Machine[J].2003:2721-2719(research)
    [79]Y.Inaba, M.Kaniguchi, N.Neko. Pressure Profile Trace Control on Fully Electric Injection Molding Machine-Application of Learning [J].Control for Pressure Profile Editing Journal of JSPE.1999 (5):746-752
    [80]Y.Inaba, S.Matsubara, M.Kamigcuhi. Force Control with Servomechanism in Fully Electric Injection Molding Machine [J]. Journal of JSPE,1999,65(4):542-548
    [81]Y.Inaba, S.Ito. Study of life at Ball Screw on Fully Electric Injection Molding Machine[J]. Journal of JSPE,1999,65(6):805-809
    [82]S.Nakamura. Electric-Motor Driven Injection Molding Machine and Ball Screw for High-Load Usuage[J]. Journal of JSME.2000(103):340
    [83]K.Miyaguti, M.Ninomiya, S.Nakamura ect.Uniformity of Load Distribution in Ball Screw for High-Load Usuage and Prolong action of life[J]. Journal of JSPE,2001,67(2):217-221
    [84]Yaode Wang,Peiqi Chong ect.Design and Fabrication of an All-Electric Tiebarless Injection Molding Machine[J]. Proceedings of the 2005 IEEE International Conference on Mechatronics. Taipei, TaiWan.2005:783-787
    [85]彭天好,杨华勇,徐兵.变频泵控马达调速系统节能实验研究[J].煤炭学报,2004,29(1):100-114
    [86]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.9
    [87]彭天好,杨华勇,徐兵.VVVF技术在液压调速系统中的应用研究[J].机床与液压,2001(4):6-7
    [88]彭天好,孙继亮,汲方林.变转速液压容积调速系统的控制结构[J].机床与液压,2005(6):119-120
    [89]张一丁,徐兵,杨华勇等.变转速泵控液压缸实验仿真分折[J].液压与 气动,2003(1):18-20
    [90]曹美忠,权龙.变转速泵控系统应用于低周疲劳材料试验机的研究[J].太原理工大学学报,2006,37(1):5-8
    [91]权龙,Helduser S.基于可调速电动机的高动态节能型电液动力源[J].中国机械工程,2003,14(7):606-609.
    [92]权龙,李凤兰.注塑机电液控制系统节能原理及最新技术[J].机床与液压,1999(5):6-7.
    [93]权龙,Neubert Th,Helduser S.转速可调泵直接闭环控制差动缸伺服系统静特性[J].机械工程学报,2002,38(3):144-148
    [94]权龙,Neubert Th,Helduser S.转速可调泵直接闭环控制差动缸伺服系统动特性[J].机械工程学报,2003,39(2):13-17
    [95]权龙,李凤兰,田惠琴等.变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用[J].机械工程学报,2006,42(6):115-119
    [96]宋春华,邓斌,柯坚等.注塑机驱动节能技术分析[J].塑料工业,2008,36(6):30-33
    [97]Hongfu Zhou.Architecture on Clamping Motors Synchronized Controller in Injection Mould machine [J].2007IEEE international Conference on Control and Automation. Guangzhou, China May 3 to June 1,2007:2178-2182
    [98]Xuesong He,Xvyong Wang and Zhengjing Feng.Nonlinear Modeling of Electrohydraulic Servo Injection Molding Machine including Asymmetric Cylinder[J]. American Control Conference Denver Colorado June 4-6,2003:3055-3059
    [99]南余荣,俞立,陈宗云等.电动注塑机位置伺服系统的重复控制[J].the 6th Congress on intelligent Control and Automation. June 21-23,2006 Dalian,China:8246-8250
    [100]张如坤.变频器在注塑机上的节能应用.制造业自动化,2003,25(7) :60-62
    [101]黄方平,徐兵,杨华勇等.变频液压技术在注塑机中的应用[J].液压拨动与密封,2004(3):22-25
    [102]彭勇刚,洪杰.变频控制在注塑机控制器中的应用[J].机电工程,2002,19(6):21-23
    [103]J.C.Liao, S.N.Yeh, J.C.H Wang ect. Efficiency Improvement of Induction Servos in Both Fransient and Steady Steady States with Fuzzy Logic Controllers[J]. Dubrovnik, Croatia,2005:871-876
    [104]Cang-Chin Yang,Sheng-Jye Hwang,Huei-Huang Lee ect.Control of Hot Runner Type Micro Injection Molding Module[J].the 33rd Annual Conference of the IEEE industrial Electronics Society Nov.5-8,2007,Taipei,Taiwan:2928-2933
    [105]Achim Helbig. Injection moulding machine with electric-hydrostatic drives [J].3rd International Fluid Power Conference. Aachen,Germany,2002
    [106]Helduser.S. Improved Energy Efficiency in Plastic Iniection Molding Machines[J]. The English Scandinavian International conference on Fluid Power. Tampere,Finland,2003:1219-1229
    [107]Snyder M R. All-electric machines get bigger and bigger Moderm Plastics[J] 2000,77(4):34
    [108]Freere.P,Pillay P.Design and Evaluation of Current Controllers for PMSM Drivers[J].IEEE/IECON,1990,38(9):1193-1198
    [109]彭天好.变频泵控马达调速及补偿特性的研究[D].杭州:浙江大学博士学位论文,2003
    [110]王晓明,王玲.电动机的DSP控制—TI公司的DSP应用[M].北京:北京航空航天大学出版社,2004.7
    [111]明仁雄,万会雄.液压与气压传动[M].北京:国防工业出版社,2003
    [112]方桂花,汪建新等.液压传动[M].北京:地震出版社,2002.5
    [113]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:治金工业出版社,2003.2
    [114]路甬详著.电液比例控制技术.北京:机械工业出版社.1988.3
    [115]吴文海.电液比例变量柱塞泵的动态仿真[D].成都:西南交通大学硕士学位论文,2006
    [116]R.Von.Mises. Mathematical Theory of Compressible Fluid Flow[J]. Bull Amer.Math.Soc.68(1962):549-550
    [117]王国志,吴文海,柯坚等.电液比例斜盘式轴向变量柱塞泵的压力特性仿真[J].机床液压,2007,35(2):127-130
    [118]吴文海,王国志,邓斌等.注塑机用电液比例轴向变量柱塞泵的特性仿真[J].塑胶工业.2005(5)
    [119]金哲.高速电液比例控制系统的H∞控制器的研究[D].成都:西南交通大学博士论文,2006
    [120]李志民,张遇杰.同步电动机调调速系统工程[M]。北京:机械工业出版社,2001.2
    [121]周彦,何小阳,王冬丽.时变大滞后过程的专家模糊控制设计与仿真[J].系统仿真学报,2006,18(10):2768-2789
    [122]陈栋,吴云洁.基于最优模糊推理的转台控制方法研究[J].系统仿真学报,2006,18(S2):738-740
    [123]Pillay.P, Schilleci.J.W. DSP controller for a PMSM drive[J]. The proceedings of 1994 IEEE Creative Transfer,Miami,FL, USA,10-13 April 1994:413-417
    [124]Pillay.P,Allen.C.R,ect.DSP-Based vector and current controllers for a PMSM drive [J].Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting,7-12,Oct,1990(1):539-544
    [125]黄凤英.DSP原理与应用[M].北京:电子工业出版社,1997.5
    [126]林娜,方鹏,胡林.基于Matlab7.0和DSP的位置伺服系统在线仿真[J]. 电力自动化设备,2006.26(7):69-71
    [127]王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社,2002.3
    [128]尹永雷,李永刚,付超等.永磁同步电机伺服系统数字化实现研究[J].电力电子技术,2006,40(2):63-65
    [129]HELDUSER S.Improved energy efficiency in plastic injection molding machines [C].The 8th Scandinavian International conference on Fluid Power. Finland:Tampere,2003:1219-1229.
    [130]SNYDERMR. All-electric machines get bigger and bigger [J].Mod Plast,2000,77(4):34
    [131]FREERE P. PILLAY P. Design and evaluation of current controllers for PMSM drivers [J]. IEEE IECON,1990,38(9):1193-1198.
    [132]王鑫,孙昌国.模糊预测协调永磁同步电机控制策略的研究[J].电气传动,2007,37(9):43-46
    [133]孙卫华,裘丽华,王占林.电机泵复合系统的协调控制[J].机床液压,2006(6):75-77
    [134]国香恩.液压挖掘机节能模糊控制系统研究[D].吉林:吉林大学博士论文,2004
    [135]Kazmeier B.Feldmann D.G. A Quantitative Comparison of Three Con cepts of an Electro-Hydraulic Actuator of Fluid Power[J], SICFP'97,Linkoping,1997(1):215-230
    [136]Kennedy J., Eberhart R C.Particle Swarm Optimization[C]. IEEE InternationalConference on NeuralNetworks, Perth, Australia,1995
    [137]ShiY, EberhartR C. A Modified Swarm Optimizer [C]. IEEE International Conference of Evolutionary Computa-tion, Anchorage,Alaska,1998
    [138]白国长,王占林.变频调速—变量泵复合调节液压系统仿真研究[J].系统仿真学报,2006,18(2):424-426
    [139]宋春华,胡丹,柯坚.内模控制在电流调节器中的应用.电力自动化设备[J].2008,28(4):15-18
    [140]宋春华,胡丹,柯坚.感应电机模糊预测控制策略的研究[J].系统仿真学报.2008,20(6):1639-1641
    [141]Zhang Huaguang.A multivariblefuzzy generalized Predictive control approach and itsperformance analysis[C]. Proceedling of the American Control Conference,1998:2276-2280.
    [142]Mohamed LaidHadjil, i VincentWertz. Proceeding fuzzy model-based predictive control [C]. In Tampa, Florida. Proceeding of the 37th IEEE Conference on Decision & Control 1998:2927-2929.
    [143]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995:12-15
    [144]FREUDENBERG J, MIDDLETON R. Properties of Single In-put, two Out-put Feedback Systems[C]. Proc AmC Control Conf, 1998:2055-2060
    [145]宁建荣,朱成实,鄢利群.基于永磁同步电动机的全电动注塑机控制系统设计[J].工程塑料应用,2008,36(1):65-68
    [146]C.F.Juary, An Automatic Building approach to Special Takagi-Sugeno Fuzzy Network for Unknown Plant Modeling and Stable Control[J].Asian J Control.2003(2):176-186
    [147]Thomas C.Bulgrin and Thomas H.Richards. Application of Advanced Control to Enhance Molding Machine Performance. Transactions on Inductry Applications.1995,31(6):1350-1357
    [148]Yang.Y, Gao.F. Adaptive Control of the Filling Velocity of Thermoplastics Injection molding[J].Control Engineering Practics.2000(8):1285-1296
    [149]Y.Y.Tzou. Practical Repetitive Control System Design [C].Proceedings of the IEEE Conference on Decision and Control.Honolulu, HI,USA.1990:1673-1678
    [150]Olga Murarleva, Oleg Muravlev[J]. Electrical Engineering KoRus 2004:264-267
    [151]J.Moreno, M.Cipolla, J.Peracaula ect. Fuzzy Logic Based Improvements in Efficiency Optimization of Induction Motor Drive[C].Proceedings of the Sixth IEEE International Conference on Fuzzy Systems.1997:219-224
    [152]施阳.MATLAB语言精要及动态仿真工具SIMULINK[M].西安:西北工业大学出版社,1997.6
    [153]柳永新,杨东凯,蒋晓瑜Windows C程序设计入门与提高[M].北京:清华大学出版社,1999.6
    [154]张志涌.精通MATLAB (5.3版)[M].北京:北京航空航天大学出版社,2000.8
    [155]范影乐,杨胜天,李轶MATLAB仿真应用详解[M].北京:人民邮电出版社,2001.7
    [156]方庆华,康存锋,马春敏等.基于软PLC的全电子注塑机控制系统设计[J].工程塑料应用,2006,34(4):58-60
    [157]赵波.中小型异步电动机振动和噪声的处理[J].中国设备管理,2000(8):24-26
    [158]杨德望.永磁推进电动机与噪声的控制策略[J].船电技术,2005(1):20-24
    [159]李岚.液压系统振动与噪声的分析与对策[J].机械设计与制造,2002(2):74
    [160]M.P.诺顿.工程噪声和振动分析基础[M].北京:航空工业出版社,1993.9
    [161]杨海军,王建斌,王吉龙.船舶液压系统振动与噪声的分析与对策[J].液压气动与密封,2005(6):37-38.
    [162]郭允,潘国辉,高海平等.液压系统噪声的分析与控制[J].液压气动与 密封,2003,1 02(6):24-25.
    [163]朱志坚.液压系统振动和噪声与系统设计[J].机床与液压,2003(1):183-185.
    [164]杨文智.浅析液压系统的噪声成因及降噪措施[J].新技术新工艺,2005(3):34-36.
    [165]张建寿,谢永絮.机械和液压噪声及其控制[M].上海:上海科学技术出版社,1987,3
    [166]赵松龄.噪声的降低与隔离(上册)[M].上海:同济大学出版社,1985.12
    [167]李大,柯坚,邓斌等.基于一体化的电机泵装置的研究[J].机械研究与应用,2007,20(2):55-56
    [168]薛定宇.控制系统计算机辅助设计—MATLAB语言与应用[M].北京:清华大学出版社,2006年3月第2版
    [169]W.A.Kwong and K.M.Passino. Dynamically focused fuzzy learning control[J]. IEEE Trans. on Systems, Man, and Cybernetics,1996,26(1):53-74
    [170]E.G.Laukonen and K.M.Passino. Training fuzzy systems to perform estimation and identification[J]. Engineering Applications of ArtificialIntelligence,1995,8(5):499-514,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700