人工湿地改善景观水体水质技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用人工湿地净化以雨水和再生水为主要水源人工景观水体的水质净化技术。
     文章主要从湿地对水体中污染物的去除效果、湿地运行的最佳水力负荷、季节变化对湿地运行效果的影响、污染物的去除途径分析、湿地出水污染物浓度与面积负荷之间的关系、人工湿地冬季运行性能的强化措施、水体水质的改善效果等多个方面介绍型人工湿地净化水体水质的研究成果。结果表明:
     (1)人工湿地对水中P、N、COD、浊度和藻类等污染物有较好去除效果。湿地对TP的最大去除率为66%,NO_3~--N的最大去除率为97.5%,NH_4~+-N的最大去除率为42.9%,TN的最大去除率为40.9%,COD的最大去除率为80%,浊度的最大去除率为96.7%,藻类的最大去除率为99%。
     (2)随水力负荷的增加湿地对氨氮的去除效果略有好转,而其它污染物的去除率均下降。人工湿地对污染物的去除效果受季节的影响较大,夏季湿地对TP的去除率要比冬季高出34%,对TN的去除率要比冬季高出27%。
     (3)实验结果可以得出当水力负荷为1.2m/d时,湿地除磷的最大去除速率5.66g/(m~2·d);当水力负荷为0.9m/d时,湿地对NH_4~+-N、NO_3~--N和TN的最大去除速率23.87g/(m~2·d)、35.91g/(m~2·d)、54.58g/(m~2·d)。
     (4)植物覆盖可以有效提高冬季湿地对N、P的去除效果。植物覆盖湿地对TP和氨氮的去除效果约是空白床的两倍;对TN的去除效果约是空白床的三倍左右;对硝氮的处理效果基本没有什么区别,去除效果均较差。植物覆盖可以作为冬季湿地保温方法用以提高湿地冬季运行效果。
     (5)湿地是水体中污染物去除的主要途径,去除TP和TN数量占总减少量的比例分别为52.6~88.6%和62.3~98.7%,平均分别为67.78%和77.32%。
     (6)在本实验条件下,三种植物中水柳腐烂时释放的COD、TN和TP的量最多,分别是46.02mg/g、0.98mg/g和0.4mg/g。
     (7)夏季时湿地中部微生物量要高于湿地湿地前端和后部;冬季时湿地前端含有的生物量最高。微生物硝化活性的大小顺序是:前部>中部>后部。
     总之,采用人工湿地法处理景观水体效果好,为景观水体的水质净化提供了一条新思路。
Purification of artificial scenic water using rainwater and reclaimed water as resource by constructed wetland was studied in this paper.
     Many factors were studied to explain the results of the research into water body purification by constructed wetland in this paper such as the effects of contamination removal, optimum hydraulic loading rate, effects of season, analysis of ways of contamination removal, connection of contamination concentration in effluent of constructed wetland and area loading, strengthen of constructed wetland in winter, effect of water quality improvement and so on.
     The following results were proved through the experimental study:
     (1) The removal efficiencies of P, N, COD, turbidity and algae in the wetland were fairly good. The maximal removal rates of TP, NO_3~- -N, NH_4~+-N, TN, COD, turbidity and algae were respectively 66%, 97.5%, 42.9%, 40.9%, 80%, 96.7%, 99%.
     (2) With an increasing hydraulic loading rate, the removal rates of NH_4~+-N increased, while other removal rates of contamination decreased. The removal efficiencies of contaminants in wetland were changed as seasons alternated. For example, the removal rate of TP is 34% higher in summer than in winter, and the removal rate of TP is 27% higher in summer than in winter.
     (3) When the constructed wetland was used to remove TP, the experimental results proved that the maximal removal speed of TP was 5.66 g/ (m~2·d) when the hydraulic loading was 1.2m/d. When constructed wetland was used in denitrification. The maximal removal speeds of NH_4~+-N, NO_3~--N and TN were respectively 23.87 g/ (m~2·d), 35.91 g/ (m~2·d) and 54.58 g/ (m~2·d) when he hydraulic loading was 0.9m/d.
     (4) The removal efficiencies of P and N could be enhanced when constructed wetland was covered by plants in winter. The removal rates of TP and NH_4~+-N by wetland covered with plants were twice as the blank wetland', and the removal rate of TN was three times as the blank wetland'. However, there was no difference in NO_3~--N's removal between the plants covered wetland and the blank wetland. Plants covering can be one method to improve the removal efficiencies of contaminants in the constructed wetland in winter by reducing the heat loss.
     (5) Constructed wetland was a main way to remove pollutants in water. The quality removed by constructed wetland was 52.6-88.6% and 62.3-98.7% in all removed pollutants, the average quality was 67.78% and 77.32%.
     (6) Under the contion of this experiment, COD, TN and TP released when Lythrum salicaria rotted were respectively 46.02mg/g, 0.98mg/g and 0.4mg/g
     (7) The biomass in the middle of constructed wetland was higher then the forward and back part of constructed wetland in summer; The biomass in the forward part of constructed wetland was the highest in winter. The nitrication was: the forward nitrication > the middle nitrication > the back nitrication.
     We can conclude that the constructed wetland performed quite well in treating scenic water through the experimental study. It could be a new way for purification of scenic water.
引文
[1] 王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [2] 邹平,江霜英,高廷耀.城市景观水的处理方法[J].中国给水排水,2003,19(2):24-25.
    [3] T W Lambert, C F B Holmes, S E Hrudey.Microcystin class of toxins:health effects and safety of drinking water supplies.Environ Rev, 1994, (2): 167-186.
    [4] 陈雪宜,武小清,吕山东,叶君树,尚德波.SS111HQ新型氧化性杀藻剂及工业应用研究[J].工业水处理,200,24(11):39-41.
    [5] 曹式芳,庞金钊,杨宗政,林俊岳,薛二军.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报,2002,4(总第43期):1-7.
    [6] Angeline K Y, Prepas L E E, Spink D, et al. Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Research, 1995, 29(8): 1845-1854.
    [7] 王国祥,濮培民.若干人工调控措施对富营养化湖泊藻类种群的影响[J].环境科学,1999,20(3):71-74.
    [8] 尹平河,赵玲,李坤平,等.缓释铜离子法去除海洋原甲藻赤潮生物的研究[J].环境科学,2000,21(5):12-16.
    [9] 梁想,尹平河,赵玲,等.生物载体除藻剂去除海洋赤潮藻[J].中国环境科学,2001,21(1):15-17.
    [10] 彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水,2002,18(2):29-31.
    [11] 吴玉霖,周成旭.甲藻赤潮的海洋环境危害及其防治[J].海洋环境科学,1997,16(4):59-63.
    [12] 李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报,2000,39(1):81-85.
    [13] 张一丁,王本德,刘伟,惠琳.利用人工湿地法解决哈尔滨信义沟水污染问题[J].长春工程学院学报(自然科学版),2005,6(1):20-21.
    [14] 陈源高,吴献花,李文朝,孔志明.抚仙湖窑泥沟人工湿地的除磷效果研究[J].应用生态学报,2005,16(10):1913~1917.
    [15] 刘红,代明利,欧阳威,刘学燕,刘培斌.潜流人工湿地改善官厅水库水质试验研究[J].中国环境科学,2003,23(5):462-466.
    [16] 王庆安,任勇,钱骏,张秋劲.成都市活水公园人工湿地塘床系统的生物群落[J].重庆环境科学,2001,23(2):52—55.
    [17] 黄时达,王庆安,钱骏,任勇.从成都市活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8—12
    [18] 缪绅裕,陈桂珠等.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241.
    [19] 林鹏,林光辉.九龙江口红树林研究Ⅳ,秋茄群落的氮、磷的积累和循环[J].植物生态学与植物学丛刊,1985,9(1):21-32.
    [20] K R Reddy, Fate of Nitrogen and Phosphorus in a wastewater Retention Reservior Containing Aquatic Macrophytes.J.Environ.Quall, 1983, 12 (1) : 137-141.
    [21] 袁东海,景丽洁,高士祥,尹大强,王连生.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [22] 谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356.
    [23] Drizo A, Frost C A, Grace J, Smith K A. Physico-chemical screening of phosphate removing substrates for use in constructed wetland systems [J].Wat Res, 1999, 33(17): 3595-3602.
    [24] Drizo A, Comeau Y, Forget C, Chapuis R P. Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetland systems[J]. Environ Sci Technol, 2002, 36(21): 4642-4648. [1]
    [25] 李旭东,周琪,张荣社,张旭,李广贺.三种人工湿地脱氮除磷效果比较研究[J].地学前缘,2005,12(特刊):73-76.
    [26] 严立,刘志明,陈建刚,何圣兵,吴德意,孔海南等.潜流式人工湿地净化富营养化景观水体[J].中国给水排水,2005,21(2):11-13.
    [27] 刘超祥.提高人工湿地处理生活污水效能的研究.博士论文:17-40.
    [28] 王圣瑞,年跃刚,候文华,金相灿.人工湿地植物的选择[J].湖泊科学,2004,16(1):91-96.
    [29] 陈玉成编.污染环境生物修复工程[M].北京:化学工业出版社,2003:30-52.
    [30] 吴振彬,陈辉蓉,荷锋等.人工湿地系统对污水磷的净化作用[J].水生生物学报,2000,25(1):28-35.
    [31] 李铁民,马汐平,付宝荣等.环境生物资源[M].北京:化学工业出版社,2003,101.
    [32] Fennessy MS, Cronk J K, Mitsch W J. Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions[J]. Ecol Eng, 1994, 3 (3): 469-484.
    [33] Brix H.Treatment of wastewater in the rhizosphere of wetland plants-The root-zone method. Wat Sci Technol, 1987, 19:107-118.
    [34] Armstrong W. Root aeration in wetland condition. In:Hook DD, Crawford R M, eds. Plant life in anaerobic environments. Ann Arbor Science, MT, 1978: 269-297.
    [35] 车伍,欧岚,汪慧贞,李俊奇.北京城区雨水径流水质及其主要影响因素[J].环境污染治理技术与设备,2002,3(1):33-37.
    [36] 车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制[J].给水排水,2003,29(10):38-42.
    [37] 车武,刘红,汪慧贞等.北京市屋面雨水污染及利用研究[J].中国给水排水,2001,17(6):57-61.
    [38] 赵剑强.城市路面径流污染的调查[J].中国给水排水,2002,17(1):33-35.
    [39] 国家环保局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1998
    [40] Laanbroek H J. Competition for limiting amounts of oxygen between nitrosomonas europaea and nitrobacter iawinogradskyi grown in continuous cultured[J].Arch Microbiology ,1993,159:453-459.
    [41] 王世和,王薇,俞燕.潜流式人工湿地的运行特性研究[J].中国给水排水,2003,19(4):9-11.
    [42] Reddy and Debusk ,Nutrient Removal Potential of Selected Aquatic Macrophytes ,J Environ. Qual. 1985,14(4): 459-462.
    [43] 杨昌凤,黄淦泉等.模拟人工湿地处理污水的试验研究[J].应用生态学报,1991,2(4):350-354.
    [44] 国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准GB 3838—2002.
    [45] 雒维国,王世和,黄娟,钱卫一.潜流人工湿地低温域脱氮效果研究[J].中国给水排水,2005,21(8):37-40.
    [46] 刘学燕,代明利,刘培斌.人工湿地在我国北方地区冬季应用的研究[J].农业环境科学学报,2004,23(6):1077-1081.
    [47] Shalla Cray. The nutrient assimilative capacity of macral as a substrate in constructed wetland systems for waste treatment. Water Research, 2000, 34(8):2183-2190
    [48] 籍国东,孙铁衍,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2000,13(2):224-228.
    [49] 成水平,况琪军,夏宜口.香蒲、灯心草人工湿地的研究:I.净化污水的效果[J].湖泊科学,1997,9(4):351-358.
    [50] 吴建强,阮晓红,王雪.人工湿地中水生植物的作用和选择[J].水资源保护,2005,21(1):1-6.
    [51] 尹军,崔玉波.人工湿地污水处理技术[M].北京:化学工业出版社,2006:37.
    [52] 翁美娅,刘鹏,徐根娣,蔡妙珍.人工湿地进行污水处理的研究进展.安徽农业科学.2005,33(7):1251-1253.
    [53] Prince M, Sambasivam Y.Bioremediation of petroleumwastes fromthe refining of lubricant oil [J]. Environ Prog ,1993,12(1) :5-11.
    [54] 籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境污染治理技术与设备, 2004,5(6):71-75.
    [55] Gulley J. R., et al. In environmental issues and wastemanagement in energy and minerals production. BalkemaRotterdam, 1992. 1431-1438.
    [56] Todd L. ,et al. Nitrate removal in wetland microcosms.Water Res. ,1998,32 (3) :677-684.
    [57] 王爱萍,周琪.人工湿地处理污水的研究.四川环境,2005,24(2):76-80
    [58] 夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [59] 梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31.
    [60] 李智,杨在娟,岳春雷.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技,2005,25(3):1-5.
    [61] 梁威,吴振斌,詹发萃,邓家齐.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-316.
    [62] 李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境学,1995,15(2):140-144.
    [63] Duncan C P, Groffman P M. Comparing microbial parameters in natural and constructed wetlands[J]. Journal of Environmental Quality,1994,23(2) :298-305.
    [64] 刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1)80-83.
    [65] 赵桂瑜,杨永兴,杨长明.人工湿地污水处理系统脱氮机理研究进展[J].四川环境,2005,24(5):64-67.
    [66] Van Oostrom A J. Nitrogen removal in constructed wetlands treating nitrified meat processing efffluent[J]. Water Sci. Technoll, 1995,32(3) :137-147.
    [67] Mateju V, Cizinska S, Krejci J, et al. Biological water denitrification—a review [J]. Enzyme Microb l Technol 1,1992,14(3): 170-183.
    [68] Ying-Feng Lin, Shuh-Ren Jing, Tze-Wen Wang, et al. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands [J]. Environmental Pollution, 2002,119:413-420.
    [69] 洪常青,聂艳丽.根系分泌物及其在植物营养中的作用[J].生态环境,2003,12(4)508-511.
    [70] 张福锁.根系分泌物及其在植物营养中的作用[J].北京农业大学学报,1992,18(4):353-356.
    [71] 解文科,王小青等.植物根系分泌物研究综述[J].山东林业科技,2005,5(160):63-67.
    [72] W. K., Barber, D.A. and Parbery, D. G. The acquisition of phosphorus by Lupinus albus L. Ⅲ. The probable mechanism by which phosphorus movement in soil root interface is enhanced [J]. Plant and Soi, 1983, 70:107-124.
    [73] 齐泽民,卿东红.根系分泌物及其生态效应[J].内江师范学院学报,2005,20(2):68-74.
    [74] Phlip A M Bachand,Alexander J Horn.Denitrification in constructed free water sueface wetlands:Ⅱ.Effect of vegetation and temperature[J].Ecological Engineering,2000,14:17-32.
    [75] 刘红,代明利,刘学燕等.人工湿地系统用于地表水水质改善的效果与特征[J].环境科学,2004,25(4):65-69.
    [76] 龚琴红,田光明,吴坚阳等.垂直流湿地处理低浓度生活污水的水力负荷[J].中国环境科 学,2004,24(3):275-279.
    [77] 成水平.人工湿地废水处理系统的生物学基础研究进展[J].湖泊科学,1996,8(3):268-273.
    [78] Abbas Al Omari,Manar Fayyad.Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan[J].desalination,2003,155:27-39.
    [79] 刘中丽,欧阳宗继.气候变化对北京水资源的影响[J].北京农业科学,1999,17(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700