流动注射智能分析仪的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新世纪分析化学发展的方向是向高灵敏度、高选择性、快速、自动、简便、经济,分析仪器自动化、数字化和计算机化并向智能化、信息化纵深发展。无论是在科学研究领域还是工业生产中,仪器的重要性越来越大。
     本研究针对具体的工业生产工艺与生产要求,探讨了流动注射智能分析FIA-Ⅱ仪器的设计与研制方法。流动注射智能分析FIA-Ⅱ仪器以流动注射分析的基本原理、检测技术作为基础,结合光度分析的高灵敏度、高准确度的特点,通过单片机实现自动控制与智能分析。论文分别从机械、电子、光学、化学以及外观设计等几个方面出发,着重讨论了机械器件加工的原理与要求以及对仪器性能的影响;电子器件的选择;光学光路的设计与改进;流动注射测试流路的设计;测试条件的优化以及仪器的分析应用。
     论文阐明了流动注射智能分析FIA-Ⅱ仪器对铁元素进行分析测定的化学反应原理,探讨了机械传动部分的设计原理与方法,结合几种FIA的流路系统,通过对比优化了FIA的分析测试条件。整台仪器以AT89C51芯片为运行控制和数据采集核心,实现采样和进样的自动化,实验数据由计算机管理。本研究还对仪器的结构布局与外型进行了改进。该仪器既可用于在线分析,又可直接用于随时来样检测的离线分析。流动注射智能分析FIA-Ⅱ仪器测定试样速度快,重现性好,达到60个样品/小时,相对标准偏差RSD<4%,最低检测限达到了0.05mg/L,而且实现了过程分析的智能化。本仪器测定铁元素有两条工作曲线:一条是0.10~5.00mg/L;另外一条是5.0~50.00mg/L。当试样中铁元素的浓度达到50.00 mg几以上或低于0.10mg/L时,仪器能够进行检测结果异常报警。
In the new century, the developing direction of analytical chemistry is high sensitivity and selectivity, fast analytical speed, automatic, convenient and economical. And analytical instrument is deeply automatized, digitized, computerized, which has become more intelligent, informational. Since the importance of the instrument becomes more and more visible in the field of science as well as industry.
    This paper introduces the FIA- II intelligent instrument and discusses the method of design and development of the instrument aiming at existing technics and requires. The FIA- II is according as the basic principle and determining technology of FIA, united with traits of high sensitivity and accuracy of photometric analysis, we can achieve automatic control and analysis. From machine, electronics, optics, chemistry and the design of instrument, the author discusses the principal and requires of processing mechanical parts, and the effect to instrument capability; the choose of electronic parts; design and improvement of optical route; design of determining route of FIA; improvement of determining conditions and analytical application of the instrument.
    The author introduces the chemical reaction principle of determining iron using the instrument, discusses the design principle and method of mechanical drive, unites several FIA flow systems, through contrast, improves experimental conditions. The instrument is based on AT89C51, which is used to control process and collect data. The author also studies the figure of instrument and improves the exterior. The instrument can be used not only analysis on line, but also directly determining samples leaving line. The instrument can determine samples fast, repeatability is good, which can achieve 60 samples percent hour, the relative standard deviation is smaller than 4%, the smallest detection limit is 0.05 mg/L, at the same time, the instrument realizes intelligentize during the process.
    Using this instrument, we can get two working curves: the range of the first curve was 0.10~5.00mg/L and the second was 1.00~50.00mg/L. when the concentration of iron exceeds 50.00mg/L or is smaller than 0.10mg/L, the instrument will discover the abnormity and give alarm.
引文
[1] Scollary.G.New trends in teaching analytical chemistry.Chemistry in Australia, 1995, 62(4): 17~21
    [2] Szabadvary.F, Robinson.A.History of Analytical chemistry.Oxford:Pergamon,1996,(14):583~589
    [3] Hieftje G.M.Science of instrumentation and measurements.Anal Chem,2000,72(9):309A
    [4] Grass.B,Weber.G,Neyer.A.Micro-structured analytical instrumentation for the analysis of liquids.2002,57(10): 1575~1583
    [5] 范世福.分析检测技与分析仪器的现代化发展.分析仪器,2003,(1):1~5
    [6] 张素荣.测绘与分析仪器市场动态分析.焦作矿业学院学报,2003,14(3):70~74
    [7] 汪正范.分析仪器市场走向.现代仪器,2002,38(1):54~55
    [8] 汪正范.2001分析测试仪器出口情况分析,现代仪器,2002,(3):50~51
    [9] 汪正范,潘甦民.美国分析分析仪器贸易顺差继续下降.现代仪器 2003,(1):53
    [10] Ginouves Paul.The next generation of analytical instruments. Biophotonics International, 2003,10(1): 485~489
    [11] 陶照明.我国“十五”期间分析仪器行业产品市场需求预测地质装备.2003,4(2):30~31
    [12] Anon. Analytical instruments.Research and Development (Barrington, Illinos),2001,43(9):36-39
    [13] 范世福.分析检测技术与分析仪器的现代化发展.生命科学仪器,2003,1(3):28~31
    [14 王坤,郝岩平.仪器分析—21世纪的分析科学.中国甜菜糖业,2003,(3):21~23
    [15] 周南.当前分析仪器发展的方向.理化检验-化学分册,2001,37(6):284~285
    [16] 黄福堂,孔庆云,谭伟.国外分析仪器分析技术发展概况.石油仪器,1999,(4):6~12
    [17] Hisamoto Yasuhide, Nogami Taro.Trends in analytical instruments. Hitachi Review. 1994,(4): 147~152
    
    
    [18] 金钦汉.试论我国分析化学学科发展战略.大学化学,2003,18(1):12~17
    [19] 全钦汉.从“匹兹堡会议看分析仪器的跨世纪发展动向”.分析仪器,1992,(2):1~2
    [20] Henley M.Analytical Instrument Market Shows Continued Growth. Ultrapure Water, 1998,15(2): 14~18
    [21] 李昌厚.再论中国分析仪器的十大关系.分析测试技术与仪器,2002,8(4):193~198
    [22] 范世福.论我国分析仪器事业的振兴和发展.仪器仪表学报,1997,18(5):128~134
    [23] 方肇伦.关于流动注射分析今后发展的若干见解.岩矿测试,1997,2:138~140
    [24] 李昌厚.略论流动注射分析及其发展.光学仪器,1990,12(1):34-41
    [25] 吴宁生,吴国胜.流动注射分析法响应曲线的方差和样品分散.分析试验室,1998,3:47~49
    [26] 曾言勤,陈立国,曾令高.流动注射催化光度法测定疽量猛.理化检验-化学分册,1994,30(2):86~87
    [27] 郑晓红.流动注射分析技术的发展现状.仪器仪表与分析监测,2002,(1):1~5
    [28] Yang J, Mac, Zhang S "Flow Injection Catalytic Kinetie Determination of Manganese Using Stopped Flow and Gradient Calibration.Anal. Chim. Acta, 1990, 235(9):323~238
    [29] 方肇伦.流动注射分析法.北京:科学出版社.1999.第1版
    [30] Almeida Claudio F, Cabral Joaquim M.S, Fonseca Luis P.Flow injection analysis system for on-line cutinase activity assay. Analytical Chemical Acta, 2004,502(1):115~124
    [31] 孔繁茂,杨秋菊.邻菲罗啉光度法测定某些试样中铁.冶金分析,2001,4:68
    [32] Lesney Mark S.History of analytical instrumentation. Today's Chemist at Work,1999,(3):40~46
    [33] Anon. FIA outline takes shape. Aviation Week and Space Technology (New York),2001,155(24):73~80
    [34] Baumann E W S O. Analyst(London). 1992, 117(5):913
    [35] 马惠昌.关于流动注射分析的一些名词解释.分析仪器,2001,2:39~44
    [36] Simpson Ronald H. Instrumentation, measurement techniques, and analytical
    
    tools in power quality studies. IEEE Transactions on Industry Applications, 1998,34(3): 534~548
    [37] Catabase. D. N, Research and development for process analytical instruments. Proceedings-Annual Symposium on Instrumentation for the Process Industries (Texas A and M University), 1990, (1): 81~85
    [38] Belen'kii B. G.Zimina T. M,Komyak N. Microanalysis Systems a New Field in Analytical Instrumentation. Industrial Laboratory, 1997,63(1): 1~7
    [39] 李锦昕,马惠昌.流动注射分析方法概述.干旱环境监测,2001,(3):45~50
    [40] 江桂斌.二极管阵列检测器及其应用.干旱环境监测,1995,(3):14~16
    [41] 董宝平.铁与人体健康,化学教育.2003,24(3):1~3
    [42] 施先义.氯化亚锡-硫酸肼-硫酸铈滴定法测定铁.分析实验室,2002,21(2):87~93
    [43] 王莉平,李绍卿.化学发光分析法测定铁的进展.西安工程学院学报,2000,9:73~77
    [44] 刘二保,卫洪清,程介克.铁形态分析进展.分析科学学报,2002,8:344-347
    [45] Ogawa Kinuko,Stollner Daniela, Scheller Frieder, Warsinke Axel, Development of a flow-injection analysis enzyme sensor for fructosyl amine monitoring.Analytical and Bioanalytical Chenistry,2002,373(4):211~214
    [46] 刘青山,吴晓滨.疏基乙酸差示分光光度法测定铁的研究.内蒙古石油化工,2002,27:35~36
    [47] Ding Xinfang, Luo Zixuan,Liu Yanhai.Design of an FIA system.Research & Progress of Solid State Electronics, 2002,22(2): 170~173
    [48] Aoki T, Wakabayashi M.Simultaneous flow injection determination of nitrate and nitrite in water by gasphasechemiluminescence[J].Anal.Chim.Acta 1995,308:308~310
    [49] 邹晓丽,黎源倩.测定锗的二极管阵列检测-流动注射分光光度法.分析测试学报,2000,19(1):9~12
    [50] Powell A Craig, Sepaniak Michael J. Analytical instrumentation and computational methods for generating and optimizing solvent-gradients in micellar electrokinetic capillary chromatography.Analytical Instrumentation (New York), 1993,21(2):25~41
    [51] 王淑琴,徐淑研,张万玲.火焰原子吸收法测定催化剂中铁的含量.化学工程师,2000,22(3):73~77
    [52] Zander Andrew T. Continual improvement of instrumentation for analytical spectrochemistry. Journal of Analytical Atomic Spectrometry,1998, 13(5):459~461
    
    
    [53] 杨祥,陈飞,窦希波等.析相萃取火焰原子吸收光谱法测定水样中痕量铁.理化检验-化学分册,2002,38(7):355~356
    [54] 覃志英,陈广林,盛家荣.微波消解—火焰原子吸收光谱法测定植物样品中的铁.广西预防医学,2003,9(2):108~110
    [55] 于宝杰,王颖,刘颖.催化动力学光度法测定痕量铁.吉林工学院学报 2002,23(2):52~53
    [56] 龚仁敏,朱升学,李恩等.Fe(Ⅲ)-H202-丽春红-1,10-菲罗啉体系催化动力学光度法测定痕量铁.理化检验-化学分册,2000,36(10):445~446
    [57] 邹本义,晋利英,徐承涛.催化动力学光度法测定痕量铁.理化检验-化学分册,2000,36(5):226~227
    [58] 马红燕.间氟苯基荧光酮-溴化十六烷基三甲铵荧光光度法测定微量铁的研究.理化检验-化学分册,2002,38(5):249~251
    [59] 周磊,王丽华,邵光玓.流动注射光度法测铁.北京科技大学学报,1996,18,4:387~391
    [60] 林晶,张宪,张卫国等.Fe-KSCN-CV-阿拉伯树胶体系-FIA-光度法分析测定铁.冶金分析,2000,20,4:62~64
    [61] 余楚蓉.镓和锗.有色冶炼,1994,(1):50~51
    [62] 林良芳.稀散金属—镓.化学教学,1995,(1):25~26
    [63] 王金超.镓生产工艺及用途.四川有色金属,2003(4):14~19
    [64] 盛丽.1,10-邻二氮菲-苦味酸三元配合物分光光度法测定痕量铁.辽宁化工,2003,3:129~130
    [65] 周坚勇.在活化剂邻菲罗琳存在下溴酸钾氢化服脂红褪色催化光度法测定微量铁.理化检验-化学分册,2002,1:23~25
    [66] 刘俊峰,欧宝立,张红.铜(Ⅰ)催化还原邻菲罗啉分光光度法测定硫酸铜中微量铁.冶金分析,2003,2:41~43
    [67] 周南,测定痕星铁用光度试剂(上),上海化工,2000(2):32~35
    [68] 周丰群,闫永胜,李春香,王令娥.Fe(Ⅲ)-EDTA体系薄层树脂相吸光光度法测定痕量铁,冶金分析,2000,20(6):35~36
    [69] J.Ruzicka, Hansen,E.H.,Flow Injection Analysis.Second Edition.New York, Wiley, 1981
    [70] Anon.Analytical instrument makers measure up.Photonics Spectra, 2000, 34(6):76~78
    [71] Li Yongsheng.Applied studies of FIA on water quslity measurement and on-line monitoring of thermal power plants.Zhongguo Dianji Gongcheng Xuebao, 1991,
    
    11(4):38~45
    [72] 苏苓,王艳秋.流动注射光度分析法测定痕量锰.徐州建筑职业技术学院学报,2003,3:49~51
    [73] Rychlovsky Petr, Nemcova Irena, Misarova Hana. FIA liquid-liquid extraction spectrophotometric determination of phenothiazine derivatives in pharmaceuticals. Journal of Engineering and Applied Science, 1996,8(4):213~219
    [74] 柳仁民,李蛟.在线液膜萃取富集流动注射分光光度法测定水中挥发酚.分析化学,2003,5:594~597
    [75] 廖琳,李晖.一种简单、方便的流动注射-分光光度测试装置.实用测试技术,2003.2:17~18
    [76] 周颖,黎源情,杨经国等.流动注射-多道检测-催化动力学同时测定铜和铂.光谱学与光谱分析,2003,23,2:374~376
    [77] 李锦昕,马惠昌.流动注射分析方法概述.干旱环境监测,2001,3:45~50
    [78] Cattaneo M V, Luong J. H. T.On-line chemiluminescence assay using FIA and fiber optics for urinary and blood glucose. Enzyme and Microbial Technology, 1993, 15(5):424-428
    [79] Wiryawan Adam. Use of flow injection analysis for continuous monitoring of river water quality. Laboratory Robotics and Automation,2000,12(3): 142-148
    [80] Kleszczewska Ewa. FIA-spectrophotometric determination of ascorbic acid in rat's lung by reduction of iron(Ⅲ). Journal of Trace and Microprobe Techniques, 2003, 21(1):85~94
    [81] 周方钦,杨柳,龙斯华.流动注射在线萃取色谱预浓集火焰原子吸收法测定钯.分析化学,2003,1:58~61
    [82] Danet Andrei F, Georgescu Emilian, Cheregi Mihaela, Hiliuta Daniela. Flow-injection atomic absorption spectrometry system for mercury determination in water. Laboratory Robotics and Automation, 1998,10(6):355-359
    [83] Quaresma Maria Cristina B, Cassella Ricardo J,De La Guardia Miguel,Santelli Ricardo E. Talanta,20004,62(4):807~811
    [84] 刘道杰,王霞.电化学检测在流动注射分析中的应用.理化检验-化学分册,2002,(11):589~593
    [85] Zen Jyhmyng, Chen Peiyan, Kumar Annamalai Senthil.Flow injection analysis of an ultratrace amount of arsenite asing a prussion blue-modified screen-printed electrode. Analytical Chemistry,2003,75(21):6017~6022
    [86] Male K.B, Luong J.H.T, Inprovement of the selectivity of an FIA amperometric biosensor system for glucose. Biosensors & Bioelectronics,1993,8(5):239~247
    
    
    [87] 彭友元.流动注射化学发光分析.泉州师范学院学报(自然科学),2002,11:50~53
    [88] 陈小利,马红燕,吕俊芳.流动注射化学发光测定维生素B_6.延安大学学报(自然科学版),2003,3:56~59
    [89] 金芬,陈淑桂,王填.流动注射化学发光法测定痕量钯.化学分析计量,2003,12,2:31~32
    [90] 范顺利,吴志皓,张磊等.多巴酚丁胺的流动注射化学发光法测定.分析测试学报,2003,3:87~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700