碳二加氢催化剂用球形氧化铝载体制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。
     球形氧化铝作为催化剂或催化剂载体使用时,以点相互接触,堆砌均匀,因而大大提高了传质和催化效果。油柱成型法制备的氧化铝不仅外观呈球形,而且具有比表面大、强度高、孔结构优良等优点,是理想的C2选择性加氢催化剂载体。针对油柱成型法制备的球形氧化铝在作为C2选择性加氢催化剂载体应用时存在选择性较差、绿油生成量偏高的缺点,本论文对油柱成型法制备的球形氧化铝表面性质进行改性,对制备结构和性能可控的C2选择性加氢催化剂载体开展了系统研究。
     以铝粉和盐酸为原料合成铝溶胶,利用过程还原—磁性分离技术和装置精制铝溶胶,再以其为原料用油柱成型法制备了系列球形氧化铝。通过水洗法、氨水洗涤法和焙烧法对球形氧化铝进行改性。分析结果表明,水洗法和氨水洗涤法可有效降低球形氧化铝载体的氯含量,在一定程度上提高了球形氧化铝载体的水热稳定性和降低了表面酸量。焙烧法对球形氧化铝的性质影响显著,600℃、960℃、1050℃、和1200℃下焙烧的球形氧化铝晶型分别为γ-Al_2O_3、δ-Al_2O_3、θ-Al_2O_3和α-Al_2O_3,随焙烧温度的提高,球形氧化铝载体的比表面积、孔容和表面酸量逐渐减少,平均孔径逐渐增大。
     采用油柱成型法成功制备了一系列La、Si和Ti元素改性的球形氧化铝样品。在La改性的球形氧化铝中,当La/Al摩尔比等于0.02或更高时,La元素在前体中以LaCO_3OH的形式出现,经过高温焙烧形成LaAlO_3。La改性球形氧化铝样品酸中心的数量则先随La/Al摩尔比增加而增大,并在La/Al摩尔比为0.01时达到最大值,当La/Al摩尔比继续增大时,酸中心的数量迅速减小并低于纯氧化铝。添加SiO_2对氧化铝具有热稳定性作用,SiO_2含量越高,球形SiO_2-Al_2O_3的比表面积和孔容增加越显著,热稳定效果越明显,并且酸中心数量随SiO_2含量的增加而增加。添加TiO_2会降低的氧化铝的晶型转变温度,使氧化铝的热稳定性降低,在焙烧温度高于960℃的情况下,Ti元素以晶红石型的TiO_2晶型出现,球形TiO_2-Al_2O_3的比表面积、孔容和平均孔径随TiO_2含量的提高而减少,酸中心数量随TiO_2的引入稍有增加。
     C2选择性加氢评价实验表明,经过1150℃焙烧的空白球形氧化铝载体在负载了活性组分后,在反应中表现出良好的活性和选择性,并且绿油生成量低,性能优于国内现有催化剂,在实际乙烯工业生产过程中具有良好的应用价值。
Ethylene is a monomer that is used in preparing a number of olefin polymers. Ethylene is generally made by the pyrolysis or catalytic cracking of refinery gas, ethane, propane, butane, and the like. Ethylene so produced usually contains small proportions of acetylene. In polymer grade ethylene, it is generally preferred that the acetylene content be less than about 10 ppm, most preferably less than about 5 ppm. One of the techniques that has been used in the past for reducing the amount of acetylene in an ethylene stream has involved selective hydrogenation using a catalyst.
     When used in fixed beds, spherical alumina facilitates uniform packing of the bed, whereby variations in the pressure drop through the bed are minimized and channeling of the feed stream of reaction components is substantially reduced. Spherical alumina prepared by oil-drop method can be employed in the selective hydrogenation reaction on account of high activity, high specific surface area, high intensity, fine pore volume and pore distribution maintaining the advantage of spherical form. The said support could not perform both said excellent performance and high purity, pore properties and high thermalstability together. In the thesis, preparing spherical alumina with controlling of structure and properties has been studied.
     The alumina hydrosol was firstly synthesized using aluminum powder and hydrochloric acid. The amount of impurity in alumina hydrosol was decreased during the synthesis of alumina hydrosol using reduction-magnetic separation process. Spherical alumina granules are prepared by the oil-drop method using the purified alumina hydrosol as starting material. Spherical alumina granules are modified by hot water, hot ammonia and calcining at different temperature. The analysis results show that the amount of Cl of spherical alumina modified by hot water and ammonia was highly reduced. The hydrothermal stability has been improved and the surface acidity has been decreased. The crystal types of alumina calcined at 600℃, 960℃, 1050℃and 1200℃areγ-Al_2O_3,δ-Al_2O_3,θ-Al_2O_3 andα-Al_2O_3 respectively. The specific surface area, pore volume, and surface acidity are decreased and average pore diameter is enlarged with the increase of calcining temperature.
     Spherical alumina modified by La, Si, and Ti was prepared. The sample prepared by La modified with 0.02 or higher of La/Al mole ratio shows LaCO_3OH in precursor and LaAlO_3 after calcined at 600℃or higher. With the increase of La/Al mole ratio, the La modified alumina's acid sites increase at the beginning, reach maximum value with 0.01 of La/Al mole ratio, and then decrease rapidly and lower than normal alumina. SiO_2 can improve the thermalstability of the spherical alumina, specific surface area, pore volume and surface acidity increase with the increase of SiO_2 content. TiO_2 can weaken the thermalstability of the spherical alumina, when calcined at 960℃or higher, there is rutile TiO_2 crystal in spherical alumina, specific surface area, pore volume and average pore diameter decrease with the increase of TiO_2 content.
     The catalyst prepared by spherical alumina calcining at 1150℃and loaded with active ingredient shows good activity and selectivity and a low production level of green oil in selective hydrogenation for acetylene action test. The result is better than that of exiting products. There's good prospect of the catalyst being employed in the ethylene industry.
引文
[1] 张谦温,刘新香,朱起明.炔烃和二烯烃选择加氢现状与发展[J].石油化工,1998,27(1):53
    [2] 戴伟,朱警,万文举.C2馏份选择加氢工艺和催化剂研究进展[J].石油化工,2000,29(7):535-540
    [3] 王松汉.乙烯装置技术[M].北京:中国石化出版社,1994
    [4] 黄开辉,万惠霖.催化原理[M].北京:科学出版社,1983
    [5] 黄仲涛.石油化工过程催化作用[M].北京:中国石化出版社,1995.7-19
    [6] 彻恩格TTP,萨萨吉KJ,詹森MM,et al.加氢催化剂及方法[P].CN1181283,1998-05-13
    [7] 张莉,陈伟,许学翔,等.金属有机配位化合物催化烯烃/CO共聚合的动向[J].石油化工,1998,27(5):379-384
    [8] 朱洪法.《催化剂载体》[M].北京:化学工业出版社,1980,1-303
    [9] Park Y H, Price G L. Promotional effects of potassium on palladium/alumina selective hydrogenation catalysts[J]. Ind. Eng. Chem. Res., 1992, 31: 469-474
    [10] Flick K, et al. Supported palladium catalyst for selective catalytic hydrogenation of acetylene in hydrocarbonaceous streams[P]. USP, 5856262, 1999-01-05
    [11] Ihm S K, et al. Process for Manufacturing a Titania Supported Palladium Catalyst[P]. USP: 4839329, 1989-07-13
    [12] Cheung T T P, Tack P. Hydrogenation process and catalyst therefor comprising palladium and silver deposited on a spinel support[P]. EP: 0839573A1, 1998-06-05
    [13] 潭蔚泓.动态-稳态法研究乙烯加氢反应[J].石油化工,1986,15(11):671-677
    [14] 高荫本,章斌,关春梅,等.超细Pd/Al_2O_3催化剂及其对乙炔选择加氢催化性能研究[J].天然气化工,1996,21(5):14-18
    [15] 徐斌,朱崇业,李全芝.钼镍负载催化剂表面组份及其活性的研究[J].物理化学学报,1994,10(6):543-548
    [16] 宁平,黄建洪,罗永明,等.Ag/Al_2O_3催化剂还原NO性能的研究[J].化工环保,2004,24:335-337
    [17] 王敏,任红,张廷山,等.负载型铬系聚合催化剂的研究进展[J].江苏化工,2000,28(5):16-20
    [18] 马宁,王正平.担载型铂基催化剂制备方法的研究[J].化学工程师,2004,(12):51-52
    [19] 刘勇,陈晓银.氧化铝热稳定性的研究进展[J]。化学通报,2001,(2):65-70
    [20] 陈尔宏.化学品氧化铝的生产与市场预测[J].世界有色金属,2003,(6):25-29
    [21] Burtin P, Brunelle J P, Pijulat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports Ⅰ: Kinetic data[J]. Applied Catalysis A: General, 1987, 34(1): 225-238
    [22] Mchale J M, Aurous A, Occelli M L, et al. Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum. Ⅱ. NMR and microcalorimetry results [J]. Applied Catalysis A: General, 2004, 264(2): 161-168
    [23] Schaper H, Amesz D J, Doesburg E B M, etal. Synthesis of thermostable nickel-alumina catalysts by deposition-precipitation[J]. Applied Catalysis. 1985, 16(3): 417-428
    [24] Marvin F L J. Surface area stability of aluminas [J]. Journal of Catalysis, 1990, 123(1): 245-259
    [25] 卢伟光,龙军,田辉平.镧和铈改性对氧化铝性质的影响[J].催化学报,2003,24(8):574-578
    [26] 卢冠忠,王幸宜,汪仁,等.氧化铈在非贵金属氧化物催化剂中的作用[J].高等学校化学学报,1994,15(5):895-898
    [27] 君雅,阎炜,杨继涛,等.新型覆炭催化剂载体的研制[J].石油大学学报(自然科学版),1995,19(4):103-106
    [28] 赫崇衡,郭杨龙,汪仁.制备方法对γ-Al_2O_3载体水热稳定性的影响[J].石油化工,1998,27(1):27-30
    [29] Beguin B, Garbowski E, Primet M. stabilization of alumina by addition of lanthanum[J]. Applied Catalysis, 1991, 75(1): 119-132
    [30] Church J S, Cant N W, Trimm D L. Surface area stability and characterisation of a novel sulfate-based alumina modified by rare earth and alkaline earth ions[J]. Applied Catalysis A: General, 1994, 107(2): 267-276
    [31] Masato Machida, Koichi Eguchi. Preparation and characterization of large surface area Ba0.6·Al_2O_3[J]. Chemistry Society, Japanese, 1988, 61
    [32] 宋振亚,吴玉程,杨晔,等.纳米Al_2O_3粉体的制备及其热稳定性的改善[J].矿冶工程,2004,24(6):78-81.
    [33] Church J S, Cant N Wo Stabilisation of aluminas by rare earth and alkaline earth ions[J]. Applied Catalysis, A: General, 1993, 101(1): 105-116
    [34] Francois Oudet, Pierre Courtine, Alain Vejux. Thermal stabilization of transition alumina by structural coherence with LnAlO_3(Ln=La, Pr, Nd). Journal of Catalysis[J]. 1988, 114(1): 112-120
    [35] Satoshi Matsuda, Masaki Hojo, Bodo Fiedler, et al. Mode Ⅰ and Ⅱ delamination fatigue crack growth behavior of alumina fiber/epoxy laminates in liquid nitrogen[J]. Applied Catalysis, 2002, 24(2-4): 109-118
    [36] 史雯,何阿弟,陈晓银,等.氧化钡对氧化铝及不同铝源负载的单钯催化剂的高热稳定性研究[J]复旦学报(自然科学版),2003,42(3):423-427
    [37] Antonio Sepulveda-Eseribano, Michel Primet, Helene Praliaud. Influence of the preparation procedure and of the barium contenton the physicochemieal and catalytic properties of barium-modified platinum/alumina catalysts[J]. Applied Catalysis, A: General; 1994, 108(2): 221-239
    [38] Masato Machida, Koichi Eguchi, Hiromichi Arai. Effect of additives on the surface area of oxide supports for catalytic combustion[J]. Journal of Catalysis, 1982, 103(2): 385-393
    [39] Labalme Valefie, Garbowski Edouard, Guihaume Nolven, et al. Modifications of Pt/alumina combustion catalysts by barium addition Ⅱ. Properties of aged catalysts[J]. Applied Catalysis A: General, 1996, 138(1): 93-108
    [40] Amato L, Martorama D, Sliengo B. Sintering and Satalysis[M]. New York: Plenum, 1975, 187
    [41] Labalme V, Beguin B, Gaillard F, et al. Characterisation and acid properties of some modified combustion catalysts: Pt/alumina with barium and Pt/zirconia with yttrium[J]. Applied Catalysis A: General, 2000, 192(2): 307-316
    [42] Liu Yong, Chen Xiaoyin, Niu Guoxing, et al. Effect of gelation on thermo-stability of alumina modified with barium[J]. Chinaese Journal of Catalysis, 1999, 20(6): 664-666
    [43] 姚楠,熊国兴,张玉红,等.溶胶凝胶法制备中孔分布集中的氧化物及混合氧化物催化材料[J].中国科学(B辑),2001,31(4),355-363
    [44] Hong Tsailin, Lui Hsehtsang, Yeh Chuintih, et al. Electron microscopic studies on pore structure of alumina[J]. Applied Catalysis A: General, 1997, 158(1-2): 257-271
    [45] 赵琰.氧化铝、改性氧化铝及硅酸铝的酸性特征[J].工业催化,2002,10(2):54-58
    [46] 程昌瑞,朱化青,高志贤,等.重油加氢脱氮催化剂的研制[J],石油炼制与化工.1999,30(4):39-42
    [47] 王公应,刘竹青,胡爱琳.改性γ-Al_2O_3担载Pt催化剂用于硝基苯加氢制对氨基苯酚[J].催化学报,2000,21(9):5-7
    [48] 周志明,程振民,李卓,等.在Pd/γ-Al_2O_3催化剂上液相苯加氢的反应动力学[J].华东理工大学学报,2004,30(1):1-5
    [49] Caizhen Li, Yuqing He, Fuliang Jing, Qiaoying Chen. Preparation of spherical γ-Al_2O_3 support by rolling agglomeration[J]. Industrial Catalysis, 2003, 11(9): 39-40
    [50] Xiangjin Ding, Jizhou Zhang, Jingjian Li, etal, Spray-dried alumina granules for extrusion[J]. Journal of Inorganic Materials, 2001, 16(6): 1094-1100
    [51] 王国成,潘锦程,马爱增.一种球形氧化铝的油氨柱成型法[P].CN1493524,2004-05-05.
    [52] 董维阳,苏运来,王文祥,等.球形活性氧化铝的制备和性能研究[J].工业催化,1995,(2):36-42
    [53] Hoeksra. Manufacture of spheroidal alumina particles[P]. USP 2620314, 1952-11-09
    [54] Mitsche. Manufacture of spheroidal alumina particles[P]. USP 3943070, 1976-03-09
    [55] Michalko. Method of preparing spheroidal alumina particles[P]. USP 4250058, 1981-02-10
    [56] Lee. Richard K. Manufacture of spheroidal alumina particles[P]. USP 3979334, 1976-09-07
    [57] Takumi Shizuo. Method of manufacture of spherical alumina particles[P]. USP 4108971, 1978-08-22
    [58] 王宝友,黄传真,艾兴,赵军.Al_2O_3溶胶的制备工艺优化及性质的探讨[J].陶瓷学报,1998,19(4):209-212 19(4): 209-212
    [59] Brinker C J. Sol-Gel Sience-The physics and chemistry of sol-gel processing[M]. New York: Academic Press INC, 1990
    [60] 谢安建,沈玉华,黄方志,等.铝溶胶的制备及影响因素的研究[J].安徽化工,2003,(124):9-10
    [61] Yuwang Yang, Kairong Li, Zurun Yang, et al. Study on enlarging pores of active alumina[J]. Petrochemical Technology, 2002, 31(11): 913-916.
    [62] 王淑琴,徐淑研,张万玲.火焰原子吸收法测定催化剂中铁的含量[J].化学工程师,2000,21(6):46-47
    [63] 申建华,刘惠斌,周序.原料油中铁对重油催化裂化的影响[J].炼油技术与工程,2004,34(9):34-37
    [64] 任忠胜.超纯氧化铝国内外生产技术及新工艺研究[J].化工矿物与加工,2000,(3):4-7
    [65] 宋晓岚.高纯超细氧化铝粉体制备技术进展[J].陶瓷工程,2001,(12):44-46
    [66] 张美鸽,林兰生,赵高伦,等.超微细高纯氧化铝的制备方法[P].中国专利,CN1062124,1992-06-24
    [67] 连加松,连四海,连千荣,等.高纯纳米级氧化铝的制备方法[P].中国专利,CN1341559,2002-03-27
    [68] 石油化工科学研究院.铝溶胶法油柱成型制备γ-Al_2O_3小球担体的研究[J].石油炼制,1983,(5):31-37
    [69] 李殿卿,段雪,张香梅.一种铝溶胶制备过程磁性分离连续精制装置及其应用[P].中国专利,CN1746111,2006-03-15
    [70] 张香梅.氧化铝的可控制备及结构和性能研究[D]北京:北京化工大学理学院.2005
    [71] Johnson M M, et al. Selective Hydrogenation Catalyst [P]. USP 4404124, 1983-09-13
    [72] Johnson M M, et al. Alkyne Hydrogenation Process[P]. USP 5585318, 1996-12-17
    [73] Moon S H, et al. Preparation of catalysts for the selective hydrogenation of acetylene in acetylene-containing ethylene streams[P]. DE 19757990A1, 1998-07-02
    [74] Hudson H C. Catalysts and process for the selective hydrogenation of acetylenes[P]. USP 4577047, 1986-03-18
    [75] 朱警,戴伟,穆玮,等.选择加氢催化剂载体氧化铝的改性及其工业应用(Ⅰ)[J].化工进展2004,23(2):192-194
    [76] 穆玮,朱警,戴伟,等.选择加氢催化剂载体氧化铝的改性及其工业应用(Ⅱ)[J].化工进展2004,23(3):300-303
    [77] 丁子上,翁文利.溶胶-凝胶工艺制备材料的进展[J].硅酸盐学报,1993,2l(5):443-4502
    [78] 丁星兆,何怡贞.溶胶.凝胶工艺在材料科学中的应用[J].材料科学与工程,1994,12(2):1-8
    [79] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. 2nd Ed. New York: Academic Press, 1982: 41
    [80] 季惠明,葛志平,胡松屹,等.氧化铝-氧化硅系纳米粉体的制备及稀土掺杂改性研究[J],功能材料,2004,35(6):788-789
    [81] Basila M R, Kantner T R. Infraned spectrum of ammonia adsorbed on silica-alumina[J]. Journal of Physical Chemistry, 1967, 71(3): 467-472
    [82] Basila, M. R.; Kantner, T. R. The nature of the acidic sites on silica-alumina, a revaluation of the relative absorption coefficients of chemisorbed pyridine[J]. Journal of Physical Chemistry, 1966, 70(5): 1681-1682
    [83] Kaneko E Y, Puleinelli S H, Teixeira V, et al. Sol-gel synthesis of titania-alumina catalyst supports [J]. Appl Catal A, 2002, 235(1-2): 71-78
    [84] Gutierrez-Alejandre A, Gonzalez-Gruz M, Trombetta M, et al. Characterization of alumina-titania mixed oxide supports Part Ⅱ: Al_2O_3-based supports[J]. Microporous Mesoporous Mater, 1998, 23(5-6): 265-275
    [85] Vargas A, Montoya J A, Maldonado C, et al. Textural properties of Al_2O_3-TiO_2 mixed oxides synthesized by the aqueous sol method[J]. Microporous Mesoporous Mater, 2004, 74(1-3): 1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700