滤波多音调制技术(FMT)中信道估计和同步技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来宽带无线通信系统是满足高速率、大容量的系统,现有技术很难完全满足未来宽带无线通信系统要求。在这样的背景下,论文以作为多载波调制技术之一的FMT(Filtered Multitone)为研究对象,主要研究了FMT信道估计技术和同步技术。
     首先,论文探讨了FMT实现结构,并详细分析了FMT信号。首次采用数形结合方式推导了FMT系统基于IDFT/DFT快速算法和多相滤波的有效实现结构,更生动形象地解释了FMT从原理模型结如何转化为有效实现结构;论文还从时域和频域两个角度深入分析和研究了FMT信号,解释了原型滤波器和多径信道与FMT信号中有用信号、ISI和ICI之间的关系。
     其次,研究了FMT时域信道估计方法。现有FMT时域信道估计算法均是有偏的,在高信噪比下会出现地板效应。为此,论文提出了基于PN码序列的改进无偏估计算法和基于一种新序列的信道估计算法。相比于现有算法,两种算法均是无偏估计,估计性能与信道特性无关,估计精度更高。新序列与PN码序列的互相关是单值函数,基于该新序列的估计算法具有更低的运算量,实现更加简单。由于PN码序列数量有限,选择余地小,论文提出基于OCI(Optimum Channel Independent)序列的短周期平均信道估计算法。该算法利用序列的正交周期特性以及周期长度灵活可调的特点,获得了比前面的估计算法更高的估计性能。借助于IFFT/FFT,算法的复数乘法器数量只相当于序列周期大小。为避免在低信噪比下小路径增益对估计性能起负面作用,论文提出了噪声功率估计方法,并基于噪声抑制改善的信道估计性能,通过将淹没在噪声中的小路径增益置零来降低噪声对估计的影响,提高了低信噪比下的估计性能。
     再者,研究了FMT频域信道估计方法和频域补偿方法。为克服使用时域信道估计时频繁插入时域导频的缺点,避免采用空时联合信道估计的高复杂度,论文提出了FMT频域导频辅助信道估计算法。该算法在频域若干子载波上插入导频数据,对应子载波信号表现为信道加权频域响应,而加权值是由原型滤波器唯一确定,由此可获得信道时域响应估计,算法具有较高估计精度并获得较好系统性能;使用信道时域补偿时需要进行矩阵求逆或伪逆运算,在子载波数较大时,运算量会很大,为此论文提出了FMT单抽头频域均衡算法。在非频率选择性衰落信道下,该算法体现出优于时域补偿的性能,并且具有更低的复杂度和运算量;论文还研究了CP-FMT(Cyclic Prefix FMT),讨论了CP-FMT下的信道估计和补偿方法以及实现结构,在频率选择性衰落信道,CP-FMT表现出远高于FMT的性能。
     最后,研究了FMT同步技术。在FMT系统中,原型滤波器阶数过大,使FMT信号产生长记忆效应,从而导致时域训练数据周期变长、小数倍载波频率偏差捕获范围缩小、同步开销大。为解决以上问题,论文提出了短周期循环同步算法。与其他FMT同步算法不同,该算法只在若干等间隔子载波上保持训练数据非零,缩短了时域训练数据周期,扩展了小数倍载波频率偏差范围估计范围,提高了定时位置估计精度;为进一步提高定时同步性能,降低同步开销,论文提出了可变窗长同步算法,算法利用接收信号与本地训练数据的相关性获取符号定时偏差和小数倍载波频率偏差。与之前的算法相比,该算法只需一个符号的同步开销,定时同步位置估计达到100%,小数倍载波频率偏差可扩展到最大范围,而且捕获精度要高得多;以上同步算法只能估计小数倍载波频率偏差,为纠正整数倍频率偏差,论文提出了能量检测判决算法、均衡后和均衡前PN码相关检测算法。能量检测判决算法利用短周期循环同步算法中训练符号在子载波上能量等间隔分布的规律来观察子载波能量峰值,能量峰值的偏移即为子载波偏移。该算法只能获取小于训练符号非零数据间隔的整数倍载波频率偏差,估计精度很高,即使在0dB信噪比下正确捕获概率也可达到99%以上;均衡后PN码相关检测算法首先在均衡判决后的数据流中通过同步码寻找PN码在时间方向上的位置,再根据PN码相关峰值在子载波频率方向上的偏移来确定整数倍载波频率偏差。算法在低信噪比下仍表现出高于94%的正确捕获概率,但该算法受均衡器性能的限制;均衡前PN码检测算法在两个发送符号中插入相同PN码,在FFT之后搜索这两个符号与本地PN码之间的相关峰值,在时间和频率方向该峰值均表现出唯一性,其正确捕获概率达到100%。
A future wireless broadband communication system will necessarily be a high speed and large capacity system that can not be supported by all existing communication technologies. In this case, this paper researched FMT technology, one of multicarrier modulation technologies, where channel estimation technology and synchronization technology are two mainly researched aspects.
     Firstly, this paper researches an efficient implementation of FMT systems and analyzed FMT signal in detail. A method with mathematics reasoning and graph analyzing is first used to show how to transform an irrealizable theory structure into an efficient implementation structure. The efficient structure is based on IFFT/FFT and a polyphase structure of a prototype filter. And then FMT signal is first analyzed in time domain and frequency domain, which explains the relations between a prototype filter, a multipath channel and three components of FMT signal including the useful signal, ISI and ICI.
     Secondly, this paper researches FMT channel estimation methods in time domain. Because the existing time-domain estimation algorithms are biased, a floor effect appears when SNR is high. Therefore, two algorithms are presented in this paper. The one is a modified unbiased estimation algorithm based on PN code, and the other is a estimation algorithm based on a new sequence whose correlation with PN code is an uniform function. Compared with the existing algorithms, these two algorithms are both unbiased and have performances independent of channel characteristics. Their estimation precisions are higher. And the second algorithm can be realized more easiler for its lower computing cost. Because the limited amount of PN code results in a small selected range, this paper presented an averaged short period channel estimation algorithm based on OCI (Optimum Channel Independent) sequence. OCI sequence is periodic and orthogonal with an adjustable period. The computing cost only approximates the value of the sequence’s period by virtue of IFFT/FFT, which is lower than the first above algorithm. This algorithm also gains better performance than the above two algorithms. To avoid a negative effect on estimation performance from some small ray gains, this paper also presented methods for estimating the noise power. A method of restraining noise, based on the estimated noise power, is used to improve the performance of channel estimations.. These methods set the small ray gains undistinguishable from noise to zeros. They reduce the effect of the small gains on estimations and improve estimation performance when SNR is low.
     Thirdly, this paper researches a estimation method and a channel equalization method in FMT frequency domain. When a channel estimation is implemented in time domain, time pilot data will be frequently inserted. And when space-time joint channel estimation is adopted, a high complexity is also inevitable. To overcome the above two defaults, FMT frequency pilot assisted channel estimation algorithm is presented. When pilots are inserted in frequency domain, signals in corresponding subcarriers are expressed as a weighed frequency response of channel where weights are determined only by the prototype filter and the matched filter. This algorithm shows a good estimation performance that helps FMT to get a good system performance. It is known that operations including matrix inverse or pseudoinverse are inevitable when the FMT signal is equalized by the estimated channel in time domain. That will bring a very high computing cost especially when the amount of subcarriers is great. Thereby a frequency-domain single tapped equalization method is presented. When the channel is not frequency selective, the performance of this algorithm is better than that of a time-domain equalization. And it has a lower complexity and a lower computing cost. This paper also researches estimation and equalization methods of CP-FMT (Cyclic Prefix FMT). In a frequency selective channel, CP-FMT performs better than FMT.
     Lastly,this paper researches FMT synchronization technologies. In FMT systems, the high-order prototype filter causes long memory between successive transmitted FMT symbols. Because of this, the period of time-domain training data is long that increases synchronization overheads, and shrinks a range of the captured fractional carrier frequency offset. To settle the above questions, this paper presented a shortened cyclic synchronization algorithm. It inserts nonzero training data in subcarriers with a same interval. Compared with other FMT synchronization algorithms, it decreases the period of time-domain training data and shrinks the synchronization window. Therefore, it extends the range of the captured frequency offset and improves the estimation precision of the time offset. In order to further synchronization performance and reduce synchronization overheads, this paper presented a synchronization algorithm with an adjustable window. It estimates the time offset and the frequency offset based on the correlativity between the received signal and the local training data. It requires only one training symbol and estimates the time offset with a probability as 100%. It also extends the range of the frequency offset to maximum and improves the estimation precision approximating 100%. Carrier frequency offset includes a fractional offset and an integer offset relative to a frequency interval between subcarriers. The above synchronization algorithms only estimate the fractional offset. Therefore, in order to determine the integer carrier frequency offset,this paper presents energy detecting and deciding algorithm、post-equalizer and pre-equalizer PN correlative detecting algorithms. The first one detects an energy distribution of all subcarriers that is based on the energy distribution rule of training symbols used in the shortened cyclic synchronization algorithm. The offset of the energy peak equals to the normalized integer carrier frequency offset with the frequency interval. Its precision is so high that the probability can be larger than 99% even if SNR is 0dB. However, this algorithm only determines the integer carrier frequency offset smaller than the interval between nonzero values in training symbols. The second one searches the position of a PN code in signals from equalizers, which depends on a synchronous code before the PN code. Then the offset is determined by detecting the position of the correlative peak of the found and a local PN code in frequency domain. The default is that the performance of this algorithm depends on FMT equalizers. However, this algorithm shows a high probability of determining the offset correctly that exceeds 94%. The third one inserts two same PN codes into the transmitted FMT symbols in frequency domain. The offset is determined by detecting the correlative peak between the two PN codes and a local PN code. The peak is unique in time domain and frequency domain that results in a probability 100% of capturing the offset correctly.
引文
[1] Tony Chan.Getting Ready for GPRS[J].Wireless Asia,April,2000.18~19.
    [2]李学斌.新一代移动通信技术的发展与展望[J].中国科技信息,2007年,第10期,123~124.
    [3] H.Sampath,S.Talwar and J.Tellado et al..A Fourth Generation MIMO-OFDM Broadband Wireless System:Design,Performance and Filed Trial Result[J].IEEE Commun. Magazine,Sept. 2002,Vol.40,143-149.
    [4] Y.Neuvo.Future Wireless Technologies[C].IEEE 6th CAS Symp. on Emerging Technologies:Mobile and Wireless Comm.,Shanghai,China,May 31~Jun. 2,2004,Vol.1,I-1~3.
    [5] A.Doufexi,S.Armour and A.Nix et al..Design Considerations and Initial Physical Layer Performance Results for a Space Time Coded OFDM 4G Cellular Network[C].Proc. of 13th IEEE PIMRC’02,Lisbon,Portugal,Sept.2002,Vol.1,192~196.
    [6] R.W.Chang.Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission[J].Bell Syst. Tech. J.,Dec.1966,1775~1796.
    [7] B.R.Saltzber . Performance of an Efficient Parallel Data Transmission System[J].IEEE Trans. Commun. Tech.,Dec.1967,Vol.COM-15,No.6,805~811.
    [8] H.Steendam,M.Moeneclaey.Sensitivity of Orthogonal Frequency-Division Multiplexed Systems to Carrier and Clock Synchronization Errors[J].Signal Processing,2000,Vol.80,No.7,1217~1229.
    [9]张海滨.正交频分复用的基本原理与关键技术[M].北京:国防工业出版社,2006年1月,26-29.
    [10] G.Cherubini,E.Eleftheriou and S.?lcer.Filtered Multitione Modulation for VDSL[C].IEEE Global Telecommunications Conference,Riode Janeiro,Brazil,1999,Vol.2,1139~1144.
    [11] Tiejun Wang,J.G.Proakis,J.R.Zeidler.Analysis of Per-Channel Equalized Filtered Multitone Modulations Over Time-Varying Fading Channels[C].17th IEEE PI MRC’06,Sept. 2006,1~5.
    [12] A.Assalini,S.Pupolin and L.Tomba.DMT and FMT Systems for Wireless Applications:Performance Comparison in the Presence of Frequency offset andPhase Noise[C].WPMC,Japan:Yokosuka,Kanagawa,2003.
    [13]朱维红,高振明,李金海等.AWGN信道中FMT的性能研究.山东大学学报(理学版) [J].2004年4月,第39卷,第2期,81~84.
    [14]王秋瑾,高振明,朱维红.FMT和OFDM在频偏影响下的可达比特率性能比较[J].山东大学学报(理学版) ,2005年8月,第40卷,第4期,81~85,89.
    [15]朱维红,高振明,高有军等.滤波多音调制系统频偏分析与仿真[J].通信学报,2005年9月,第26卷,第9期,124~128.
    [16] N. Benvenuto,G. Cherubini and L. Tomba.Achievable Bit Rates of DMT and FMT Systems in the Presence of Phase Noise and Multipath[C].IEEE 51st VTC2000.Tokyo,May 2000,Vol.3,2108~2112.
    [17] A.M.Tolleno , S.Pupolin . Discrete Multi-Tone and Filtered Multi-Tone Architecture for Broadband Asynchronous Multi-User Communications[C].Proc. of WPMC’01,Aalborg,Sept.2001,461~466.
    [18]朱维红,张丙峰,高振明.滤波多音调制系统容量及滤波器设计[J].山东大学学报(理学版),2007年1月,第42卷,第1期,49~54.
    [19] Richard D.J. van Nee,Ramjee Prasad,OFDM for Wireless Multimedia Communication[M].Artech House Publishers,2000.
    [20] A.M.Tonello,F.Pecile.Analysis of the Robustness of FMT Modulation in Time-Frequency Selective Fading Channels[C].IEEE 66th Vehicular Technology Conference,Baltimore,MD,Sept.30~Oct.3,2007,1366~1370.
    [21] Tiejun Wang,J.G.Proakis and J.R.Zeidler.Interference Analysis of Filtered Multitone Modulation over Time-varying Fading Channels[C].IEEE Global Telecommunications Conference,St. Louis,MO,Nov. 28-Dec. 2,2005,Vol.6,3586~3951.
    [22] Tiejun Wang,J.G.Proakis and J.R.Zeidler,Interference Analysis of Filtered Multitone Modulation Over Time-Varying Frequency-Selective Fading Channels[J].IEEE Transactions on Communications,Apr. 2007,Vol.55,No.4,717~727.
    [23]王秋瑾,高振明,朱维红等.多径衰落信道中滤波多音(FMT)调制性能分析[J].网络与通信,2005年,第3期,23~26.
    [24] A.M. Tonello,F. Pecile.Analytical results about the robustness of FMT modulation with several prototype pulses in time-frequency selective fading channels[J].IEEE Transactions on Wireless Communications,May 2008,Vo.7,No.5,Part 1,1634~1645.
    [25] A.M.Tonello,F.Pecile.On the Effect of Time-Variant Frequency Selective Fading in an FMT Modulated System[C].IEEE GLOBECOM '07,26-30 Nov. 2007,4317~4322.
    [26] A.M.Tolleno.Asynchronous multicarrier multiple access:optimal and sub-optimal detection and decoding[J].Bell Labs Technical Journal,Feb.2003,Vol.7,No.3,191~217.
    [27] E.Costa,A.Filippi and S.Ometto et al..Asynchronous Uplink Transmission in FMT-FDMA Systems[C].14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Processings,Beijing,7-10 Sept., 2003,Vol.2,1090~1094.
    [28] ITU-T,Study Group 15,Contribution 131.Draft New Recommendation G.992.1-Asymmetric Digital Subcriber Line (ADSL) Transceivers[S].Jul.1999.
    [29] ANSI T1E1.4 , T1E1.4/98-043R2 , Draft Technical Document Revision 14A.Very-high-speed Digital Subscriber Line System Requirement[S].May 1998.
    [30] G.Cherubini,E.Eleftheriou and S.?lcer.Filter Bank Modulation Techniques for Very High Speed Digital Subscriber Lines[J].IEEE Commun. Magazine,May 2000,Vol.38,No.5,98~104.
    [31] ITU-Telecommunication Standardization Sector (Study Group 15).G.vdsl:CAP/ QAM,DMT,and Filter–Bank Modulation Techniques for VDSL[S].
    [32] B.Borna , T.N.Davidson . Efficient Design of FMT Systems[J] . IEEE Transactions on Communicaitons,May 2006,Vol.54,No.5,794~797.
    [33] B.Borna,T.N.Davidson.Efficient Filter Bank Design for Filtered Multitone Modulation[C].2004 IEEE International Conference on Communications,Paris,20-24 June,2004,Vo.1,38~42
    [34]张丙峰,朱维红,高振明等.滤波多音调制系统的滤波器优化设计[J].山东大学学报(理学版) ,2007年5月,第42卷,第5期,19~23.
    [35] A.M.Tolleno,S.Pupolin.Discrete multi-tone and filtered multi-tone architecture for broadband asynchronous multi-user communications[C].Proc. of WPMC’01,Aalborg,Sept.2001,461~466.
    [36]陈悦,朱维红,高振明等.基于线性相位FIR滤波器的FMT系统的实现方法[J].山东大学学报(理学版),2004年2月,第39卷,第1期, 93~97.
    [37]高有军,朱维红,高振明等.FMT系统中的滤波器组设计[J].山东大学学报(理学版),2004年10月,第39卷,第5期, 69~72.
    [38]高有军,高振明,许峰等.滤波多音频技术及其滤波器组设计[J].山东大学学报(工学版),2005年10月,第35卷,第5期,56~59.
    [39]张灿,高振明.FMT系统中基于最小均方误差法的滤波器组优化设计[J].电子技术应用,2006年,第6期,118~120.
    [40]张灿,高振明,朱维红等.FMT系统中滤波器组的优化设计[J].山东大学学报(理学版),第4l卷,2006年8月,第4期, 93~96,106.
    [41] J.S.Mao,W.S.Lu and A.Antoniou.Multiplierless Implementation of Filtered Multitone Modulation for Very-High-Rate Digital Subscriber Lines[C].2001 IEEE PACRIM,Victoria,BC,Canada,Vo.1,2001,168~171.
    [42] P.Silhavy.Half-Overlap Subchannel Filtered MultiTone Modulation with the Small Delay[C].7th International Conference on Networking,13-18 April 2008,474~478.
    [43] N.Benvenuto,S.Tomasin and L Tomba.Receiver Architectures for FMT Broadband Wireless Systems[C].53rd IEEE VTC’01,Rhodes Island ,Greece,2001,Vol.1,643~647.
    [44] N.Benvenuto,S.Tomasin and L.Tomba.Equalization Methods in OFDM and FMT Systems for Broadband Wireless Communications[J].IEEE Transactions on Communications,Sept. 2002,Vol.50,No.9,1413~1418.
    [45]陈悦,朱维红,高振明等.一种FMT系统内的MMSE-DFE均衡方法及其性能研究[J].信号处理,2005年2月,第21卷,第1期,32~34.
    [46] Inaki Berenguer , Ian J.Wassell . Efficient FMT Equalization in Outdoor Broadband Wireless Systems[C].Proc. IEEE International Symposium on Advances in Wireless Communications,Victoria,Canada,Sept.2002.
    [47]李晨,高振明,朱维红等.滤波多音调制中的预编码性能研究[J].山东大学学报(理学版),2005年2月,第40卷,第1期,90~94.
    [48] N. Benvenuto,S.Tomasin.Efficient Pre-coding Schemes for FMT Broadband Wireless Systems[C].13th IEEE PIMRC,Lisbon,Portugal,15-18 Sept.,2002, Vo.4,1493~1497.
    [49] Sun Qiaoyun,Gao Zhenming.The Research on Precoding in Filtered Multitone Modulaiton[C].2005 International Conference on Wireless Communications, Networking and Mobile Computing,Wuhan,23-26 Sept.,2005,Vo.1,661~664.
    [50] Weihong Zhu,Zhenming Gao.Data-aided Equalization Scheme for FilteredMultitone Modulation System[C].IEEE ICDT '06,29-31Aug.,2006,3.
    [51]张丙峰,朱维红,高振明等.基于滤波多音调制系统的辅助判决均衡器[C].山东大学学报(工学版),2007年4月,第37卷,第2期,76~79.
    [52] Kuo-Song Liao,Shyue-Win Wei.Two-stage Frequency-domain Equalizer for Filtered Multi-tone Transmission Systems[C].ISPAC’06,Japan:Yonago,Tottori,12-15 Dec. 2006,207~210.
    [53] G.Foschini.Layered space-time architecture for wireless communication in a fading enviorment when using multi-element antennas[J].Bell Labs Tech. Journal,Autumn 1996,41~59.
    [54] A.M.Tonello.Orthogonal Space-Time Discrete Multitone and Space-Time Filtered Multitone Coded Architectures[C].59th IEEE VTC 2004,17-19 May,2004,Vo.2,713~717.
    [55] A.Tonello.MIMO MAP Equalization and Turbo Decoding in Interleaved Space-Time Coded Systems[J].IEEE Trans. on Commun.,Feb.2003,Vol. 51,No.2,155~160.
    [56] A.M.Tonello,A Concatenated Multitone Multiple Antenna Scheme for Multiuser Uplink Communications[C].2004 ITG Workshop on Smart Antennas,18-19 March,2004,95~102,
    [57] A.M.Tonello,A Concatenated Multitone Multiple-Antenna Air-Interface for the Asynchronous Multiple-Access Channel[J].IEEE Journal on Selected Areas in Communications,Mar.2006,Vol.24,No.3, 457~468.
    [58] N.Benvenuto,S.Tomasin.A Dynamic Rate Uplink Multiple Access Scheme Based on FMT Modulation[C].59th IEEE VTC 2004,Milan,Italy, 17-19 May,2004,Vo.2,909~913.
    [59]王凤丽,朱维红,高振明.基于Punctured卷积码的UEP方案在FMT系统中的应用[J].计算机工程与应用,2006年,第29期,123~12.
    [60] Qiang Li,Guangguo Bi and Peng Du.Performance of Generalized Soft-Output Demapper for LDPC-CFMT System over Frequency Selective Fading Channel[C].IEEE 6th CAS Symp. On Emerging Technologies:Mobile and Wireless Comm.,China:Shanghai,May 31-June 2,2004,437~440.
    [61] GuiXia Kang,M.Weckerle and E.Costa.Space-time Joint Channel Estimation in Filtered Multi-tone based Multi-carrier Multi-branch Systems[C] . IEEE WCNC’04,21-25 March,2004,Vol.3,1844~1849.
    [62] Yu Yang,Guixia Kang and Jichao Liu et al..Pilot Sequence Design for Inter-cellInterference Mitigation in MIMO FMT Systems[C].Proc. of IEEE WCNC’07,Hong Kong,11-15 March,2007,1217~1221.
    [63]胡兰雨,高振明,朱维红等.基于PN码导频的FMT信道估计方法[J].山东大学学报(理学版),2006年2月,第41卷,第1期.
    [64]魏慧玲,高振明,朱维红等.FMT系统中信道估计的分析和仿真[J].山东大学学报(理学版),2005年6月,第40卷,第3期.
    [65] A.Assalini,A.M.Tonello.Time-Frequency Synchronization in Filtered Multitone Modulation Based Systems[C].IEEE WPMC'03,Yokosuka,Japan,Oct.,2003,221~225..
    [66] A.M.Tonello,F.Rossi.Synchronization and Channel Estimation for Filtered Multitone Modulation[C].WPMC04,Italy:Abano Terme,2004,Vol.2,590~594.
    [67] V.Lottici,M.Luise and C.Saccomando et al..Non-Data-Aided Timing Recovery for Filter-Bank Multicarrier Wireless Communications[J].IEEE Transactions on Signal Processing,Nov.2006,Vol.54,No.11,4365~4375.
    [68] A.M.Tonello,F.Pecile.Synchronization Algorithms for Multiuser Filtered Multitone (FMT) Systems[C].IEEE 61st VTC 2005,Stockholm,Sweden,30 May-1 June,2005,Vol.3,1778~1782.
    [69] A.M.Tonello,F.Pecile.Iterative Synchronization for Multiuser Filtered Multitone Systems[C].IEEE ISWC’05,Siena,Sept.,2005,543~546.
    [70]仇佩亮,陈慧芳,谢磊.数字通信基础[M].北京:电子工业出版社,2007年1月.
    [71]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000年12月.
    [72] Willian H.Tranter,K.Sam Shanmngan等著,肖明波,杨光松等译,通信系统仿真原理与无线应用[M].北京:机械工业出版社,2005年6月,332~334.
    [73]皇甫堪,陈建文,楼生强,现代数字信号处理,电子工业出版社,北京, 2004年6月,第402-478页
    [74] A.V.奥本海默,R.W.谢弗,J.R.巴克著,刘树棠,黄建国译.离散时域信号处理(第2版)[M].西安:西安交通大学出版社,2002年9月,241~243.
    [75] A.M.Tonello.Time Domain and Frequency Domain Implementations of FMT Modulation Architectures[C].ICASSP 2006,Vol. 4,14-19 May,2006,IV-625~628.
    [76] A.M.Tonello,F.Pecile.A Filtered Multitone Modulation Modem for Multiuser Power Line Communications with an Efficient Implementation[C].IEEE ISPLC'07,Pisa,Italy,26-28 March,2007,155~160.
    [77] A.M.Tonello,R.M.Vitenberg.An Efficient Implemation of a Wavelet Based Filtered Multitone Modulation Scheme[C]. 4th IEEE ISSPIT 04,Rome,Italy,18-21 Dec.,2004,225~228.
    [78] R.M.Vitenberg.A Wavelet based Filtered Multi-Tone[C].ICACT 2008,17-20 Feb. 2008,Vo.3,1849~1853.
    [79] P.P.Vaidyanathan.Multirate systems and filter banks[M].Englewood Cliffs.NJ: Prentice-Hall,1992.
    [80]樊昌信,詹道庸,徐炳祥等.通信原理(第4版)[M].北京:国防工业出版社,1995年10月,323~335.
    [81]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,2000年6月
    [82] Jan-Jaap van de Beek,Ove Edfors and Magnus Sandell et al..On Channel Estimation in OFDM Systems[C].IEEE 45th Vehicular Technology Conference,Jul. 1995,Vol.2,815~819.
    [83] A.R.Varma,C.R.N.Athaudage,L.L.H.Andrew et al.Optimal Superimposed Pilot Selection for OFDM Channel Estimation[C].7th IEEE SPAWC '06,2-5 July 2006,1~5.
    [84] Hai-Yan Lan,Shen-Yuan Yang,Feng Tan.Semi-blind channel estimation algorithm based on wavelet de-noising in ofdm system[C].ICWAPR'07,Vo.1, 2-4 Nov. 2007,179~182.
    [85] J.P.Nair,R.V.Raja Kumar.An iterative channel estimation method using superimposed training for IEEE 802.16E based OFDM systems[C].IEEE ISCE 2008,14-16 Apr. 2008,1~4.
    [86] Chunyan Gao,Ming Zhao,Shidong Zhou and Yan Yao.Blind channel estimation algorithm for MIMO-OFDM systems[J].Electronics Letters,Sept.2003, Vol.39,No.19,1420~1422.
    [87] Feifei Gao,A.Nallanathan.Blind Channel Estimation for MIMO OFDM Systems via Nonredundant Linear Precoding[J] . IEEE Transactions On Signal Processing,Feb. 2007,Vo.55,No.2,784~789.
    [88] Chia-Horng Liu.Adaptive Two-Dimensional Channel Estimation Scheme for OFDM Systems[C].3rd International CrownCom 2008,15-17 May 2008,1~5.
    [89] Seongwook Song,A.C.Singer.Pilot-Aided OFDM Channel Estimation in the Presence of the Guard Band[J].IEEE Transactions on Communications,Aug.2007,Vo.55,No.8,1459~1465.
    [90] Kun Fang,L.Rugini,G.Leus.Iterative channel estimation and turbo equalization for time-varying OFDM systems[C].IEEE ICASSP 2008, 31 March -4 Aprile 2008,2909~2912.
    [91]尹庆奇,江铭炎.一种新的基于PN码导频的OFDM信道估计方法[J].信息技术与信息化,2005年,第1期,61~64.
    [92]姜永权,马逸新.一种基于PN序列的OFDM时域信道估计方法[J].汕头大学学报(自然科学版),2006年11月,第21卷,第4期, 76~80.
    [93]陆震,葛建华,王勇.基于PN序列的MIMO-OFDM系统信道估计[J].华中科技大学学报(自然科学版),2007年4月,第35卷,第4期, 44~47.
    [94] Xi-Lin Li,Xian-Da Zhang.A Family of Generalized Constant Modulus Algorithms for Blind Equalization[J].IEEE Transactiosns on Communications,Nov.,2006, Vol. 54,No.11,1913~1917.
    [95] A.G.Orozco-Lugo,M.M.Lara and D.C.McLernon.Channel Estimation Using Implicit Training[J].IEEE Transactions on Signal Processing,Jan. 2004,Vol.52,No.1,240~254.
    [96] Chan-Tong Lam,David D.Falconer and Rui Dinis.Channel Estimation for SC-FDE Systems Using Frequency Domain Multiplexed Pilots[C].IEEE 64th VTC’06,Montréal,Québec,Canada,Sept. 2006,1~5.
    [97] Jianfei Li , Yan Du . Channel Estimation Schemes for SC-FDE/FS System[C].11th IEEE Symposium on Computers and Communications,June 2006,155~160.
    [98] John A.C.Bingham.Multicarrier Modulation for Data Transmission:an Idea Whose Ttime Has Come[J].IEEE Communications Magazine,Ma 1990,Vol.28,No.5,5~14.
    [99]程云鹏.矩阵论(第2版)[M].西安:西北工业大学出版社,2000年1月.
    [100] T.N.E.Greville.Some applications of the pseudoinverse of a matrix[J].SIAM Review 2,15~22, 1960.
    [101] S.K.Sen , S.S.Prabhu . Optimail Iterative Schemes for Computing the Moore-Penrose Matrix Inverse[J].International Journal of Systems Sciencies,Vol.7,No.8,Aug. 1976,847~852.
    [102] K.Hwang,F.A.Briggs.Computer Architecture and Parallel Processing[M].New York:McGraw-Hill,1994.
    [103] A.B.Israel,T.N.E.Greville.Generalized Inverses: Theory and Applications (2nded.) [M].NewYork.Springer,2003.
    [104] P.Courrieu.Fast Computation of Moore-Penrose Inverse Matrices[J].Neural Information Processing-Letters and Reviews,August 2005,Vol.8,No.2,25~29.
    [105]周笋,吉国力.基于改进BP算法的广义逆矩阵求解方法.厦门大学学报(自然科学版),2003年5月,第42卷,第3期, 386~389.
    [106]黑志坚.一种矩阵求逆方法[J].哈尔滨工业大学学报,2004年10月,第36卷,第10期,1531~1353.
    [107] D.Lee,K.Cheun.Coarse Symbol Synchronization Algorithms for OFDM Systems in Multipath Channels[J].IEEE Trans. Commun. Lett.,Oct. 2002,Vol.6,446~448.
    [108] Xiaohua Li,Fan Ng,Taewoo Han.Carrier Frequency Offset Mitigation in Asynchronous Cooperative OFDM Transmissions[J].IEEE Transactions on Signal Processing,Feb. 2008,Vo.56,No.2,675~685.
    [109] J.Chen,Y.C.Wu,S.Ma,T.S.Ng.Joint CFO and Channel Estimation for Multiuser MIMO-OFDM Systems With Optimal Training Sequences[J] . IEEE Transactions on Signal Processing,Aug. 2008,Vo.56,No.8,Part 2, 4008~4019.
    [110] Jongkyung Kim,Sangjin Lee and Jongsoo Seo.Synchronization and Channel Estimation in Cyclic Postfix Based OFDM System[J].63rd IEEE VTC 2006,Melbourne,Vic,7-10 May,2006,Vo.4,2028~2032.
    [111] T.M.Schmidl,D.C.Cox.Robust Frequency and Timing Synchronization for OFDM[J].IEEE Transactions on Communications,Dec.1997,Vol.45,No.12, 1613~1621.
    [112] M.Krondorf,T.J.Liang,G.Fettweis.On Synchronization of Opportunistic Radio OFDM Systems[C].IEEE VTC Spring 2008,11-14 May 2008,1686~1690.
    [113] Zh.H.Yu,Kai Chen,Yu Mei Huang et al.OFDM Timing and Frequency Offset Estimation Based on Repeated Training Sequence[C].WiCom 2007,21-25 Sept. 2007,264 - 266.
    [114]刘俊琳,邓单,朱近康等.一种基于频域相关实现OFDM时频同步的方法[J].电子与信息学报,2006年8月,第28卷,第8期,1354~359.
    [115] A.Laourine,A.Stephenne,S.Affes.A New OFDM Synchronization Symbol for Carrier Frequency Offset Estimation[J].IEEE Signal Processing Letters,May 2007,Vol.14,No.5,321~324.
    [116] Guangliang Ren,Yilin Chang,Huining Zhang et al.An Efficient FrequencyOffset Estimation Method With a Large Range for Wireless OFDM Systems[J].IEEE Transactions on Vehicular Technology,July 2007,Vo.56,No.4,Part 1,1892~1895.
    [117] T.Fusco,A.Petrella,M.Tanda.Blind CFO Estimation for Noncritically Sampled FMT Systems[J].IEEE Transactions on Signal Processing,June 2008,Vo.56,No.6,2603~2608.
    [118] T.Fusco,A.Petrella,M.Tanda.Blind carrier frequency offset estimation for non-critically sampled FMT systems in multipath channels[C].8th IEEE SPAWC’07,17-20 June 2007,1~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700