西南印度洋脊热液区和Santa Monica海盆冷泉区生物壳体C、O同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生活于海底热液区和冷泉区中的生物壳体能够记录所处海水的环境信息。本研究以西南印度洋脊(SWIR)热液调查区取得的藤壶壳体和美国加利福尼亚近海岸SantaMonica海盆冷泉区取得的双壳类壳体为研究对象,通过电子显微镜、X射线衍射(XRD)、C、O同位素测定等实验测试手段,对样品进行了矿物组成以及元素组成研究,以探讨深海极端环境下生物壳体记录的环境信息,为研究深海环境提供依据。本次研究得出以下两方面的成果:
     热液区样品:实验样品种类鉴定结果显示藤壶可能属于厚板藤壶科Pachylasmatidae,似厚板藤壶Pachylasmasp.的种。XRD测试结果显示,藤壶壳体矿物组成主要为方解石,仅有两个样品含有不到1%的石英杂质。壳体δ13C值分布在0.54–1.80‰之间,平均值为1.15‰(n=30),符合正常海相生物碳酸盐壳体δ13C值取值范围。壳体δ18O值分布在4.02–5.67‰之间,平均值为5.21‰(n=30),根据δ18O值范围推测,藤壶壳体形成时海水的盐度存在异常。通过对δ13C值和δ18O值的分析,可以推测藤壶靠近热液喷口生活,周围海水中的含碳气体浓度与正常海水环境差别不大。
     冷泉区样品:实验样品种类鉴定结果显示主要有以下两种双壳类:长形伴溢蛤CalyptogeniaelongataDall,扁满月蛤Lucinomasp.。XRD测试结果显示,两种冷泉双壳类壳体矿物组成主要为文石(99%以上)。壳体δ13C值分布在-23.05–2.11‰之间,平均值为-6.62‰(n=30),多数壳体δ13C为负值(低于-1.27‰),低于正常海相生物碳酸盐壳体δ13C值。个别壳体表现出13C较大亏损(δ13C值低至-23.05‰),且随年龄增长壳体δ13C值发生较大变化(变化幅度达到15.61‰)。这是至今报导的最亏损13C的新鲜海洋双壳类壳体。壳体δ18O值分布在2.19–3.66‰之间,平均值为2.91‰(n=30),部分壳体的δ18O值比与海水达到同位素平衡时形成的碳酸盐壳体重。通过对δ13C值和δ18O值的分析,可以推测双壳类周围的甲烷浓度发生了变化。
Biogenic shells are good candidates for investigating the deep sea environment. The barnacle shell samples discussed in this paper were recovered from the southwest India ridge (SWIR). The bivalve shell samples studied here were obtained from the cold seep area of Santa Monica Basin, off shore of California. In order to investigate the circumstantial information recorded by biogenic shells a polarizing microscope, X ray powder diffraction and stable isotopes gas mass spectrometer were used for the mineralogy and stable isotopic analyses,which provide as a basis for studying deep-sea environments.
     The experiment results of barnacle shell from the hydrothermal area samples show that the barnacle belongs to slab barnacle Pachylasmatidea, Pachylasma sp. The X-ray Diffraction (XRD) results indicate that barnacle shell is predominantly of calcite (only two samples contain a little quartz which less than1%). The513C values of30samples are scattered between0.54%and1.80%with a mean of1.15%, within the range of normal biogenic shell δ13C values. The δ18O values of the30samples are scattered between4.02%o and5.67%o with a mean of5.21%. which derives that the salinity of seawater changed when shells were formed. The analysis of δ13C and δ18O values indicate that the barnacle lived near a hydrothermal vent, and the carbon gas concentration in ambient seawater is close to the normal marine environment level.
     The results of bivalve shells from the cold seep area samples illustrate that the bivalves belong to Calyptogenia elongata Dall and Lucinoma sp. However, the X-ray Diffraction (XRD) results indicate that bivalve shells are predominantly aragonite (more than99%). The δ13C values of30samples are from-23.05%to2.11%with a mean of-6.62%, lower than δ13C values of normal biogenic shell, and the carbon isotopic compositions of a shell were largely changed during its growth. Meanwhile, several shells δ13C value is depleted with minimum value of-23.05%. which is the most13C-depleted shells of fresh marine bivalves so far has been discovered. The δ18O values of the30samples are within the range of2.19%o to3.66%o with a mean of 2.91%o, and some samples are heavier than biogenic carbonate shell which precipitated in equilibrium with seawater. The analysis of δ3C and δ18O values has verified that the methane concentration in ambient seawater was increased.
引文
1.曹红,曹志敏.2011.西南印度洋中脊海底热液活动.海洋地质与第四纪地质.31(1):67-75.DOI:10.3724/SP.J.1140.2011.01067.
    2.陈忠,杨华平,黄奇瑜等.2007.海底甲烷冷泉特征与冷泉生态系统的群落结构.热带海洋学报.26(6):73-82.
    3.范昌福,王宏,裴艳东等.2010.牡蛎壳体的同位素贝壳年轮研究.地球科学进展.25(2):163-173.
    4.冯军,李江海,牛向龙.2005.现代海底热液微生物群落及其地质意义.地球科学进展20(7):7322739
    5.焦海峰,尤仲杰,竺俊全等.2004.嘉庚蛸对温度、盐度的耐受性试验.水产科学.23(9):7-10.
    6.李日辉,侯贵卿.1999.深海热液喷口生物群落的研究进展[J].海洋地质与第四纪地质.19(4):103-108.
    7.林君卓,许振祖.1997.温度和盐度对文蛤幼体生长发育的影响.福建水产.3(1):27-33.
    8.刘德经,张克存,黄德尧等.2011.西施舌幼虫及稚贝致死温度初步研究[J].动物学杂志.36(1):29-31.
    9.刘忠颖,陈远,王志松.1999.温度对虾夷扇贝幼体和稚贝生长、成活率的影响.水产科学.18(3):17-20.
    10.沈国英,施并章.2002.海洋生态学[M].北京:科学出版社.
    11.陶春辉,李怀明,黄威等.2011.西南印度洋脊49°39'E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义.科学通报.28—29(56):2413-2423.
    12.铁镝,刘昌贵,刘晓军等.2009.环境温度对东方小藤壶(Chihamalus challengeri)生命表征的影响。海洋环境科学,29(2):161-195.
    13.王春生,杨俊毅,张东声等.2006.深海热液生物群落研究综述.厦门大学学报(自然科学版),45(2):141-149.
    14.闫慧等.2008.淡水双壳类壳体碳同位素研究:以河蚬(corbicula fluninea, Muller1774)为例.地球化学.37(3):275-280.
    15. Abell P I and Williams M A J.1989. Oxygen and carbon isotope ratios in gastropod shells as indicators of paleoenvironments in the Afar region of Ethiopia. Palaeogeography Palaeoclimatology Palaeoecology.74(3-4):265-278.
    16. Anne Lorrain, Yves-Marie Paulet, Laurent Chauvaud et al.2004.513C variation in scallop shells:Increasing metabolic carbon contribution with body size? Geochimica et Cosmochimica Acta,68(17):3509-3519.
    17. Arthur M A, Williams D F and Jones D S.1983. Seasonal temperature-salinity changes and thermocline development in the Mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology.11:655-659.
    18. Ayumi Mae, Toshiro Yamanaka and Schichi Shimoyama.2007. Stable isotope evidence for identification of chemosynthesie-based fossil bivalves assiciated with cold-seepages. Palaeogengtaphy, Palaeoclimatology, Palaeoecology.245:411-420.
    19. Baines A G, Cheadle M J, Dick H J B et al.2007. Evolution of the Southwest Indian Ridge from55°45'E to62°E:changes in plate-boundary geometry since26Ma. Geochemistry Geophysics Geosystems. Vol.8, Q06022, doi:10.1029/2006GC001559.
    20. Barry J P et al.1997. Calyptogena packardana, A New Species of Vesicomyid Bivalve from Cold Seeps in Monterey Bay, California. The Veliger.40(4):341-349.
    21. Bauer J E et al.1998. Distribution of dissolved organic and inorganic carbon in the eastern North Pacific continental margin. Deep-Sea Research Ⅱ.45,689-713.
    22. Becker E L, Lee R W, Macko S A et al.2010. Stable carbon and nitrogen isotope compositions of hydrocarbon-seep bivalves on the Gulf of Mexico lower continental slope. Deep-Sea Research Ⅱ.57:1957-1964.
    23. Benny K.K C, Peabowo R E and Lee K S.2010. North West Pacific deep-sea barnacles (Cirripedia, Thoracica) collected by the TAIWAN expeditions, with descriptions of two new species. Zootaxa.2405:1-47.
    24. Bingham B L and Young C M.1993. Larval phototaxis in barnacles and snails associated with bathyal sea urchins. Deep-sea Research1.40(1):1-12.
    25. Bourget E.1974. Environmental and Structural Control of Trace Elements in Barnacle Shells. Marine Biology.28,27-36.
    26. Burgess S N, Henderson G M and Hall B L.2010. Reconstructing Holocene conditions under the McMurdo Ice Shelf using Antarctic barnacle shells. Earth and Planetary Science Letters.298:385-393.
    27. Campbell K A.2006. Hydrocarbon seep and hydrothermal vent paleoevironments and paleontology:Past developments and future research directions. Palaeogeography Palaeoclimatology Palaeoecology.232:362-407.
    28. Dall W H.1916. Diagnoses of new species of marine Bivalve mollusca from northwest coast of America in the US National Mus. Proc. US Nat. Mus.,52(2183):625
    29. Dettman D L, Reische A K and Lohmann K C.1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic freshwater bivalves (Unionidae). Geochim Cosmochim Acta.63(7/8):1049-1057.
    30. Dick H J B, Lin J, Schouthern H.2003. An ultraslow spreading class of ocean ridge. Nature.426:405-412.
    31. Distel D L and Felbeck H.1987. Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma anmtlata and Lucina floridana:a reexaminiation of the functional morphology of the gills as bacteria-bearing organs. Marine Biology.96:79-86.
    32. Douglas S J and Irvy R Q.1996. Marking Time with Bivalve Shells:Oxygen Isotopes and Season of Annual Increment Formation. PALAIOS.11:340-346, Research Article.
    33. Dover C L V, Humphris S E, Fomari D et al.2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science.294(5543):818-823. DOI:10.1126/SCIENCCE.1064574.
    34. Elliot M et al.2003. Environmental controls on the stable isotopic composition of Mercenaria mercenaria:Potential application to paleoenvironmental studies. Geochemistry Geophysics Geosystems.4(7):1056,16PP doi:10.1029/2002GC000425.
    35. Elliot M, Welsh K, Chilcott C et al.2009. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves:Potential applications in paleoclimate studies. Palaeogeography Palaeoclimatology Palaeoecology.280:132-142.
    36. Emiliani C, Hudson J H, Shinn E A et al.1978. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science.202:627-628.
    37. Epstein S et al.1953. Recised carbonate water isotopic temperature scale. Geologica Society of America Bulletin.64:1315-1326.
    38. Fly I.2006. Search for life's beginnings. Science.312(5777):1140-1141. DOI:10.1126/science.1127301.
    39. Furla P et al.2000. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. The Jounal of Experimental Biology.203:3445-3457.
    40. Grossman E L and Ku T L.1986. Oxgen and Carbon isotope fracrionation in biogenic aragonite:Temperature effects. Chemical Geology (Isotope Geoscience Section).59,59-74.
    41. Hagadorn J W et al.1995. Geochemical and sedimentologic variations in inter-annually laminated sediments from Santa Monica Basin. Marine Geology,125:111-113.
    42. Harrington R J.1989. Aspects of growth deceleration in bivalves:clues to understanding the seasonal δ18O and δ13C record-A comment on Krantz et al. Palaeogeography Palaeoclimatology Palaeoecology.70:399-407.
    43. Hein J R et al.2006. Merhanogenic calcite,13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California. Geology.34(2):109-112, doi:10.1130/G22098.
    44. Heyl T P et al.2007. Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA. MEPS.339:169-184. Doi:10.3354/meps3396169.
    45. Hickey B M.1991. Variability in Two Deep Coastal Basins (Santa Monica and San Pedro) Off Southern California. JOURNAL OF GEOPHYSICAL RESEARCH,96(C9):16689-16708, doi:10.1029/91JC01375.
    46. Hickey.1922. Circulation over the Santa Monica-San Pedro Basin and Shelf. Progress In Oceanography.30(1-4):37-115, doi:10.1016/0079-6611(92)90009-0
    47. Hodges P.1994. A new barnacle from the lower Jurassic of South Wales. Palaeontology.37:901-905.
    48. Hui Yan et al.2009. Stable isotope composition of the modern freshwater bivalve Corbicula fluminea. Geochemical Journal,43:379-387.
    49. Jollivet D.1996. Specific and genetic diversity at deep-sea hydrothermal vents. A overview. Biodiversity and Conservation.5(12):1619-1653. DOI:10.1007/BF00052119.
    50. Joris Gieskes et al.2011. Cold seeps in Monterey Bay, California:Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry.26(5):738-746.
    51. Keith M L et al.1964. Carbon and oxygen isotopic compositionof mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta,28:1757-1786.
    52. Kilhgley J S and Lutcavage M.1983. Loggerhead Turtle Movements Reconstructed from18O and13C profiles from Commensal Barnacle Shells. Estuarine, Coastal and Shelf Science. x6:345-349.
    53. Killingley J S and Berger W H.1979. Stable isotopes in a mollusk shell: Detection of upwelling events. Science.205(4402):186-188.
    54. Krantz D E et al.1987. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography Palaeoclimatology Palaeoecology.58(3/4):249-266.
    55. Kroopnick P M.1985. The distribution of13C of total CO2in the world oceans. Deep Sea Res.32,57-84.
    56. Lietard C and Pierre C.2008. High-resolution isotopic records (δ180and δ13C) and cathodoluminescence study of lucinid shells from methane seeps of the Eastern Mediterranean. Geo-Mar Lett.28:195-203, doi:10.1007/s00367-008- 0100-z.
    57. Lietard C and Pierre C.2009. Isotopic signatures (δ18O and δ13C) of bivalve shells from cold seeps and hydrothermal vents. Geobios.42:209-219.
    58. Little T S C and Vrijenhoek C R.2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution.18(11):582-588
    59. Maekawa T.2004. Experimental study on isotopic fractionation in water during gas hydrate formation. Geochemical Journal.38:129-138.
    60. Martin R A et al.2007. Carbon stable isotopic composition of benthic foraminifera from Poliocene cold methane seeps, Cascadia accretionary margin. Palaeogeography Palaeoclimatology Palaeoecology.246:260-277.
    61. Mastrototaro F et al.2010. Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea):An update. Deep-Sea Research II.57:412-430.
    62. Matthias Lopez Correa et al.2010. Stable isotopes (δ18O and δ13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea. Deep-Sea Research II.57:471-486
    63. Matthieu Carre et al.2005. Stable isotopes and sclerchronology of the bivalve Mesodesma donacium:Potential application to Peruvian Paleoceanographic reconstructions. Palaeogengtaphy, Palaeoclimatology, Palaeoecology.228:4-25.
    64. McConnaughey T, Burdett J, Whelan J F et al.1997. Carbon isotopes in biological carbonates:respiration and photosynthesis. Geochim. Cosmoschim. Acta61,611-622.
    65. McConnaughey T.1989b.13C and18O isotopic disequilibrium in biological carbonates. Ⅱ:In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta.53:163-171.
    66. McConnaughey T.1989a.13C and18O isotopic disequilibrium in biological carbonates. I:Patterns. Geochim. Cosmochim. Acta.53:151-162.
    67. Michael A. Fisher et al.2003. Geology of the Continental Margin beneath Santa Monica Bay, Southern California, from Seismic-Reflection Data. Bulletin of the Seismological Society of America.93:1955-1983.
    68. Michel Rio et al.1992. Chemical and Isotopic Features of Present Day Bivalve Shells from Hydrothermal Vents or Cold Seeps. PALAIOS.7:351-360.
    69. Mironov A N.2000. New taxa of stalked crinoids from the suborder Bourgueticrinina(Echinodermata, Crinoidea). Zoological Zhurnal.79:712-728.
    70. Miroshnichenko M L.2004. Thermophilic Microbial Communities of Deep-Sea Hydrothermal Vents. Microbiology.73(1):1-13, DOI:10.1023/B:MICI.0000016360.21607.83.
    71. MooK W G and Vogel J C.1968. Isotopic equilibrium between shells and their environment. Science.159:874-875.
    72. Newman W A and Jones W J.2011. Two Northeast Pacific deep-water barnacle populations (Cirripedia:Calanticidae and Pachylasmatidae) from seamounts of the Juan de Fuca Ridge;"insular" endemics stemming from Tethys, or by subsequent dispersal from the Western Pacific center of distribution? Zootaxa.2789:49-68
    73. Normark W R et al.2003. Methane hydrate recovered from a mud volcano in Santa Monica Basin, offshore southern California. EOS Trans. American Geophysical Union.84(46):OS51B-0855.
    74. Paull C K, Normark W R, Ussler W III et al.2008. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Marine Geology.250:258-275.
    75. Paull CK, Hecker B, Commeau R et al.1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science (New York, N.Y.)226(4677):965-7
    76. Raffaella Di Geronimo.2010. Cirripeds from deep-water coral mounds off S. Maria di Leuca, Apulian Plateau Bank (Mediterranean Sea). Deep-Sea Research Ⅱ.57:487-492.
    77. Romanek C S et al.1992. Carbon isotopic fractionation in synthetic aragonite and calcite:Effects of temperature and precipitation rate. Geochim Cosmochim Acta. 56(1):419-430.
    78. Salas Cand Woodside J.2002. Lucinoma kazani n. Sp.(Mollusca:Bivalvia): evidence of a living benthic community associated with a cold seep in the Eastern Mediterranean Sea. Deep-Sea Research I.49:991-1005.
    79. Schone B R and Giere O.2005. Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean. Deep-Sea Research I.52:1896-1910.
    80. Searle R C, Bralee A V.2007. Asymmetric generation of oceanic crust at the ultraslow spreading Soutwest Indian Ridge,64°E. Geochemistry, Geophysics and Geosystems.8(Q05015). do:i10.1029/2006GC001529.
    81. Shipboard Science Party.1997. Site1015. In:Lyle M., Koizumi, I, Richter, C, et al.(Eds), Proc. ODP, Init, Repts.,167. Ocean Drilling Program. College Sation. TX:223-237.
    82. Sibuet M and Olu K.1998. Biogeography, biodiversity and fuid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II45:517-567.
    83. Smith H S, Delafontaine M and Flemming B W.1988. Intertidal barnacles-Assessment of their ues as Paleo-environment indicators using Mg, Sr,18O/16O and13C/12C varuations.Chemical Geology (Isotope Geoscience Section).73,211-220.
    84. Southward A J.1962. On the behavior of barnacles IV. F. Mar. Biol. Ass. UK.42:163-177.
    85. Southward A J.1957. On the behavior of barnacles III. F. Mar. Biol. Ass. UK.36:323-334.
    86. Southward A J.1995. On the behavior of barnacles I. F. Mar. Biol. Ass. UK.34:403-422.
    87. Spero H J et al.1997. Effect of seawater carbonare concentration on foraminiferal carbon and oxygen isotopes. Nature.390:497-500.
    88. Tanaka N, Monaghan M C and Rye D M.1986. Contribution of metabolic carbon to mollusk and barnacle shell carbonate:Nature.320:520-523. doi:10.1038/320520a0.
    89. Tao C, Lin J, Guo S et al.2007. Discovery of the first active hydrothermal vent filed at the ultraslow spreading Southwest Indian Ridge:the Chinese DYI15-19Cruise. Ridge Crest News.16:25-26.
    90. Tarasov V G et al.2005. Deep-sea and shallow-water hydrothermal vent communities:Two different phenomena? Chemical Geology.224:5-39.
    91. Taylor J D and Glover E A.2000. Funcional anatomy, chemosymbiosis andevolution of the Lucinidae. The Evolutionary Biology of the Bivalvia. Geological Society Special Publication.177:207-225.
    92. Ussler Ⅲ W and Paull C K.1995. Effects of ion-exclusion and isotopic fractionation on ore-water geochemistry during gas hydrate formation and decomposition. Geo-Marine Letters.15:37-44.
    93. Ute Munch, Claude Lalou, Peter Halbach et al.2001. Relict hydrothermal events along the super-slow Southwest India spreading ridge near63°56'E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology.177(3-4):341-349.
    94. Van Dover, C.L.2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton.
    95. Varfolomeeva M et al.2008. Growth and survival of barnacles in presence of co-dominating solitary ascidians:growth ring analysis. Journal of Experimental Marine Biology and Ecology.363:42-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700