多孔硅基复合薄膜气敏传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅是一种新兴的室温气敏材料。由于其具有较高的比表面积,而且制备过程简单,近年来被广泛应用于气体检测及环境监视领域。本文主要针对大孔硅、大孔硅基氧化钨、介孔硅以及介孔硅基氧化钨气敏传感器的制备与性能进行分析和研究。
     采用双槽电化学腐蚀法腐蚀P型单晶硅形成有序大孔硅。研究了不同的腐蚀时间对于大孔硅结构、孔隙率、电学和气敏特性的影响。研究发现:随着腐蚀时间的增加,大孔硅的腐蚀深度增加,孔隙率变大。大孔硅与电极之间形成了欧姆接触。腐蚀时间为5min的大孔硅气敏特性最好。其在室温下对50ppm的NH_3的灵敏度为4.2,响应/恢复时间为51s/242s,恢复特性良好。
     以大孔硅为基底,在其上溅射淀积氧化钨薄膜,制备出了大孔硅基氧化钨气敏传感器。研究了大孔硅基氧化钨薄膜的形貌,晶体结构,成分以及气敏特性。通过SEM观察发现,氧化钨薄膜淀积在大孔硅表面。气敏特性实验表明:气敏特性最好的大孔硅基氧化钨气敏传感器对1ppm、10ppm、25ppm和50ppm的NO_2的灵敏度分别为1.40、5.01、9.01和14.4,明显好于大孔硅对NO_2的气敏特性。
     使用双槽电化学腐蚀法在P型重掺杂单晶硅表面制备介孔硅。分析了不同腐蚀电流密度对于介孔硅的结构,深度,孔隙率,电学特性和气敏特性的影响。结果表明:随着腐蚀电流密度的增加,其表面孔洞增多,深度增加,孔隙率变大,电阻升高。腐蚀电流密度为80mA/cm~2的介孔硅的室温气敏性能最好。与大孔硅相比,介孔硅具有较高的气体灵敏度。大孔硅对NH_3具有较好的选择性,而介孔硅对NO_2具有较好的选择性。随后采用不同放置方法对介孔硅的气敏稳定性进行了研究。实验发现:采用真空放置的介孔硅气敏稳定性较好。
     采用对向靶直流反应磁控溅射法在介孔硅上制备介孔硅基氧化钨气敏传感器,通过实验分析了溅射时间、溅射压强和氩氧比等各因素对介孔硅基氧化钨薄膜微观结构和气敏特性的影响,获得了制备介孔硅基氧化钨薄膜的各个溅射工艺条件的最佳参数。通过不同温度下介孔硅和介孔硅基氧化钨气敏传感器对于NO_2和NH_3灵敏度对比发现:介孔硅基氧化钨气敏传感器具有比介孔硅更好的气敏特性。在室温下,其对1ppm的NO_2的灵敏度为4.22,对50ppm的NH_3的灵敏度为18.3。并且响应速度较快,很大程度上缩短了响应时间。
Porous silicon (PS) is a new type gas sensor which operated at room temperature.As it has large specific surface and can be easily produced, it has been widely used inthe fields of gas detecting and environmental protection. In this paper, macro-PS,WO_3/macro-PS, meso-PS and WO_3/meso-PS were prepared. The gas sensingproperties of macro-PS, WO_3/macro-PS, meso-PS and WO_3/meso-PS werethoroughly analyzed and studied.
     Ordered macro-PS was formed by electrochemical anodisation ofmonocrystalline p-type silicon wafer in a double-tank cell. The effect of etching timeon the structure, porosity, electrical characteristics and gas sensing properties ofmacro-PS were investigated. It is shown the depth and the porosity of the macro-PSget larger with that the increase of etching time. The electrical behavior exhibits thatthere is ohmic contact of between the macro-PS and Pt contact. The macro-PS withthe etching time of5min shows best gas sensing properties. The sensitivity of themacro-PS with the etching time of5min to50ppm NH_3is4.2. It has goodresponse-recovery characteristic. The response/recover time is51s/242s.
     WO_3thin films were deposited on macro-PSsubstrate by the facing targets directcurrent reactive magnetron sputtering method. The morphology, crystallization,valence of the W and gas sensing properties of the WO_3/macro-PS were characterized,respectively. It can be concluded by the SEM that the WO_3nano-particles form asemi-continuous thin film on the surface of macro-PS layer. The sensitivity of theWO_3/macro-PS gas sensor upon exposure to1,10,25and50ppm NO_2are1.40,5.01,9.01and14.4, respectively. The WO_3/macro-PS gas sensor has higher sensitivity thanthat of the Macro-PS gas sensor in each NO_2gas concentration.
     Meso-PS was formed by electrochemical anodisation of monocrystalline p+-typesilicon wafer in a double-tank cell. The effect of etching current density on thestructure, porosity, electrical characteristics and gas sensing properties of meso-PSwere investigated. It can be concluded that the depth, porosity and resistance value ofthe meso-PS get larger with the increase of etching time. The meso-PS with theetching current density of80mA/cm~2shows best gas sensing properties. It was shownthat meso-PS had much higher sensitivity and good selectivity to NO_2, whilemacro-PS showed a good response–recovery characteristic and good selectivity to NH_3. The stability of gas sensing properties of the meso-PS by different storagemethod was also studied. It can be concluded that the meso-PS stored in the vacuumhas better stability.
     Then, WO_3thin films were deposited on meso-PS layers using dc reactivemagnetron sputtering method. The effects of sputtering time, working pressure andAr/O2ratio on the microstructure and gas sensing properties of WO_3/meso-PS weresystemically analyzed by orthogonal trial experiment method. The optimal depositionparameters for WO_3thin films based on meso-PSsubstrate were obtained. It can beconcluded that the gas sensing properties of WO_3/meso-PS to NO_2and NH_3werebetter than of those of PS. The sensitivity of the WO_3/meso-PS to1ppm NO_2was4.22and that to50ppm NH_3was18.3. The response time of WO_3/meso-PS was shorterthan that of meso-PS.
引文
[1]彭军,传感器与检测技术,西安电子科技大学出版社,西安:2003,263-265。
    [2]牛德芳,半导体传感器原理及其应用,大连理工大学出版社,1993。
    [3] Figaro Products Catalogue, Figaro gas sensors2000-series. Figaro Engineering Inc.http://www. diltronic com/pdf/Figaro/2000series0802. pdf.
    [4] Steinebach H, Kannan S, Rieth L, etal. H2gas sensor performance of NiO at hightemperatures in gas mixtures, Sensors and Actuators B: chemical,2010,151(1):162-168.
    [5] Rao P M, Zheng X L. Flame Synthesis of tungsten oxide nanostructures on diversesubstrates, Proceedings of the Combustion Institute,2011,33(2):1891-1898.
    [6] Tonezzer M, Lacerda R G. Integrated zinc oxide nanowires/carbon microfiber gassensors, Sensors and Actuators B: chemical,2010,150(2):517-522.
    [7] Lombardi A, Grassi M, Malcovati P, etal. A CMOS integrated interface circuit formetal-oxide gas sensors, Sensors and Actuators B: chemical,2009,142(1):82-89.
    [8] Kim Y S. Thermal treatment effects on the material and gas-sensing properties ofroom-temperature tungsten oxide nanorod, Sensors and Actuators B: chemical,2009,137(1):297-304.
    [9] Tamaki J; Hashishin T; Uno Y, etal. Ultrahigh-sensitive WO3nanosensor withinterdigitated Au nano-electrode for NO2detection, Sensors and Actuators B:chemical,2008,132(1):234-238.
    [10] Shimizu K, Kashiwagi K, Nishiyama H, etal. Impedancemetric gas sensor basedon Pt and WO3co-loaded TiO2and ZrO2as total NOxsensing materials, Sensorsand Actuators B: chemical,2008,130(2):707-712.
    [11] Yu L M., Fan X H., Qi L J, etal. Dependence of morphologies for SnO2nanostructures on their sensing property, Applied Surface Science,2011,257(7):3140-3144.
    [12] Forleo A, Francioso L, Capone S, etal. Synthesis and gas sensing properties ofZnO quantum dots, Sensors andActuators B: chemical,2010,146(1):111-115.
    [13] Hieu N V, Quang V V, Hoa N D, etal. Preparing large-scale WO3nanowire-likestructure for high sensitivity NH3gas sensor through a simple route, CurrentApplied Physics,2011,11(3):657-661.
    [14] Solntsev V S, Gorbanyuk T I, Litovchenko V G., etal. MIS gas sensors based onporous silicon with Pd and WO3/Pd electrodes, Thin Solid Films,2009,517(22):6202-6205.
    [15]詹自力,纳米In2O3气敏性能及其气敏机理研究,[博士学位论文],郑州:郑州大学,2004。
    [16] Guerin J, Aguir K, Bendahan M, etal. Modeling of the conduction in a WO3thinfilm as ozone sensor, Sensors and Actuators B,2006,119(1):327-334
    [17]蒋亚东,谢光忠,敏感材料与传感器,电子科技大学出版社,成都:2008,183-184。
    [18]孙宇峰,多壁碳纳米管的气敏特性研究,[博士学位论文],中国科技大学,2005。
    [19]康昌鹤,唐省吾,气、湿敏感器件及其应用,北京科学出版社,1988:65-67.
    [20] Zhang J, Liu X H, Xu M J, etal. Pt clusters supported on WO3for ethanolDetection, Sensors andActuators B: chemical,2010,147(1):185-190.
    [21] Xia H J, Wang Y, Kong F H, etal. Au-dopedWO3-based sensor for NO2detectionat low operating temperature, Sensors and Actuators B: chemical,2008,134(1):133-139.
    [22] Moon J, Park J, Lee S, etal. Pd-doped TiO2nanofiber networks for gas sensorapplications, Sensors and Actuators B: chemical,2010,149(1):301–305.
    [23] Penza M, Martucci C, Cassano G. NOxgas sensing characteristics of WO3thinfilms activated by noble metals (Pd, Pt, Au) layers, Sensors and Actuators B:chemical,1998,50(1):52-59.
    [24] Xia H J, Wang Y, Kong F H, etal. Au-doped WO3-based sensor for NO2detectionat low operating temperature, Sensors and Actuators B: Chemical,2008;134(1):133-139.
    [25] Zheng K B, Gu L L, Sun D L, etal. The properties of ethanol gas sensor based onTi doped ZnO nanotetrapods, Materials Science and Engineering B,2010,166(1):104-107.
    [26] Tournier G, Pijolat C, Lalauze R, etal. Selective detection of CO and CH4withgas sensors using SnO2doped with palladium, Sensors and Actuators B:Chemical,1995,26(1-3):24-28.
    [27] Comini E. Metal oxide nano-crystals for gas sensing, Analytica Chimica Acta,2006,568(1-2):28-40.
    [28] Bnrsan N. Conduction models in gas sensing SnO2layers: grain-size effects andambient atmosphere influence, Sensors and Actuators B: chemical,1994,17(3):241-246.
    [29] Balazsi C, Sedlackova K, Llobet E, etal. Novel hexagonal WO3nanopowder withmetal decorated carbon nanotubes as NO2gas sensor, Sensors and Actuators B:chemical,2008,133(1):151-155.
    [30] Zhou X M, Fu W Y, Yang H B, etal. Synthesis and ethanol-sensing properties offlowerlike SnO2nanorods bundles by poly (ethylene glycol)-assistedhydrothermal process, Materials Chemistry and Physics,2010,124(1):614-618.
    [31] Qin Y X, Hu M, Zhang J. Microstructure characterization and NO2-sensingproperties of tungsten oxide Nanostructures, Sensors and Actuators B: chemical,2010,150(1):339-345.
    [32] Jo S E, Kang B G, Heo S, etal. Gas sensing properties of WO3doped rutile TiO2thick film at high operating temperature, Current Applied Physics,2009,9(4):235-238.
    [33] Oh E, Choi H Y, Jung S H, etal. High-performance NO2gas sensor based on ZnOnanorod grown by ultrasonic irradiation, Sensors and Actuators B: chemical,2009,141(1):239-243.
    [34] Zhao Y M, Zhu Y Q. Room temperature ammonia sensing properties of W18O49nanowires, Sensors and Actuators B: chemical,2009,137(1):27-31.
    [35] Reyes L F, Hoel A, Saukko S, etal. Gas sensor response of pure and activatedWO3nanoparticle films made by advanced reactive gas deposition. Sensors andActuators B: chemical,2006,117(1):128-134.
    [36] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview, Sensors and Actuators B: chemical,2009,140(1):319-336.
    [37] Liu Z, Miyauchi M, Yamazaki T, etal. Facile synthesis and NO2gas sensing oftungsten oxide nanorods assembled Microspheres, Sensors and Actuators B:chemical,2009,140(2):514-519.
    [38] Kim I D, Rothschild A, Yang D J, etal. Macroporous TiO2thin film gas sensorsobtained using colloidal templates, Sensors and Actuators B: chemical,2008,130(1):9-13.
    [39] Xu M, Zhang J, Wang S, etal. Gas sensing properties of SnO2hollowspheres/polythiophene inorganic-organic hybrids, Sensors and Actuators B:chemical,2010,146(1):8-13.
    [40] Moshnikov V A, Gracheva I E, Kuznezov V V, etal. Hierarchical nanostructuredsemiconductor porous materials for gas sensors, Journal of Non-CrystallineSolids,2010,356(37-40):2020-2025.
    [41] Kukkola J, M klin J, Halonen N, etal. Gas sensors based on anodic tungstenoxide, Sensors andActuators B: Chemical,2011,153(2):293-300.
    [42] Hu M, Zeng J, Wang W D, etal. Porous WO3from anodized sputtered tungstenthin films for NO2detection, Applied Surface Science,2011,258(3):1062-1068.
    [43] Massera E, Nasti I, Quercia L, etal. Improvement of stability and recovery timein porous-silicon-based NO2sensor, Sensors and Actuators B: chemical,2004,102(2):195-197.
    [44] Kong J, Franklin N R, Zhou C, etal. Nanotube Molecular Wires as ChemicalSensors, science,2000,287:622-625.
    [45] Peng S, Cho K, Qi P, etal. Ab initio study of CNT NO2gas sensor, ChemicalPhysics Letters,2004,387(4-6):271-276.
    [46] Jung M J, Eun K Y, Baik Y J, etal. Effect of NH3environmental gas on thegrowth of aligned carbon nanotube in catalystically pyrolizing C2H2, Thin SolidFilms,2001,398:150-155.
    [47] De Volder M F L, Vidaud Daniel O, Meshot E R, etal. Self-similar organizationof arrays of individual carbon nanotubes and carbon nanotube micropillars,Microelectronic Engineering,2010,87(5-8):1233-1238.
    [48] Srivastava S, Sharma S S, Agrawal S, etal. Study of chemiresistor type CNTdoped polyaniline gas sensor, Synthetic Metals,2010,160(5-6):529-534.
    [49] Patil L A, Patil D R. Heterocontact type CuO-modified SnO2sensor for thedetection of a ppm level H2S gas at room temperature, Sensors and Actuators B:chemical,2006,120(1):316-323.
    [50] Sen S, Kanitkar P, Sharma A, etal. Growth of SnO2/W18O49nanowire hierarchicalheterostructure and their application as chemical sensor, Sensors and Actuators B:chemical,2010,147(1):453-460.
    [51] Ling Z, Leach C, Freer R. NO2sensitivity of a heterojunction sensor based onWO3and doped SnO2, Journal of the European Ceramic Society,2003,23(11):1881-1891.
    [52] Rettig F, Moon R. Ceramic meso hotplates for gas sensors, Sensors and ActuatorsB: chemical,2004,103(1-2):91-97.
    [53] Pisarkiewicz T, Sutor A, Potempa P, etal. Microsensor based on low temperaturecofired ceramics and gas-sensitive thin film, Thin solid films,2003,436(1):84-89.
    [54] Vasiliev A A, Pavelko R G, Gogish-Klushin S Y, etal. Alumina MEMS platformfor impulse semiconductor and IR optic gas sensor, Sensors and Actuators B:chemical,2008,132(1):216-223.
    [55] Suehle J S, Cavicchi R E, Gaitan M, etal. Tin Oxide Gas Sensor Fabricated UsingCMOS Micro-Hotplates and In-situ Processing, IEEE Electron Device Letters,1993,14(3):118-200.
    [56] Uhlir A. Electrolytic Shaping of Germanium and Silicon, Bell Syst. Tech. J.,1956,35:333-347.
    [57] Turner D S. Electropolishing silicon in hydrofluoric acid solutions, Journal ofElectrochemical Society,1958,105(7):402-408.
    [58] Canham L T. Silicon quantum wire array fabrication by electrochemical andchemical dissolution of wafers, Applied Physics Letters,1990,57(9-10):1046-1048.
    [59] Canham L.T, Cox T.I, Loni A, et al. Progress towards silicon optoelectronicsusing porous silicon technology, Applied Surface Science,1996,102:436-441.
    [60] Loni A, Simons AJ, Cox T I, etal. Electroluminescent porous silicon device withan external quantum efficiency than0.1%under CW operation, ElectronicsLetters,1995,31(15):1288-1289.
    [61] Zheng J P, Jiao K L, Shen W P, eta1. Highly sensitive photodetector using poroussilicon, Applied Physics Letters,1992,61(4):459-461.
    [62] Triantafyllopoulou R, Chatzandroulis S, Tsamis C, etal. Alternativemicro-hotplate design for low power sensor arrays, Microelectronic Engineering,2006,83(4-9):1189-1191.
    [63] Dong L, Yue R F, Liu L T, eta1. Design and fabrication of single-chip a-SiTFT-based uncooled infrared sensors, Sensors and Actuators A: physical,2004,116(2):257-263.
    [64] Sberveglieri G, Hellmich W, Muller G, Silicon hotplates for metal oxide gassensor elements, Microsystem Technologies,1997,3(4):183-190.
    [65] Kaltsas G, Nassiopoulou A G, Novel C-MOS compatible monolithic silicon gasflow sensor with porous silicon thermal isolation, Sensors and Actuators A:physical,1999,76(1-3):133-138.
    [66] Gracia I, Santander J, Cane C, etal. Results on the reliability of siliconmicromachined structures for semiconductor gas sensors, Sensors and ActuatorsB: chemical,2001,77(1-2):409-415.
    [67]古美良,胡明,SOI技术及其发展和应用,压电与声光,2006,28(2):236-239。
    [68]黄庆安,硅微机械加工技术,北京:科学出版社,1996,44-46。
    [69] Chang C C, Chen L C. A new process for the fabrication of silicon-on-insulatorstructures by using porous silicon, Materials Letters,1997,32(4):287-290.
    [70] Cristoloveanu S. Introduction to silicon on insulator materials and devices,Microelectronic Engineering,1997,39:145-154.
    [71] Tsao S S. Porous silicon techniques for SOI structures, IEEE Circuits andDevices Magazine,1987,3(6):3-7.
    [72] Ph. Roussel, V. Lysenko, B. Remaki, etal. Thick oxidised porous silicon layersfor the design of a biomedical thermal conductivity microsensor, Sensors andActuatorsA: physical,1999,74(1-3):101-103.
    [73] Rittersma Z M, Splinter A, Bodecker A, etal. A novel surface-micromachinedcapacitive porous silicon humidity sensor, Sensors and Actuators B: chemical,2000,68(1-3):210-217.
    [74] Barillaro G, Nannini A, Pieri F. APSFET: a new porous silicon-based gas sensingdevice, Sensors and Actuators: chemical,2003,93(1-3):263-270.
    [75] Mizsei J. Gas sensor applications of porous Si layers, Thin Solid Films,2007,515(23):8310-8315.
    [76] Grigoris K, Athanase A, Nassiopoulos A G. Characterization of a silicon thermalgas-flow sensor with porous silicon thermal isolation, IEEE Sensor Journal,2002,2(5):463-475.
    [77] Tsamis C, Tserepi A, Nassiopoulou A G. Fabrication of suspended porous siliconmicro-hotplates for thermal sensor applications, Physica Status Solidi A,2003,197(2):539-543.
    [78] Rocchia M A, Garrone E, Geobaldo F, etal. Sensing CO2in a chemicallymodified porous silicon film, Physica Status Solidi A,2003,197(2):365-369.
    [79] Massera E, Nasti I, Quercia L, etal. Improvement of stability and recovery timein porous-silicon-based NO2sensor, Sensors and Actuators B: chemical,2004,102(2):195-197.
    [80] Irajizad A, Rahimi F, Chavoshi M, et al. Characterization of porous poly-siliconas a gas sensor, Sensors andActuators B: chemical,2004,100(3):341-346.
    [81] Steiner P, Lang W. Micromachining applications of porous silicon, Thin SolidFilms,1995,255(1-2):52-58.
    [82] Smith R L, Collins S D. Porous silicon formation mechanisms, Journal ofApplied Physics,1992,71(8): R1-R22.
    [83] Lehmann V, G sele U. Porous silicon formation: Aquantum wire effect, AppliedPhysics Letters,1991,58(8):856-858.
    [84] Liu R, Schmedake T A, Li Y Y, etal. Novel porous silicon vapor sensor based onpolarization interferometry, Sensors and Actuators B: chemical,2002,87(1):58-62.
    [85] Bilenko D I, Belobrovaja O Y, Coldobanova O Y, eta1. In situ measurement ofporous silicon and the influence of ambient gas on its properties, Sensors andActuatorsA: physical,2000,79(2):147-152.
    [86] Baratto C, Comini E, Faglia G, eta1.Gas detection with a porous silicon basedsensor, Sensors andActuators B: chemical,2000,65(1-3):257-259.
    [87] Pancheri L, Oton C J, Gaburro Z, et a1.Very sensitive porous silicon NO2sensor,Sensors and Actuators B: chemical,2003,89(3):237-239.
    [88] Zangooie S, Bjorklund R, Arwin H. Vapor sensitivity of thin porous silicon layers,Sensors and Actuators B: chemical,1997,43(1-3):168-l74.
    [89] Wang G, Arwin H. Modification of vapor sensitivity in ellipsometric gas sensingby copper deposition in porous silicon, Sensors and Actuators B: chemical,2002,85(1-2):95-103.
    [90]谢廷贵,王余姜,蔡玉霜等,二氧化锡/多孔硅/硅的吸附特性,厦门大学学报(自然科学版),1995,34(5):707-710。
    [91]刘海峰,彭同江,孙红娟等,气敏材料敏感机理研究进展,中国粉体技术,2007,4:42-45。
    [92]来五星,王聪,李晓平等,乙醇气敏传感器及敏感度测试,仪器仪表用户,2006,13(3):143-145。
    [93] Iraji zad A, Rahimi F, Chavoshi M, etal. Characterization of porous poly-siliconas a gas sensor, Sensors andActuators B: chemical,2004,100:341-346.
    [94] Martinez H M, Rincon N E, Torres J, etal. Porous silicon thin film as CO sensor,Microelectronics Journal,2008,39(11):1354-1355.
    [95]杨光,何金田,李新建等,多孔硅气体传感器,传感器技术,2004,23(9):7-9,12。
    [96] Salonen J, Lehto V P, Laine E. The room temperature oxidation of porous silicon.Apply Surface Science,1997,2(3-4):191-198.
    [97] Razi F, Rahimi F, Irajizad A. Fourier transform infrared spectroscopy andscanning tunneling spectroscopy of porous silicon in the presence of methanol.Sensors and Actuators B: Chemical,2008,132(1):40-44.
    [98] Boarino L, Baratto C, Geobaldo F, etal. NO2monitoring at room temperature bya porous silicon gas sensor, Materials Science and Engineering B,2000,69-70(14):210-214.
    [99] Kim H J, Kim Y Y, Lee K W. Multiparametric sensor based on DBR poroussilicon for detection of ethanol gas, Current Applied Physics,2010,10(1):181-18.3
    [100] Ali N K, Hashim M R, Abdul Aziz A. Effects of surface passivation in poroussilicon as H2gas sensor, Solid-State Electronics,2008,52(7):1071-1074.
    [101] Pancheri L, Oton C J, Gaburro Z, etal. Improved reversibility in aged poroussilicon NO2sensors, Sensors andActuators B: Chemical,2004,97(1):45–48.
    [102] Ozdemir S and Gole J L. A phosphine detection matrix using nanostructuremodified porous silicon gas sensors, Sensors and Actuators B: Chemical,2010,151(1):274-280
    [103] Archer M, Christophersen M, Fauchet PM. Electrical porous silicon chemicalsensor for detection of organic solvents, Sensors and Actuators B: Chemical,2005,106(1):347-57.
    [104] Arakelyana V M, Galstyana V E, Martirosyana K S, etal. Hydrogen sensitivegas sensor based on porous silicon/TiO2-xstructure, Physica E,2007,38(1-2):219-221.
    [105] Chakane S, Gokarna A, Bhoraskar S V. Metallophthalocyanine coated poroussilicon gas sensor selective to NO2, Sensors and Actuators B: Chemical,2003,92(1-2):1-5.
    [106] Subramanian N.S, Sabaapathy R.V, Vickraman P, et al. Investigations on Pd:SnO2/porous silicon structures for sensing LPG and NO2gas, Ionics,2007,13(5):323-328.
    [107] Solntsev V S, Gorbanyuk T I, Litovchenko V G., etal. MIS gas sensors based onporous silicon with Pd and WO3/Pd electrodes, Thin Solid Films,2009,517(22):6202-6205.
    [108] Witten T A, Sander L M. Difusion-limited aggregation, Physical Review B,1983,27(9):5686-5697.
    [109] Lim P, Brock J R, Traehtenberg I. Laser-induced etching of silicon inhydrofluoric acid, Applied Physics Letters,1992,60(4):486-488.
    [110] Laiho R, Pavlov A. Preparation of porous silicon films by laser ablation, ThinSolid Films,1995,255(1):9-11.
    [111] Saadoun M, Ezzaouia H, Bessais B, etal. Formation of porous silicon forlarge-area silicon solar cells: a new method, Solar Energy Materials and SolarCells,1999,59(4):377-385.
    [112] Saadoun M, Mliki N, Kaabi H. Vapour-etching-based porous silicon: a newapproach, Thin solid films,2002,405(1-2):29-34.
    [113]陈乾旺,李新建,朱警生,多孔硅研究的新进展,电子显微学报,1997,16(4):493-496。
    [114]胡明,田斌,王兴,化学刻蚀法制备多孔硅的表面形貌研究,功能材料,2004,35(2):223-224。
    [115] Splinter A, Sturmann J, Benecke W. New porous silicon formation technologyusing internal current generation with galvanic elements, Sensors and ActuatorsA: physical,2001,92(1-3):394-399.
    [116]汪开源,刘柯林,唐洁影,多孔硅的光致发光谱,电子器件,1994,17(2):47-53。
    [117]王清涛,李清山,多孔硅及其应用研究展望,辽宁大学学报:自然科学版,2001,28(4):301-304,317。
    [118] Beale M I J. An experimental and theoretical study of the formation andmicrostructure of porous silicon, Crys Growth.1985,73(6):622-632.
    [119]林军,张丽珠,陈志坚等,多孔硅蓝光发射与发光机制,物理学报,1996,45(1):121-125。
    [120]刘恩科,朱秉升,罗晋生等,半导体物理学,北京:电子工业出版社,2003。
    [121] Bazrafkan I, Dariani R S. Electrical behavior of free-standing porous siliconlayers, Physica B: Condensed Matter,2009,404(12-13):1638-1642.
    [122] Stankova M, Vilanova X, Llobet E, etal. Influence of the annealing andoperating temperatures on the gas-sensing properties of rf sputtered WO3thin-film sensors, Sensors and Actuators B: Chemical,2005,111-112(2):271-277.
    [123] Ottaviano L, Bussolotti F, Lozzi L, etal. Core level and valence bandinvestigation of WO3thin films with synchrotron radiation, Thin Solid Films,2003,436(1):9-16.
    [124] Qin Y X, Shen W J, Li X, etal. Effect of annealing on microstructure andNO2-sensing properties of tungsten oxide nanowires synthesized by solvothermalmethod, Sensors andActuators B: Chemical,2011,155(2):646-652.
    [125] Kim S J, Hwang I S, Choi J K, etal. Gas sensing characteristics of WO3nanoplates prepared by acidification method, Thin Solid Films,2011,519(6):2020-2024.
    [126]王清涛,李清山,多孔硅及其应用研究展望,辽宁大学学报(自然科学版),2001,28(4):301-304,317。
    [127]林军,张丽珠,陈志坚等。多孔硅蓝光发射与发光机制,物理学报,1996,45(1):121-125。
    [128]沈桂芬,多孔硅及其应用研究,辽宁大学学报(自然科学版),2000,27(3):249-255。
    [129]汪开源,刘柯林,唐洁影,多孔硅的光致发光谱,电子器件,1994,,17(2):47-53。
    [130]杨光,何金田,李新建等,多孔硅气体传感器,传感器技术,2004,23(9):7-10。
    [131] Urbanowicz A M, Shamiryan D, Zaka A, etal. Effects of He PlasmaPretreatment on Low-k Damage during Cu Surface Cleaning with NH3Plasma,Journal of Electrochemical Society,2010,157(5): H565-H573.
    [132] Salgado G. G., Becerril T D, Santiesteban H J, etal. Porous silicon organic vaporsensor, Optical Materials,2006,29(1):51-55.
    [133] Tucci M, La Ferrara V, Della Noce M, etal. Bias enhanced sensitivity inamorphous/porous silicon heterojunction gas sensors, Journal of Non-CrystallineSolids,2004,338:776-779.
    [134] Cheraga H, Belhousse S, Gabouze N. Characterization of a new sensing devicebased on hydrocarbon groups (CHx) coated porous silicon, Applied SurfaceScience,2004,238(1-4):495-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700