苯和苯/C_2H_6O混合燃料低压燃烧的实验与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的燃烧是现代社会主要的能源供应来源,在能源、工业、交通、国防等重要领域发挥着具有举足轻重的作用。但大量化石燃料的消耗带来了严重的能源问题和环境问题,这就需要我们一方面继续对化石燃料开展燃烧研究以提高燃烧效率、控制燃烧污染物排放,另一方面发展生物质燃料并对其开展燃烧研究,以获得生物质燃料的燃烧性能与新型污染物形成机理。这也是本论文的两大侧重点。
     在化石燃料燃烧研究方面,本论文选取苯这一结构最简单、沸点最低的芳烃燃料作为研究对象。芳烃是石油产品及其替代燃料的重要组分,可以提高汽油的抗爆性和抗氧化性,但也会降低燃料的燃烧性能。另一方面,芳烃燃烧更能够促进多环芳烃(PAH)和碳烟等重要燃烧污染物的形成,特别是由于芳烃分子中已存在苯环结构,更有利于研究复杂的碳烟形成机理。因此,目前对芳烃燃烧化学动力学的研究将有利于发展替代燃料的燃烧化学动力学模型(下简称模型)和理解碳烟形成机理。基于实验的方便性、体系的简单性和研究的基础性,苯的燃烧化学动力学研究成为芳烃燃烧研究中最为重要的课题。虽然前人已经对苯燃烧做过大量的研究,但由于大部分实验工作存在探测手段限制和反应氛围单一等问题,无法为苯燃烧模型的发展提供充足的验证数据。因此,本论文利用同步辐射真空紫外光电离质谱(SVUV-PIMS)技术研究苯的低压热解和不同当量的低压层流预混火焰,并基于实验结果的验证发展了详细的苯燃烧模型。
     实验上,在30Torr条件下开展了流动管热解和涵盖贫燃、当量、富燃情况的五种层流预混火焰(当量分别为0.75、1.00、1.25、1.50和1.75)实验。实验中,在各实验条件下通过扫描光电离质谱和光电离效率谱,获得了燃烧物种的质荷比和电离能信息,从而鉴别出了主要产物、自由基、同分异构体和PAH等各类燃烧物种的分子结构。其中热解实验中产物的种类较少,而火焰中探测到分子量介于2至240之间近百种中间体及稳定物种,且富燃火焰中探测到多种大质量单环芳烃(MAH)和PAH。在热解实验中,通过扫描温度得到了热解产物的摩尔分数随温度的变化曲线;而在火焰实验中则通过在不同光子能量下扫描燃烧炉轴向位置获得产物质谱信号的空间分布,并通过计算得到火焰物种的摩尔分数随火焰轴向空间位置的变化曲线。此外,在火焰实验中通过对各当量火焰中温度和物种浓度的分析,得出了关键物种的浓度随当量的变化规律。
     模型发展上,本论文中的苯燃烧模型是在本课题组早期芳烃模型的基础上发展起来的。利用CHEMKIN Pro软件对热解和层流预混火焰进行模拟,通过对模拟结果和实验结果进行对比,结合相关文献的研究成果,剔除了不合理的反应路径,更正了不准确的速率常数,并加入了详细的苯醌子机理和部分C5氧化物的反应,从而完善并优化了详细的苯燃烧模型。
     利用生成速率(ROP)分析和敏感性分析,对热解和各火焰中苯的分解路径、重要中间体和典型大质量芳烃的生成与消耗路径进行了详尽分析。在热解过程中,苯主要通过由H自由基进攻引发的H提取反应得到苯基,并继续分解成更小的热解产物,通过苯基与其他中间体的复合反应还可以得到分子量更大的芳烃。在层流预混火焰中,苯的初始分解过程均主要通过H提取反应得到苯基,但该过程在贫燃和当量条件下是由O和OH进攻驱动,而在富燃条件下的主要通道则与热解实验相同。在贫燃和当量条件下,苯基最主要的消耗通道是被氧化成苯氧基,苯氧基大多转化为苯酚或被氧化成苯醌;而在富燃火焰中,苯基除了被氧化成苯氧基之外,通过单分子解离或自由基辅助开环反应也占据一定的消耗比例。更小的碳氢中间体和产物大多来自于苯氧基和苯醌的后续分解路径。在富燃预混火焰的芳烃生长过程中,苯基是大多数芳烃物种生长的起点,如单环芳烃的生成直接依赖于苯基与C1-C2中间体的反应,萘、茚和联苯则主要由苯基与C3以上中间体反应得到。此外,各种共轭的芳烃自由基,如苄基和茚基等,也对芳烃生长和消耗起到重要的作用。
     在生物质燃料燃烧研究方面,综合考虑应用方式、实用性、燃料同分异构体影响等方面,本论文研究了苯掺混乙醇和二甲醚(分子式均为C2H60)低压预混火焰,以克服前人碳氢燃料掺混生物质燃料燃烧研究工作中多采用C4以下气态碳氢燃料、中间体检测不够全面等问题,从而指导生物质燃料分子结构影响碳氢燃料燃烧过程的机理研究。在保持碳氧比的前提下,利用SVUV-PIMS技术分别探测了C2H60掺混比为0、15%、30%和50%的四种火焰的物种构成及浓度,研究了乙醇和二甲醚(DME)的添加对苯火焰中主要产物、碳氢中间体、含氧中间体、大质量MAH和PAH浓度的影响。在模型研究方面,通过在苯模型的基础上加入乙醇和二甲醚子机理构建了苯/C2H60掺混燃料燃烧动力学模型,并结合ROP分析对苯/乙醇系列火焰和苯/DME系列火焰中主要路径进行了分析。
     对于不同掺混比的苯/乙醇火焰和苯/二甲醚火焰,随着掺混比的提高,其主要产物中H2和H2O的浓度逐渐增加,而CO和CO2的浓度则逐渐减少。就C6以下碳氢中间体而言,乙醇和二甲醚的添加对各自的直接分解产物浓度的影响最为明显,例如乙醇主要对C2以下碳氢中间体影响巨大,而二甲醚则主要影响CH3和CH4;此外,它们的添加对主要生成路径涉及到其直接分解产物者也会具有促进作用。随着乙醇和二甲醚掺混比的增加,C2以下含氧中间体如CH2O、CH3CHO的浓度也受到了明显的影响,这些均与含氧燃料的分子结构和初始分解过程密切相关。
     随着乙醇和二甲醚掺混比的提高,大质量MAH和PAH的生成也体现出较强的规律性,例如主要生成路径涉及到含氧燃料直接分解产物的大质量MAH产物如苄基和甲苯的生成浓度随掺混比的增加而不断增加,而PAH类化合物如茚、萘等的生成浓度则随乙醇和二甲醚掺混比的提高而不断减少。因此可以总结出在苯及苯掺混C2H6O燃料火焰中,无论是大质量MAH还是PAH,其主要生成路径均来自于苯基与小分子的反应,即苯基是这些火焰中芳烃生长过程的起点和最重要的PAH前驱体。此外,由于本工作中火焰的碳氧比恒定且含氧燃料分子中的氢碳比远远大于苯分子,因此提供了一个抑制了混合物中O原子浓度和反应中燃料分子周围当地氧浓度的环境,从而凸显出含氧燃料对苯的替换效应在降低PAH和碳烟形成中所具有的重要性。
     在本工作的基础上,未来拟开展变压力热解实验和火焰实验,对现有苯火焰模型进行进一步的发展和优化,将其应用范围扩展至常压和高压条件。在苯火焰模型的基础上,拟针对各种单支链烷基苯、二甲苯和三甲苯等芳烃燃料开展变压力热解和预混火焰的实验和动力学模型研究,进而更深入地理解芳烃燃料的燃烧动力学。
Combustion of fossil fuels is the most important source of energy supply for modern society, and plays a decisive role in the strategic fields such as energy, industry, transportation and defense. However, the rapid consumption of fossil fuels causes serious energy and environmental problems, which raises the demands in two research topics. On one hand, more efforts should be devoted to the combustion researches of fossil fuels in order to improve the combustion efficiency and reduce the pollutant emissions; on the other hand, the development and combustion researches of biofuels are urgently needed for more plenty supply of renewable energy sources. This paper will focus on the two aspects.
     In the combustion study of fossil fuels, benzene which has the simplest structure and lowest boil point among all aromatic hydrocarbons was selected as a representative of aromatic fuels in this work. Aromatic hydrocarbons are important components of petroleum-derived oils and their surrogates. They can improve the antiknocking quality and antioxidative stability of gasoline, but reduce the combustion performance of transportation fuels meanwhile. Furthermore, the combustion of aromatics can promote the formation of polycyclic aromatic hydrocarbons (PAHs) and soot due to the existence of benzenoid ring in aromatic molecules, and becomes an ideal system to study their complicated formation mechanism. Thus, investigations on the combustion chemistry of aromatic fuels will benefit the development of kinetic models of surrogate fuels and the understanding of soot formation mechanism. Because of the convenience in experimental work, the simplicity of research system and the role as a start point to study larger aromatics combustion, the combustion chemistry of benzene has been the most important topic in the research of aromatics combustion. Though a lot of experimental studies of benzene combustion have been carried out previously, the validation data for benzene model are still deficient due to the limitations of conventional diagnostic methods and incomprehensive reaction circumstances. In this work, synchrotron radiation vacuum ultraviolet photo ionization mass spectrometry (SVUV-PIMS) was employed to study the low-pressure pyrolysis of benzene and low-pressure laminar premixed flames of benzene at various equivalent ratios (Φ). Based on the validation by experimental results, a detailed kinetic model of benzene was developed.
     The experimental work includes flow reactor pyrolysis and five laminar premixed flames (Φ=0.75,1.00,1.25,1.50and1.75) at30Torr. Based on the measurements of photoionization mass spectra and photoionization efficiency (PIE) spectra, combustion species including major species, radicals, isomers and PAHs were identified. Compared with the limited number of pyrolysis products, about100flame species with m/z=2~240were detected, including many large monocyclic aromatic hydrocarbons (MAHs) and PAHs in the rich flames. In the pyrolysis experiment, photo ionization mass spectra were measured at several fixed photon energies to obtain the mole fraction profiles of pyrolysis products against temperature. In the flame experiments, mole fraction profiles of major species and intermediates were obtained by scanning burner position at several photon energies. Based on the analysis of experimental temperature and mole fractions profiles, the concentration tendencies of key intermediates with the increase of equivalence ratios were found.
     The kinetic model of benzene was developed from our previous model of aromatic fuels. CHEMKIN Pro software was used to simulate the pyrolysis and premixed flames. Based on the comparison between the simulated and experimental results and recent literature studies of related reaction pathways, unreasonable reactions were eliminated, inaccurate rate constants were corrected, and benzoquinone sub-mechanism and reactions of some C5oxygenates were added, which improve the performance of this model.
     Rate of production (ROP) analysis and sensitivity analysis were used to analyze the decomposition pathways of fuels, the formation and consumption pathways of key intermediates and typical large aromatics. In the pyrolysis, benzene is mainly consumed to form phenyl by the H-abstraction reaction via H attack. Sequentially, phenyl can either decompose to smaller products or yield large aromatics via combination reactions with other species. In laminar premixed flames, H-abstraction still controls the decomposition of benzene, and is driven by H attack in the rich flames and by O and OH attack in the lean and stoichiometric flames. In the lean and stoichiometric flames, phenyl is mainly consumed via oxidation reactions to produce phenoxyl radical which is sequentially converted to phenol or oxidized to benzoquinone. In the rich flames, phenyl can also be consumed by unimolecular or radical assisted ring-opening reactions. Smaller hydrocarbon intermediates are mainly produced via consumption processes of phenoxyl and benzoquinone in all flames. For the aromatic growth process in the rich flames, it is mainly initiated by reactions involving phenyl. For example, the formation of MAHs is directly related to the reactions between phenyl and C1-C2intermediates; naphthalene, indene and biphenyl are mainly produced from reactions of phenyl and C3-C6species.
     In the combustion study of biofuels, ethanol and dimethyl ether (DME), two C2H6O isomers, are selected as the dopants in the benzene flames in order to avoid the limitations in previous hydrocarbon/biofuel combustion studies and help interpret the molecular structure influences of biofuels on hydrocarbon combustion. By maintaining constant C/O ratio, combustion species were identified by using SVUV-PIMS in four benzene/C2H6O flames with inlet C2H6O/(benzene+C2H6O) mole ratios (simplified as C2H6O ratio) of0,15%,30%and50%. The influences of ethanol and DME addition to the concentrations of major products, hydrocarbon and oxygenated intermediates, and large MAHs and PAHs in the rich benzene flame were investigated. A detailed benzene/C2H6O model was developed by adding the sub-mechanisms of ethanol and DME to the benzene model. ROP analysis was performed to analyze the major reaction pathways in the benzene/ethanol and benzene/DME flames.
     In the benzene/ethanol and benzene/DME flames, with the increase of C2H6O ratio, the concentrations of H2and H2O gradually increase, and those of CO and CO2decrease. For C6and smaller hydrocarbon intermediates, ethanol and DME show great influences on the yield of their decomposition products. For example, ethanol affects C1-C2intermediates, and DME mainly influences CH3and CH4. Besides, the addition of ethanol and DME also promotes the intermediates whose major formation pathways involves the decomposition products of dopants. As the C2H6O ratio increases, the mole fractions of C1-C2oxygenated intermediates including CH2O, CH3CHO, etc. are also affected, which mainly depend on the molecular structures and the primary decomposition processes of the dopants.
     With the increase of C2H6O ratio, formation of large MAHs and PAHs represents apparent relationships. For example, MAHs like benzyl and toluene have increasing concentrations, while the formation of PAHs such as indene and naphthalene are inhibited. It is concluded that in both benzene and benzene/C2H6O flames, both large MAHs and PAHs are produced from the reactions between phenyl and small species, which indicates that phenyl is the start point of aromatic growth process and the most important precursor of PAHs in these flames. Because the C/O ratio keeps constant in all flames and the H/C ratios in the molecules of dopants are far greater than that in benzene, the oxygen concentrations are limited in both the inlet mixtures and the flames, which reveals the importance of substitution effect of oxygenated fuels to benzene in reducing the formation of PAHs and soot.
     Based on the present work, pyrolysis and laminar premixed flame experiments at various pressures will be performed in the near future, which will be used for the further development of the present benzene model to broaden its applications at atmospheric and high pressures. Based on this model, experimental and kinetic modeling studies of pyrolysis and laminar premixed flames will be performed for complex aromatic fuels including monosubstituted alkylbenzenes, xylenes and trimethylbenzenes, leading to a further understanding of the combustion chemistry of aromatic fuels.
引文
[1]BP Statistical Review of World Energy 2012, BP p.l.c, London, June 2012.
    [2]World Energy Outlook 2011, International Energy Agency, Paris,2011.
    [3]World Development Indicators Database, The World Bank, http://data.worldbank.org/indicator/NY.GDP.MKTP.CD,2011.
    [4]第一次全国污染源普查公报,中华人民共和国环境保护部;国家统计局;农业部,2010.
    [5]Human Development Report 2011, United Nations Development Programme, New York,2011.
    [6]张丽英,合理降低油品芳香烃含量的重要性.油气储运2003,22(5),58-61.
    [7]陈文淼;吴复甲;王建昕,et al.柴油品质对发动机排放性能影响,2007年APC联合学术年会,中国天津,2007;p 8.
    [8]Pitz, W. J.; Cernansky, N. P.; Dryer, F. L., et al., Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels. Society of Automotive Engineers 2007, SAE Paper 2007-2001-0175.
    [9]Wang, J.; Yang, B.; Li, Y. Y., et al, The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline. Int. J. Mass Spectrom.2007,263 (1),30-37.
    [10]Colket, M.; Edwards, T; Williams, S., et al. Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels,45th AIAA Aerospace Sciences Meeting and Exhibit Proceedings, Reno, NV,2007; pp AIAA Paper 2007-0770.
    [11]Farrell, J. T.; Cernansky, N. P.; Dryer, F. L., et al., Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels. Society of Automotive Engineers 2007, SAE Paper 2007-2001-0201.
    [12]Toxicological profile for fuel oils, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta,1995.
    [13]Commission Regulation (EU) No 582/2011 of 25 May 2011 implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council Text with EEA relevance. European Commission:2011.
    [14]Hadaller, O. J.; Johnson, J. M. World Fuel Sampling Program, CRC Aviation Fuel, Lubricant & Equipment Research Committee of the Coordinating Research Council, Inc,2006.
    [15]Tim, E.; Linda, S.; Rich, S., et al., Chemical Class Composition of Commercial Jet Fuels and Other Specialty Kerosene Fuels. In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics:2006.
    [16]Pitz, W. J.; Mueller, C. J., Recent progress in the development of diesel surrogate fuels. Prog Energ Combust 2011,37 (3),330-350.
    [17]Bacha, J.; Freel, J.; Gibbs, A., et al. Diesel Fuels Technical Review, Chevron Corporation,2007.
    [18]Violi, A.; Yan, S.; Eddings, E. G., et al., Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology 2002, 174(11-12),399-417.
    [19]Andrae, J. C. G.; Bjornbom, P.; Cracknell, R. F., et al., Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics. Combust Flame 2007,149 (1-2),2-24.
    [20]Machrafi, H.; Cavadias, S., Three-stage autoignition of gasoline in an HCCI engine:An experimental and chemical kinetic modeling investigation. Combust Flame 2008,155 (4),557-570.
    [21]Cancino, L. R.; Fikri, M.; Oliveira, A. A. M., et al., Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressures:Experimental and numerical approaches. Proc. Combust. Inst.2009,32 (1),501-508.
    [22]Mati, K.; Ristori, A.; Gail, S., et al., The oxidation of a diesel fuel at 1— 10 atm:Experimental study in a JSR and detailed chemical kinetic modeling. Proc. Combust. Inst.2007,31 (2),2939-2946.
    [23]Honnet, S.; Seshadri, K.; Niemann, U., et al., A surrogate fuel for kerosene. Proc. Combust. Inst.2009,32 (1),485-492.
    [24]Natelson, R. H.; Kurman, M. S.; Cernansky, N. P., et al., Experimental investigation of surrogates for jet and diesel fuels. Fuel 2008,87 (10-11), 2339-2342.
    [25]Mathieu, O.; Djebaili-Chaumeix, N.; Paillard, C.-E., et al., Experimental study of soot formation from a diesel fuel surrogate in a shock tube. Combust Flame 2009, 156(8),1576-1586.
    [26]Agosta, A.; Cernansky, N. P.; Miller, D. L., et al., Reference components of jet fuels:kinetic modeling and experimental results. Experimental Thermal and Fluid Science 2004,28 (7),701-708.
    [27]A1-Omari, S.-A. B.; Kawajiri, K.; Yonesawa, T., Soot processes in a methane-fueled furnace and their impact on radiation heat transfer to furnace walls. International Journal of Heat and Mass Transfer 2001,44 (13), 2567-2581.
    [28]Ramanathan, V.; Carmichael, G., Global and regional climate changes due to black carbon. Nature Geosci 2008,1 (4),221-227.
    [29]Service, R. F., Study Fingers Soot as a Major Player in Global Warming. Science 2008,319(5871),1745-1745.
    [30]Kaiser, J., Showdown Over Clean Air Science. Science 1997,277 (5325), 466-469.
    [31]Bonig, M.; Feldermann, C.; Jander, H., et al., Soot formation in premixed C2H4 flat flames at elevated pressure. Symposium (International) on Combustion 1990, 23(1),1581-1587.
    [32]Warnatz, J.; Maas, U.; Dibble, R. W., Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation.4th ed.; Springer:2006.
    [33]Law, C. K.; Sung, C. J.; Wang, H., et al., Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling. AIAA Journal 2003,41 (9),1629-1646.
    [34]Bounaceur, R.; Glaude, P. A.; Fournet, R., et al., Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines. International Journal of Vehicle Design 2007,44 (1-2),124-142.
    [35]宋雅娜;钟北京;席军,直喷式柴油机燃烧过程及碳烟生成的初步计算.工程热物理学报2008,29(2),339-342.
    [36]宋雅娜;钟北京,基于精细碳黑模型的柴油机燃烧模拟.清华大学学报(自然群学版)2009,49(5),121-125.
    [37]Bohm, H.; Jander, H.; Tanke, D., PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures:Modeling and experiment. Symposium (International) on Combustion 1998,27 (1),1605-1612.
    [38]Bohm, H.; Jander, H., PAH formation in acetylene-benzene pyrolysis. Phys. Chem. Chem. Phys.1999,1 (16),3775-3781.
    [39]Starke, R.; Roth, P., Soot particle sizing by LⅡ during shock tube pyrolysis of C6H6. Combust Flame 2001,127 (4),2278-2285.
    [40]Skj(?)th-Rasmussen, M. S.; Glarborg, P.; (?)stberg, M., et al., Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combust Flame 2004,136(1-2),91-128.
    [41]娄春;陈辰;孙亦鹏,et al.,碳氢火焰中碳黑检测方法评述.中国科学:技术群学2010,4D(8),946-958.
    [42]McEnally, C. S.; Pfefferle, L. D.; Atakan, B., et al., Studies of aromatic hydrocarbon formation mechanisms in flames:Progress towards closing the fuel gap. Prog Energ Combust 2006,32 (3),247-294.
    [43]Richter, H.; Howard, J. B., Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Prog Energ Combust 2000,26 (4-6),565-608.
    [44]Frenklach, M., Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys.2002,4 (11),2028-2037.
    [45]McEnally, C. S.; Ciuparu, D. M.; Pfefferle, L. D., Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes. Combust Flame 2003,134 (4),339-353.
    [46]Wang, H., Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst.2011,33 (1),41-67.
    [47]Bockhorn, H., Soot formation in combustion:mechanisms and models. Springer-Verlag:1994.
    [48]李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究.博士学位论文,中国科学技术大学,合肥,2010.
    [49]Wang, H.; Frenklach, M., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust Flame 1997,110(1-2),173-221.
    [50]Appel, J.; Bockhorn, H.; Frenklach, M., Kinetic modeling of soot formation with detailed chemistry and physics:laminar premixed flames of C2 hydrocarbons. Combust Flame 2000,121 (1-2),122-136.
    [51]Marinov, N. M.; Pitz, W. J.; Westbrook, C. K., et al., Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combust Flame 1998,114 (1-2),192-213.
    [52]Richter, H.; Granata, S.; Green, W. H., et al, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst.2005,30,1397-1405.
    [53]Shukla, B.; Koshi, M., A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys.2010,12 (10),2427-2437.
    [54]Shukla, B.; Koshi, M., A novel route for PAH growth in HACA based mechanisms. Combust Flame 2012, (in press), http://dx.doi.org/10.1016/i.combustflame.2012.1008.1007.
    [55]Lemieux, P. M.; Lutes, C. C.; Santo ianni, D. A., Emissions of organic air toxics from open burning:a comprehensive review. Prog Energ Combust 2004,30 (1), 1-32.
    [56]Jakober, C. A.; Riddle, S. G.; Robert, M. A., et al., Quinone Emissions from Gasoline and Diesel Motor Vehicles. Environ Sci Technol 2007,41 (13), 4548-4554.
    [57]Akarawneh, M.; Dlugogorski, B. Z.; Kennedy, E. M., et al., Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog Energ Combust 2009,35 (3),245-274.
    [58]Richter, H.; Grieco, W. J.; Howard, J. B., Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames. Combust Flame 1999,119,1-22.
    [59]Li, Y. Y.; Zhang, L. D.; Tian, Z. Y., et al, Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels 2009,23,1473-1485.
    [60]Li, Y.; Cai, J.; Zhang, L., et al., Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proc. Combust. Inst.2011,33 (1), 617-624.
    [61]Li, Y.; Cai, J.; Zhang, L., et al., Investigation on chemical structures of premixed toluene flames at low pressure. Proc. Combust. Inst.2011,33(1),593-600.
    [62]McEnally, C. S.; Pfefferle, L. D., The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames. Proc. Combust. Inst.2000,28 (2),2569-2576.
    [63]Davis, S. G.; Wang, H.; Breinsky, K., et al., Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames. Symposium (International) on Combustion 1996,26 (1),1025-1033.
    [64]Ji, C.; Dames, E.; Wang, H., et al., Propagation and extinction of benzene and akylated benzene flames. Combust Flame 2012,159 (3),1070-1081.
    [65]Burcat, A.; Snyder, C.; Brabbs, T., Ignition Delay Times of Benzene and Toluene With Oxygen in Argon Mixtures. NASA Technical Memorandum 1986,87312.
    [66]Thyagarajan, K.; Bhaskaran, K. A., Effect of argon dilution on the pre-ignition oxidation kinetics of benzene. International Journal of Energy Research 1991,15 (3),235-248.
    [67]Costa, I. D.; Fournet, R.; Billaud, F., et al., Experimental and modeling study of the oxidation of benzene. International Journal of Chemical Kinetics 2003,35 (10),503-524.
    [68]Howard, J. B.; McKinnon, J. T.; Johnson, M. E., et al., Production of C60 and C70 fullerenes in benzene-oxygen flames. The Journal of Physical Chemistry 1992,96 (16),6657-6662.
    [69]Mckinnon, J. T.; Howard, J. B., The roles of pah and acetylene in soot nucleation and growth. Symposium (International) on Combustion 1992,24 (1),965-971.
    [70]Grieco, W. J.; Lafleur, A. L.; Swallow, K. C., et al., Fullerenes and PAH in low-pressure premixed benzene/oxygen flames. Symposium (International) on Combustion 1998,27 (2),1669-1675.
    [71]Tregrossi, A.; Ciajolo, A.; Barbella, R., The combustion of benzene in rich premixed flames at atmospheric pressure. Combust Flame 1999,117 (3), 553-561.
    [72]Lee, S. M.; Yoon, S. S.; Chung, S. H., Synergistic effect on soot formation in counterflow diffusion flames of ethylene-propane mixtures with benzene addition. Combust Flame 2004,136 (4),493-500.
    [73]Maricq, M. M., A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combust Flame 2006,144 (4),730-743.
    [74]Alfe, M.; Apicella, B.; Barbella, R., et al., Similarities and dissimilarities in n-hexane and benzene sooting premixed flames. Proc. Combust. Inst.2007,31 (1),585-591.
    [75]Echavarria, C. A.; Sarofim, A. F.; Lighty, J. S., et al., Modeling and measurements of size distributions in premixed ethylene and benzene flames. Proc. Combust. Inst.2009,32 (1),705-711.
    [76]Weng, Q.-H.; He, Q.; Sun, D., et al., Separation and Characterization of C70(C14H10) and C70(C5H6) from an Acetylene-Benzene-Oxygen Flame. The Journal of Physical Chemistry C 2011,115 (22),11016-11022.
    [77]Russo, C.; Stanzione, F.; Tregrossi, A., et al., The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combust Flame 2012,159 (7),2233-2242.
    [78]Shandross, R. A.; Longwell, J. P.; Howard, J. B., Destruction of benene in high-temperature flames:Chemistry of benene and phenol. Symposium (International) on Combustion 1996,26 (1),711-719.
    [79]McEnally, C. S.; Pfefferle, L. D., The effects of slight premixing on fuel decomposition and hydrocarbon growth in benzene-doped methane nonpremixed flames. Combust Flame 2002,129 (3),305-323.
    [80]Dupont, L.; El Bakali, A.; Pauwels, J. F., et al., Investigation of stoichiometric methane/air/benzene (1.5%) and methane/air low pressure flames. Combust Flame 2003,135 (1-2),171-183.
    [81]Bakali, A. E.; Ribaucour, M.; Saylam, A., et al., Benzene addition to a fuel-stoichiometric methane/O2/N2 flat flame and to n-heptane/air mixtures under rapid compression machine. Fuel 2006,85 (7-8),881-895.
    [82]Abid, A. D.; Tolmachoff, E. D.; Phares, D. J., et al., Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping. Proc. Combust. Inst.2009,32(1),681-688.
    [83]Bittner, J. D.; Howard, J. B., Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame. Symposium (International) on Combustion 1981,18(1),1105-1116.
    [84]Benish, T. G. PAH Radical Scavenging in Fuel-Rich Premixed Benzene Flames. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,1999.
    [85]Defoeux, F.; Dias, V.; Renard, C., et al., Experimental investigation of the structure of a sooting premixed benzene/oxygen/argon flame burning at low pressure. Proc. Combust. Inst.2005,30,1407-1415.
    [86]Detilleux, V.; Vandooren, J., Molecular Beam Mass Spectrometry analysis of PAH production pathways in C6H6/O2/Ar and C6H6/C2H2/O2/Ar flames. Combustion Science and Technology 2008,180(7),1347-1369.
    [87]Detilleux, V.; Vandooren, J., Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames. Combustion Explosion and Shock Waves 2009,45 (4),392-403.
    [88]Laskin, A.; Lifshit, A., Thermal decomposition of benene. Single-pulse shock-tube investigation. Symposium (International) on Combustion 1996,26 (1), 669-675.
    [89]Sivaramakrishnan, R.; Brezinsky, K.; Vasudevan, H., et al., A shock-tube study of the high-pressure thermal decomposition of benzene. Combustion Science and Technology 2006,178 (1-3),285-305.
    [90]Venkat, C.; Brezinsky, K.; Glassman, I., High temperature oxidation of aromatic hydrocarbons. Symposium (International) on Combustion 1982,19 (1),143-152.
    [91]Lyon, R. K., The existence of second threshold for combustion and its implications to incineration. Symposium (International) on Combustion 1991,23 (1),903-908.
    [92]Alzueta, M. U.; Glarborg, P.; Dam-Johansen, K., Experimental and kinetic modeling study of the oxidation of benzene. International Journal of Chemical Kinetics 2000,32 (8),498-522.
    [93]Chai, Y.; Pfefferle, L. D., An experimental study of benzene oxidation at fuel-lean and stoichiometric equivalence ratio conditions. Fuel 1998,77 (4),313-320.
    [94]Ristori, A.; Dagaut, P.; Bakali, A. E., et al., Benzene Oxidation:Experimental Results in a JDR and Comprehensive Kinetic Modeling in JSR, Shock-Tube and Flame. Combustion Science and Technology 2001,167 (1),223-256.
    [95]Hsu, D. S. Y.; Lin, C. Y.; Lin, M. C., CO formation in early stage high temperature benzene oxidation under fuel lean conditions:Kinetics of the initiation reaction, C6H6→C6H5→H. Symposium (International) on Combustion 1985,20(1),623-630.
    [96]Xu, C.; Braun-Unkhoff, M.; Naumann, C., et al., A shock tube investigation of H atom production from the thermal dissociation of ortho-benzyne radicals. Proc. Combust. Inst.2007,31 (1),231-239.
    [97]Giri, B. R.; Bentz, T.; Hippler, H., et al., Shock-Tube Study of the Reactions of Hydrogen Atoms with Benzene and Phenyl Radicals. Zeitschrift fur Physikalische Chemie 2009,223 (4-5),539-549.
    [98]Wang, H.; Laskin, A.; Moriarty, N. W., et al., On unimolecular decomposition of phenyl radical. Proc. Combust. Inst.2000,28 (2),1545-1555.
    [99]Emdee, J. L.; Brezinsky, K.; Glassman, I., A kinetic model for the oxidation of toluene near 1200 K. The Journal of Physical Chemistry 1992,96 (5),2151-2161.
    [100]Tan, Y.; Frank, P., A detailed comprehensive kinetic model for benene oxidation using the recent kinetic results. Symposium (International) on Combustion 1996,26 (1),677-684.
    [101]Schobel-Ostertag, A.; Braun-Unkhoff, M.; Wahl, C., et al., The oxidation of benzene under conditions encountered in waste incinerators. Combust Flame 2005,140 (4),359-370.
    [102]Vourliotakis, G.; Skevis, G.; Founti, M. A., A Detailed Kinetic Modeling Study of Benzene Oxidation and Combustion in Premixed Flames and Ideal Reactors. Energy & Fuels 2011,25 (5),1950-1963.
    [103]Bittker, D. A., Detailed Mechanism for Oxidation of Benzene. Combustion Science and Technology 1991,79 (1),49-72.
    [104]Lindstedt, R. P.; Skevis, G., Detailed kinetic modeling of premixed benzene flames. Combust Flame 1994,99 (3-4),551-561.
    [105]Zhang, H.-Y.; McKinnon, J. T, Elementary Reaction Modeling of High-Temperature Benzene Combustio. Combustion Science and Technology 1995,107(4),261-300.
    [106]Richter, H.; Benish, T. G.; Mazyar, O. A., et al., Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame. Proc. Combust. Inst.2000,28,2609-2618.
    [107]Richter, H.; Howard, J. B., Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phys. Chem. Chem. Phys.2002,4(11),2038-2055.
    [108]Golea, D.; Rezgui, Y.; Guemini, M., et al., Reduction of PAH and Soot Precursors in Benzene Flames by Addition of Ethanol. J. Phys. Chem. A 2012, 116 (14),3625-3642.
    [109]Cool, T. A.; Nakajima, K.; Mostefaoui, T. A., et al., Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. J. Chem. Phys.2003,119 (16),8356-8365.
    [110]Cool, T. A.; McIlroy, A.; Qi, F., et al., Photo ionization mass spectrometer for studies of flame chemistry with a synchrotron light source. Rev. Sci. Instrum. 2005,76 (9),094102.
    [111]Hansen, N.; Klippenstein, S. J.; Miller, J. A., et al., Identification of C5Hx Isomers in Fuel-Rich Flames by Photo ionization Mass Spectrometry and Electronic Structure Calculations. J. Phys. Chem. A 2006,110(13),4376-4388.
    [112]Yang, B.; Li, Y. Y.; Wei, L. X., et al., An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proc. Combust. Inst.2007,31,555-563.
    [113]杨斌.苯/氧气及丁醇/氧气火焰的VUV光电离研究.博士学位论文,中国科学技术大学,合肥,2006.
    [114]Li Y. Y.; Zhang, L. D.; Yuan, T., et al., Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis. Combust Flame 2010,157(1),143-154.
    [115]中华人民共和国可再生能源中长期发展规划,中华人民共和国国家发展和改革委员会,北京,2007.
    [116]Nigam, P. S.; Singh, A., Production of liquid biofuels from renewable resources. Prog Energ Combust 2011,37(1),52-68.
    [117]Kohse-Hoinghaus, K.; Oβwald, P.; Cool, T. A., et al., Biofuel Combustion Chemistry:From Ethanol to Biodiesel. Angewandte Chemie International Edition 2010,49 (21),3572-3597.
    [118]Surisetty, V. R.; Dalai, A. K.; Kozinski, J., Alcohols as alternative fuels:An overview. Applied Catalysis A:General 2011,404 (1-2),1-11.
    [119]McEnally, C. S.; Pfefferle, L. D., Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons:butyl alcohols. Proc. Combust. Inst.2005,30 (1),1363-1370.
    [120]Chen, H.; Shi-Jin, S.; Jian-Xin, W., Study on combustion characteristics and PM emission of diesel engines using ester-ethanol-diesel blended fuels. Proc. Combust. Inst.2007,31 (2),2981-2989.
    [121]McEnally, C. S.; Pfefferle, L. D., The effects of dimethyl ether and ethanol on benzene and soot formation in ethylene nonpremixed flames. Proc. Combust. Inst.2007,31,603-610.
    [122]Yoon, S. S.; Anh, D. H.; Chung, S. H., Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation. Combust Flame 2008,154 (3),368-377.
    [123]Litzinger, T.; Colket, M.; Kahandawala, M., et al., Fuel Additive Effects on Soot across a Suite of Laboratory Devices, Part 1:Ethanol. Combustion Science and Technology 2009,181 (2),310-328.
    [124]Santamaria, A.; Yang, N.; Eddings, E., et al., Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combust Flame 2010,157 (1),33-42.
    [125]Esarte, C.; Callejas, A.; Millera, A., et al., Influence of the concentration of ethanol and the interaction of compounds in the pyrolysis of acetylene and ethanol mixtures. Fuel 2011,90 (2),844-849.
    [126]Frassoldati, A.; Faravelli, T.; Ranzi, E., et al., Kinetic modeling study of ethanol and dimethyl ether addition to premixed low-pressure propene-oxygen-argon flames. Combust Flame 2011,158 (7),1264-1276.
    [127]Chen, G.; Yu, W.; Fu, J., et al., Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames. Combust Flame 2012,159 (7),2324-2335.
    [128]Gerasimov, I. E.; Knyazkov, D. A.; Yakimov, S. A., et al., Structure of atmospheric-pressure fuel-rich premixed ethylene flame with and without ethanol. Combust Flame 2012,159 (5),1840-1850.
    [129]Bennett, B. A. V.; McEnally, C. S.; Pfefferle, L. D., et al., Computational and experimental study of the effects of adding dimethyl ether and ethanol to nonpremixed ethylene/air flames. Combust Flame 2009,156(6),1289-1302.
    [130]Esarte, C.; Millera, A.; Bilbao, R., et al., Effect of Ethanol, Dimethylether, and Oxygen, When Mixed with Acetylene, on the Formation of Soot and Gas Products. Industrial & Engineering Chemistry Research 2010,49 (15), 6772-6779.
    [1]Hansen, N.; Cool, T. A.; Westmoreland, P. R., et al., Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Prog Energ Combust 2009,35 (2), 168-191.
    [2]张泰昌;朱爱国;洪新,et al,国家同步辐射实验室U14C光束线气体滤波器的研制.中国科学技术大学学报2007,37(4-5),582-585.
    [3]Zhang, T. C.; Wang, J.; Yuan, T., et al., Pyrolysis of Methyl tert-Butyl Ether (MTBE).1. Experimental Study with Molecular-Beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. J. Phys. Chem. A 2008,112 (42), 10487-10494.
    [4]Wang, Z.; Cheng, Z.; Yuan, W., et al., An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combust Flame 2012,159 (7), 2243-2253.
    [5]王晶.C2-C4醇类燃料的热解及低温等离子体研究.博士学位论文,中国科学技术大学,合肥,2008.
    [6]袁涛.正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究.博士学位论文,中国科学技术大学,合肥,2010.
    [7]张泰昌.若干流动体系中的化学反应研究.博士学位论文,中国科学技术大学,合肥,2010.
    [8]张义军.C4系列烷烃和烯烃的热解实验及动力学模型研究.博士学位论文,中国科学技术大学,合肥,2011.
    [9]谢铭丰.C3-C5直链脂肪酸甲酯的热解实验及动力学模型研究.博士学位论文,中国科学技术大学,合肥,2012.
    [10]杨斌.苯/氧气及丁醇/氧气火焰的VUV光电离研究.博士学位论文,中国科学技术大学,合肥,2006.
    [11]李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究.博士学位论文,中国科学技术大学,合肥,2010.
    [12]Migliorini, F.; De Iuliis, S.; Cignoli, F., et al., How "flat" is the rich premixed flame produced by your McKenna burner? Combust Flame 2008,153 (3), 384-393.
    [13]Kint, J. H., A noncatalytic coating for platinum-rhodium thermocouples. Combust Flame 1970,14 (2),279-281.
    [14]Shandross, R. A.; Longwell, J. P.; Howard, J. B., Noncatalytic Thermocouple Coating for Low-Pressure Flames. Combust Flame 1991,85 (1-2),282-284.
    [15]Burton, K. A.; Ladouceur, H. D.; Fleming, J. W., An Improved Noncatalytic Coating for Thermocouples. Combustion Science and Technology 1992,81 (1-3), 141-145.
    [16]卫立夏.几种C3含氧化合物的真空紫外光电离及燃烧研究.博士学位论文,中国科学技术大学,合肥,2006.
    [17]Qi, F.; Yang, R.; Yang, B., et al., Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Rev. Sci. Instrum.2006,77(8),084101.
    [18]Zhang, Y.; Cai, J.; Zhao, L., et al., An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combust Flame 2012,159 (3), 905-917.
    [1]Hirasawa, T.; Sung, C.-J.; Yang, Z., et al., Effect of ferrocene addition on sooting limits in laminar premixed ethylene-oxygen-argon flames. Combust Flame 2004, 139 (4),288-299.
    [2]Wang, H., Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst.2011,33 (1),41-67.
    [3]Hansen, N.; Klippenstein, S. J.; Taatjes, C. A., et al., Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames. J. Phys. Chem. A 2006,110 (10), 3670-3678.
    [4]Yang, B.; Huang, C.; Wei, L., et al., Identification of isomeric C5H3 and C5H5 free radicals in flame with tunable synchrotron photoionization. Chem. Phys. Lett. 2006,423(4-6),321-326.
    [5]Li, Y. Y.; Zhang, L. D.; Tian, Z. Y, et al., Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels 2009,23,1473-1485.
    [6]Li, Y Y.; Zhang, L. D.; Yuan, T., et al., Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis. Combust Flame 2010,157(1),143-154.
    [7]Lias, S. G.; Bartmess, J. E.; Liebman, J. F., et al., Ion Energetics Data. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.; Mallard, W. G., Eds. National Institute of Standards and Technology: Gaithersburg, MD,2012. http://webbook.nist.gov/chemistry/
    [8]Hansen, N.; Klippenstein, S. J.; Westmoreland, P. R., et al., A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Phys. Chem. Chem. Phys.2008,10 (3),366-374.
    [9]Steinbauer, M.; Hemberger, P.; Fischer, I., et al., Photoionization of C7H6 and C7H5:Observation of the Fulvenallenyl Radical. ChemPhysChem 2011,12 (10), 1795-1797.
    [10]Hansen, N.; Kasper, T.; Klippenstein, S. J., et al., Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame. J. Phys. Chem. A 2007,111 (19),4081-4092.
    [11]Yang, B.; Li, Y Y.; Wei, L. X., et al., An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proc. Combust. Inst.2007,31,555-563.
    [12]Zhang, T. C.;Zhang, L. D.; Hong, X., et al., An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combust Flame 2009,156(11),2071-2083.
    [13]Zhang, L.; Pan, Y.; Guo, H., et al., Conformation-Specific Pathways of β-Alanine: A Vacuum Ultraviolet Photo ionization and Theoretical Study. J. Phys. Chem. A 2009,113 (20),5838-5845.
    [14]Guo, H.; Zhang, L.; Deng, L., et al., Vacuum Ultraviolet Photo fragmentation of Sarcosine:Photoionization Mass Spectrometric and Theoretical Insights. J. Phys. Chem. A 2010,114(10),3411-3417.
    [15]李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究.博士学位论文,中国科学技术大学,合肥,2010.
    [16]Wang, H.; You, X.; Joshi, A. V, et al. USC Mech Version Ⅱ. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds., http://ignis.usc.edu/USC Mech ILhtm,2007.
    [17]Mebel, A. M.; Lin, M. C.; Yu, T., et al., Theoretical Study of Potential Energy Surface and Thermal Rate Constants for the C6H5+H2 and C6H6+H Reactions. J. Phys. Chem. A 1997,101 (17),3189-3196.
    [18]Mebel, A. M.; Lin, M. C.; Chakraborty, D., et al., Ab initio molecular orbital/Rice--Ramsperger--Kassel--Marcus theory study of multichannel rate constants for the unimolecular decomposition of benzene and the H+C6H5 reaction over the ground electronic state. J. Chem. Phys.2001,114 (19), 8421-8435.
    [19]Dievart, P.; Dagaut, P., The oxidation of n-butylbenzene:Experimental study in a JSR at 10 atm and detailed chemical kinetic modeling. Proc. Combust. Inst.2011, 33(1),209-216.
    [20]Vourliotakis, G.; Skevis, G.; Founti, M. A., A Detailed Kinetic Modeling Study of Benzene Oxidation and Combustion in Premixed Flames and Ideal Reactors. Energy & Fuels 2011,25 (5),1950-1963.
    [21]Barckholtz, C.; Barckholtz, T. A.; Hadad, C. M., A Mechanistic Study of the Reactions of H, O (3P), and OH with Monocyclic Aromatic Hydrocarbons by Density Functional Theory. J. Phys. Chem. A 2000,105(1),140-152.
    [22]Blanquart, G.; Pitsch, H., Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combust Flame 2009,156 (8), 1614-1626.
    [23]Wang, H.; Frenklach, M., Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals. J Phys Chem 1994,98 (44),11465-11489.
    [24]Wang, H.; Frenklach, M, A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust Flame 1997,110(1-2),173-221.
    [25]Richter, H.; Granata, S.; Green, W. H, et al., Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst.2005,30,1397-1405.
    [26]Hansen, N.; Cool, T. A.; Westmoreland, P. R., et al., Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Prog Energ Combust 2009,35 (2), 168-191.
    [27]Miller, J. A.; Klippenstein, S. J., The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential. J. Phys. Chem. A 2003,107 (39), 7783-7799.
    [28]Madden, L. K.; Moskaleva, L. V.; Kristyan, S., et al., Ab Initio MO Study of the Unimolecular Decomposition of the Phenyl Radical. J. Phys. Chem. A 1997,101 (36),6790-6797.
    [29]Baulch, D. L.; Bowman, C. T.; Cobos, C.J., et al., Evaluated Kinetic Data for Combustion Modeling:Supplement Ⅱ. Journal of Physical and Chemical Reference Data 2005,34 (3),757-1397.
    [30]Zhong, X.; Bozzelli, J. W., Thermochemical and Kinetic Analysis of the H, OH, HO2, O, and 02 Association Reactions with Cyclopentadienyl Radical. J. Phys. Chem. A 1998,102 (20),3537-3555.
    [31]Pousse, E.; Glaude, P. A.; Fournet, R., et al., A lean methane premixed laminar flame doped with components of diesel fuel I. n-Butylbenzene. Combust Flame 2009,156 (5),954-974.
    [32]Klippenstein, S. J.; Harding, L. B.; Georgievskii, Y, On the formation and decomposition of C7H8. Proc. Combust. Inst.2007,31 (1),221-229.
    [33]Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K., Experimental Investigation of Toluene+H→Benzyl+H2 at High Temperatures. J. Phys. Chem. A 2006,110(32),9867-9873.
    [34]Lovell, A. B.; Brezinsky, K.; Glassman, Ⅰ., The gas phase pyrolysis of phenol. International Journal of Chemical Kinetics 1989,21 (7),547-560.
    [35]Alzueta, M. U.; Oliva, M.; Glarborg, P., Parabenzoquinone pyrolysis and oxidation in a flow reactor. International Journal of Chemical Kinetics 1998,30 (9),683-697.
    [36]Detilleux, V.; Vandooren, J., Molecular Beam Mass Spectrometry analysis of PAH production pathways in C6H6/O2/Ar and C6H6/C2H2/O2/Ar flames. Combustion Science and Technology 2008,180(7),1347-1369.
    [37]Detilleux, V.; Vandooren, J., Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames. Combustion Explosion and Shock Waves 2009,45 (4),392-403.
    [38]Shandross, R, A.; Longwell, J. P.; Howard, J. B., Destruction of benene in high-temperature flames:Chemistry of benene and phenol. Symposium (International) on Combustion 1996,26(1),711-719.
    [39]Kislov, V. V.; Mebel, A. M., Ab Initio G3-type/Statistical Theory Study of the Formation of Indene in Combustion Flames. Ⅰ. Pathways Involving Benzene and Phenyl Radicall(?). J. Phys. Chem.A2007,111 (19),3922-3931.
    [40]Shukla, B.; Susa, A.; Miyoshi, A., et al., Role of Phenyl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 2008,112 (11), 2362-2369.
    [41]Silva, G. d.; Bozzelli, J. W., Indene Formation from Alkylated Aromatics: Kinetics and Products of the Fulvenallene+Acetylene Reaction. J. Phys. Chem. A2009,113(31),8971-8978.
    [42]McEnally, C. S.; Pfefferle, L. D., The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames. Proc. Combust. Inst.2000,28 (2),2569-2576.
    [1]Lias, S. G.; Bartmess, J. E.; Liebman, J. F., et al., Ion Energetics Data. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.; Mallard, W. G., Eds. National Institute of Standards and Technology: Gaithersburg, MD,2012. http://webbook.nist.gov/chemistry/
    [2]Li, Y. Y.; Zhang, L. D.; Yuan, T., et al., Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis. Combust Flame 2010,157(1),143-154.
    [3]Hansen, N.; Klippenstein, S. J.; Taatjes, C. A., et al., Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames. J. Phys. Chem. A 2006,110 (10), 3670-3678.
    [4]Yang, B.; Huang, C.; Wei, L., et al., Identification of isomeric C5H3 and C5H5 free radicals in flame with tunable synchrotron photoionization. Chem. Phys. Lett. 2006,423(4-6),321-326.
    [5]Hansen, N.; Klippenstein, S. J.; Westmoreland, P. R., et al., A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Phys. Chem. Chem. Phys.2008,10 (3),366-374.
    [6]Steinbauer, M.; Hemberger, P.; Fischer, I., et al, Photo ionization of C7H6 and C7H5:Observation of the Fulvenallenyl Radical. ChemPhysChem 2011,12 (10), 1795-1797.
    [7]Li, Y. Y.; Zhang, L. D.; Tian, Z. Y, et al., Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels 2009,23,1473-1485.
    [8]Hansen, N.; Kasper, T.; Klippenstein, S. J., et al., Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame. J. Phys. Chem. A 2007,111 (19),4081-4092.
    [9]Yang, B.; Li, Y Y.; Wei, L. X., et al., An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photo ionization. Proc. Combust. Inst.2007,31,555-563.
    [10]Zhang, T. C.; Zhang, L. D.; Hong, X., et al.,An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combust Flame 2009,156 (11),2071-2083.
    [11]Marinov, N. M., A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics 1999,31 (3),183-220.
    [12]Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust Flame 2012, 159 (6),2028-2055.
    [13]da Silva, G.; Bozzelli, J. W.; Liang, L., et al, Ethanol Oxidation:Kinetics of the a-Hydroxyethyl Radical+02 Reaction. J. Phys. Chem. A 2009,113 (31), 8923-8933.
    [14]Zhao, Z.; Chaos, M; Kazakov, A., et al, Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. International Journal of Chemical Kinetics 2008,40 (1),1-18.
    [15]Gerasimov, I. E.; Knyazkov, D. A.; Yakimov, S. A., et al., Structure of atmospheric-pressure fuel-rich premixed ethylene flame with and without ethanol. Combust Flame 2012,159 (5),1840-1850.
    [16]Frassoldati, A.; Faravelli, T.; Ranzi, E., et al, Kinetic modeling study of ethanol and dimethyl ether addition to premixed low-pressure propene-oxy gen-argon flames. Combust Flame 2011,158(7),1264-1276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700