利用天然氧化层掩模的真空紫外硅闪耀光栅的湿法刻蚀制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先概括了闪耀光栅的历史,特点与分类;介绍了制作非对称锯齿形闪耀光栅的各种方法,突出介绍了近些年出现的新技术、新工艺和一些振奋人心的成果;着重介绍了基于硅各向异性刻蚀制作闪耀光栅的原理、最新进展和相比其他技术所独有的特点,这个方法展现了良好的应用前景。闪耀光栅的最大特点就是将入射光的大部分能量衍射到某一个非零衍射级次上,非对称锯齿槽形是闪耀光栅的主要轮廓形式.随着科学技术的发展,真空紫外和软X射线波段上的应用和研究越来越重要,同时对非对称锯齿槽形闪耀光栅的制作也提出了更高要求,包括超低粗糙度的闪耀面和通常方法难以做到的小闪耀角,这几点恰巧是硅各向异性刻蚀制作光栅的优势所在,所以掌握这项技术显得尤为重要。
     论文就是依托于本实验室良好的实验条件,针对真空紫外波段,对在单晶硅上利用湿法各向异性刻蚀制作闪耀光栅的方法进行了系统的研究,取得了一些有意义的结果。
     单晶硅是我们制作光栅的基础,因此对单晶硅的质量、硅片的精确切割、硅片的抛光以及硅片的清洁提出了很高的要求,需要对这些参数进行严格的检测,最终得到符合我们制作要求的带5度偏角的单晶硅片。
     接着是利用热氧化层作为硅各向异性刻蚀掩模的研究。介绍了热氧化层的获得,在理论和实验上对湿法刻蚀中的橫向刻蚀做了详细的研究,对热氧化层掩模厚度和光刻胶线条的占宽比之间的关系进行了分析,总结了湿法刻蚀应用在图形转移中的特点,发现了残余光刻胶对图形转移的影响,得到了初步的光栅样品,对光刻胶掩模的质量和氧化层掩模的厚度提出了明确的要求。
     然后是利用天然氧化层作为硅各向异性刻蚀掩模的研究。为了消除重力的影响,在倒置状态下对光刻胶掩模进行高于其玻璃转变温度以上的烘烤,尽量保证光刻胶线条高度的同时得到了光滑的光刻胶掩模,再结合光刻胶灰化技术,进一步得到小占宽比、平直而且干净的光刻胶掩模。从理沦上分析了对于我们要制作的用于真空紫外波段的光栅来说,天然氧化层作为硅各向异性刻蚀掩模是完全可行的。在得到高质量光刻胶掩模的基础上,第一次在实验上利用天然氧化层作为硅各向异性刻蚀的掩模,成功制作出接近于理想锯齿槽形的闪耀光栅,其闪耀角为5度,线密度为1200线/毫米,闪耀面的均方根粗糙度约为0.2nm,其闪耀波长在140nm附近.
     最后是对光栅样品的效率测量。首先分析了在115nm~140nm波段硅表面氧化层厚度对反射率的影响,仔细测量了具有良好闪耀光栅轮廓的光栅样品S27的在s偏振下的衍射效率,发现其绝大部分入射光的能量都被集中衍射到-1衍射级次上,显示出优良的闪耀特性。通过原子力显微镜测得精确的光栅轮廓,利用PC-Grate2000(MLT)计算了光栅样品S27在s偏振下的-1衍射级次的绝对效率和槽形效率,计算的绝对效率与实测数据吻合良好。在135nm波长处测得的绝对效率为53.7%,其相应的槽形效率为83 2%.
     如果改进工艺条件进一步得到更小占宽比而且平直的光刻胶掩模,就很有希望制作出槽形顶端缺陷更小的锯齿状闪耀光栅。对于制作极紫外和软X射线波段的闪耀光栅而言,天然氧化膜作为湿法刻蚀掩模的方法容易制作出具有较高槽形效率和光滑闪耀面的闪耀光栅,需要做的只是减小切割硅片时的切偏角度或者适当增加光栅线密度。本文介绍的方法对设备要求不高,步骤相对简单,在获得高槽形效率的同时,还可以大大降低工艺难度及制作成本。
Blazed gratings with asymmetric sawtooth profiles possess the desirable property of concentrating most of the diffracted light into a single nonzero order.However, accurate control of the sawtooth groove profile is difficult when the groove density is high and the blaze angle is only a few degrees,especially for gratings used at vacuurn ultraviolet and soft x-ray wavelengths.Traditional blazed gratings can be fabricated by diamond scribing with a ruling engine or by ion etching combined with interference lithography.Gratings fabricated by these methods suffer from a number of defects,including high surface roughness and poor groove profile,which lead to large amount of stray light and low diffraction efficiencies.Owing to the anisotropic character of single crystal silicon in the etchants of alkaline ions such as KOH solution,gratings with a controllable blaze angle and smooth blaze facets can be fabricated by anisotropic etching of an off-cut(111) silicon wafer under a mask of thermal-oxidation-grown SiO_2 or deposited Si_3N_4.A systemic research was carried out on fabrication of blazed gratings in the vacuum ultraviolet wavelength range on silicon crystal silicon substrates by anisotropic wet etching.
     According to the severe demands,the qualities of good single crystalline precise cutting,fine polishing and good cleaning were tested.Well-qualified silicon wafers with an off-cut angle of 5°were obtained.Using thermal-oxidation-grown SiO_2 layer as the mask of anisotropic etdhing,we studied the under-cutting of the wet etching of SiO_2 layer theoretically and experimentally.The character of the transferring of photoresist mask into the SiO_2 layer was summarized,the influence of remainder photoresist was observed and the preparatory sample of grating was obtained.Straight and clean photoresist mask with small line-to-period ratio are required and the thickness of the SiO_2 layer should be as thin as possible.
     Photoresist becomes viscous when heated above its glass transition temperature, so the line of photoresist mask can be smoothened.In order to avoid the influence of gravity,we heated the photoresist mask with the substrate back side up to maintain the thickness of photoresist lines.To reduce line edge roughness and clean the remainder photoresist,between the grating lines,we performed photoresist ashing by O_2 plasma reactive ion etching,which can etch the photoresist lines isotropically.As a result,straight,smooth and clean photoresist masks with small line-to-period ratio were obtained.
     The desirable blazed grating had a blaze angle of 5°,groove density of 1200 g/mm and a blaze wavelength of about 140 nm.On the surface of a silicon substrate, the thickness of native oxide layer generally ranges from 1 to 2 nm.First we analysed the feasibility of using the native oxide layer as the mask of anisotropic etching,then realized it experimentally.Then we present a simple and convenient method of controlling the profile of a blazed grating that consists of using patterned native oxide layer as the mask of anisotropic etching to obtain near-ideal grooves of sawtooth.
     With the blazed grating profile well controlled by this technique,a 1200g/mm blazed grating was fabricated,which had a blaze angle of 5.0°and smooth blaze facets of surface roughness about 0.2 nm rms.Efficiency measurements were made at the Spectral Radiation Standard and Metrology Beamline of the National Synchrotron Radiation Laboratory of China.It was found that the most of the incident radiation was diffracted into the -1 order.The grating sample was measured to blaze at the wavelength of 135 nm,where the peak measured absolute efficiency was 53.7%and the corresponding calculated groove diffraction efficiency was 83.2%in s polarization.
引文
1.祝绍箕,邹海兴,包学诚,郭厚林,衍射光栅,机械工业出版社(北京),1986
    2.李立峰,光栅的电磁场理论(讲义),2003
    3.M Born,E.Wolf,Principles of Optics:Electromagnetic Theory of Propagation,Interference and Diffraction of Light(7th Edition),Cambridge University Press,1999.
    4.Carl Zeiss Optical,Inc.Custom Designed Gratings,2004.
    5.R.W.Wood,The echellette grating for the infra-red.Phil.Mag,20:707,1910.
    6.J W.Strutt,Baron Rayleigh,On the manufacture and theory of diffraction grating,Phil.Mag,47:193,1874
    7.M.C.Hurley,Diffraction Gratings,Academic Press,1982.
    8.M.C.哈特雷 著,贾惟义,秦小梅 译,衍射光栅,贵州人民出版社,1990
    9.C Palmer,Diffraction grating handbook(6th Edition),2005.
    10.G R.Harrison,The production of diffraction gratings Ⅰ.development of the ruling art,J.Opt.Soc.Am.,39(6):413,1949.
    11.G R.Harrison,The production of diffraction gratings Ⅱ.the design of echelle gratings and spectrographs,J.Opt.Soc.Am.,39(7):522,1949.
    12.N.K Sheridon,Production of blazed holograms,Appl.PhysLett.,12(9):316,1968.
    13.M Breidne,S.Johansson,L.-E Nilsson,H.Ahlen,Blazed holographic gratings,Opt.Acta,26(11):1427,1979.
    14.R.C Mcphedran,M.D.Waterworth,Properties of diffraction grating anomalies,Opt.Acta,20(7):533,1973.
    15.G.Schmahl,D.Rudolph,Holographic diffraction grating,in Progress in Optics ⅪⅤ,ed.by E.Wolf.North-Holland.ⅪⅤ:197,1976.
    16.Y.Aoyagi,S.Namba,Blazing of holographic grating by ion etching technique,Jpn.J.Appl.Phys.,15(4):721,1976.
    17.Y.Aoyagi,S.Namba Blazed ion-etched holographic gratings,Opt.Acta,23(9):701,1976.
    18 Y Aoyagi,K Sano,S Namba,High spectroscopic qualities in blazed ion-etched holographic gratings,Opt.Commum,29(3):253,1979.
    19 L F Johnson,Evolution of grating profiles under ion-beam erosion,Appl.Opt.,8(15):2259,1979
    20 L.F.Johnson,K.A.Ingersoll,Asymmetric triangular grating profiles with 90° groove angles produced by ion-beam erosion,Appl.Opt.,20(17):2951,1981.
    21.S.Matsui,T.Yamato,H.Aritome et al.,Fabrication of SiO_2 blazed holographic gratings by reactive ion-etching,Jpn.J.Appl.Phys.,19(3):L126,1980.
    22.K.Sano,M.Koike,Holographic grating,in Shimadzu Corporation,Innovative Technique Series,1983.
    23.崔铮,微纳米加工技术及其应用,高等教育出版社(北京),2005.
    24.A.Y.Smuk,N.M.Lawandy,Direct laser writing diffractive optics in glass,Opt.Lett.,22:1030,1997.
    25.M.T.Gale,M.Rossi,J.Pedersen,H.Schutz,Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,Opt.Eng.,33:3556,1994.
    26.T.Fujita,H.Nishihara,J.Koyama,Fabrication of micro lenses using electron-beam lithography,Opt.Lett.,6:613,1981.
    27.H.Andersson,J.Romijn,E.Drift,Blazed x-ray reflection gratings fabricated by electron beam lithography,Appl.Opt.,28(20):4266,1989.
    28.D.W.Wilson,P.D.Maker,R.E.Muller,P.Mouroulis,J.Backlund,Recent advances in blazed grating fabrication by electron-beam lithography,Proceedings of SPIE,5173:115,2003
    29.Y.Fu,N.K.A.Bryan,Hybrid micro-diffractive-refractive optical element with continuous relief fabricated by focused ion beam for single-mode coupling,Appl.Opt.,40:5872,2001.30.Y Fu,N.K.A.Bryan,O.Shing,Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling,Opt.Express,7:141,2000.
    31.Y Fu,N.K.A.Bryan,W.Zhou,A quasi-direct writing of diffractive structures using focused ion beam,Opt.Express,12:1803,2004.
    32.F.Schiappelli,R.Kumar,M.Prasciolu,D.Cojoc,S.Cabrini,M.De Vittorio,G Visimberga,A.Gerardino,V.Degiorgio,E.Di Fabrizio,Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,Microelectron.Eng.,73-74:397,2004.
    33.D Freeman,S.Madden,B.Luther-Davies,Fabrication of planar photonic crystals in achalcogenide glass using a focused ion beam,Opt.Express,13(8):3079,2005.
    34.M.J.Vasile,R.Nassar,J.Xie,Focused ion beam technology applied to microstructure fabrication,J.Vac.Sci.Technol.B,B16:2499,1998.
    35.Y Fu,N.K.A.Bryan,W.Zhou,Self-organized formation of a Blazed-grating-like structure on Si(100) induced by focused ion-beam scanning,Opt.Express,12:227,2004.
    36.P.P.Naulleau,J.A.Liddle,E.H.Anderson,E.M.Gullikson,P.Mirkarimi,F.Salmassi,E. Spiller,Fabrication of high-efficiency multilayer-coated gratings for the EUV regime using e-beam patterned substrates,Opt.Comm.,229:109,2004.
    37 P Mouroulis,F.T.Hartley,D.W.Wilson,V E.White,A.Shori,S.Nguyen,M.Zhang,M.Feldman,Blazed grating fabrication through gray-scale X-ray lithography,Opt.Express,11(3):270,2003.
    38 Y Fu,B K.A Ngoi,Virtual gray-scale mask for fabrication of micro-optical elements via fbcused ion beam direct writing,Opt.Eng.,44(12):128002,2005.
    39.P Ding,B.Zheng,Proposed new method for producing blazed holographic gratings,J.Opt.Soc.Am.A,6(8):1228,1989.
    40.G Leveque,R.Mathevet,Blazed atom grating,J.Opt.Soc.Am.B,22(7):1554,2005.
    41.P.I.Hagouel,Blazed diffraction gratings fabricated using X-ray lithography:fabrication,modeling and simulation,Microelectronics Reliability,43:249,2003.
    42.B.Nelles,K.F.Heidemann,B.Kleemann,Design,manufacturing and testing of gratings for synchrotron radiation,Nucl.Instrum.& Methods A,467-465:260,2001.
    43.K.F.Heidemann,B.Nelles,R.Lenke,Gratings with Blaze Angles Down to 0.1° for Photon Energies up to 10 keV,AlP Conference Proceedings,Volume 879:485,2007.
    44.K.Osterried,K.F.Heidemann,B.Nelles,Groove profile modification of blazed gratings by dip coating with hardenable liquids,Appl.Opt.,37(34):8002,1998.
    45.M.P Kowalski,R.G Cruddace,K.F.Heidemann,R.Lenke,H.Kierey,T.W.Barbee,Jr.,W.R Hunter,Record high extreme-ultraviolet efficiency at near-normal incidence from a multilayer-coated polymer-overcoated blazed ion-etched holographic grating,Opt.Lett.,29(24):2914,2004
    46.H.Lin,L-F.Li,Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,Appl.Opt.,47(33):6212,2008.
    47.H.Lin,L.-C.Zhang,L.-F.LI,C.-S.Jin,H-J.Zhou,T.-L.Huo,High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region,Opt.Lett.,33(5):485,2008.
    48.阙端麟,陈修治,硅材料科学与技术,浙江大学出版社(杭州),2000
    49.M J.Madou,Fundamentals of Microfabrication-the Science of Miniaturization,2~(nd)Edition,CRC Press,2002.
    50.M.K Shams,D.Botez,S.Wang,Preferential chemical etching of blazed gratings in (110)-oriented GaAs,Opt.Lett.,4(3):96,1979.
    51.J.M.Crishal,A.L.Harrington,A selective etch for elemental silicon,Electrochem.Soc Extended Abstract(Spring Meeting,1962,Los Angeles,CA),Abstr.No.89,1962.
    52.D.L.Kendall,R.A.Shoultz,Wet chemical etching of silicon and SiO_2 and ten challenges for micromachiners.Chapter 2.in:Handbook of Microlithography,Micromachining and Microfabrication,V.2,ed.by P.Rai-Coudhury,SPIE Optical Engineering Press,1997.
    53.D.L.Kendall,G R.de Guel,Orientation of the third kind:the coming of the age of(110)silicon,in:Micromachining and Micropackaging of Transducers,eds,C.D.Fung et al.,p.107,Elsevier Science,1985.
    54.H.Seidel,L.Csepregi,A.Heuberger,H.Baumgartel,Anisotropic etching of crystalline silicon in alkaline solution I,J.Electrochem.Soc.,137:3612,1990.
    55.H.Seidel,L.Csepregi,A.Heuberger,H.Baumgartel,Anisotropic etching of crystalline silicon in alkaline solution Ⅱ,J.Electrochem.Soc.,137:3626,1990.
    56.K.E.Bean,Anisotropic etching of silicon,IEEE Transactions on Electron Devices,ED-25(10):1185,1978.
    57.K.R.Williams,R.S.Muller,Etch rates for micromachining processing,J.Microelectromech.Syst.,5:256,1996.
    58.K.R.Williams,K.Gupta,M.Wasilik,Etch rates for micromachining processing--part Ⅱ,J.Microelectromech.Syst.,12:761,2003.
    59.W.T.Tsang,S.Wang,Preferentially etched diffraction gratings in silicon,J.Appl.Phys.,46(5):2163,1975.
    60.Y.Fujii,K.I.Aoyama,J.I.Minowa,Optical demultiplexer using a silicon echelette grating,IEEE J.Quantum Electron,QE-16:165,1980.
    61.A.E.Franke,M.L.Schattenburg,E.M.Gullikson,et al.,Super-smooth x-ray reflection grating fabrication,J.Vac.Sci.Technol.B,15(6):2940,1997
    62.C-H Chang,R.K.Heilmann,R.C.Fleming,et al.,Fabrication of sawtooth diffraction gratings using nanoimprint lithography,J.Vac.Sci.Technol.B,21(6):2755,2003.
    63.C.-H Chang,J.C.Montoya,M.Akilian,et al.,High fidelity blazed grating replication using nanoimprint lithography,J.Vac Sci Technol.B,22(6):3260,2004.
    64.P Philippe,S.Valette,O.M.Mendez,D.Maystre,Wavelength demultiplexer:using echelette gratings on silicon substrate,Appl.Opt.,24:1006,1985.
    65.J.Sarathy,D C.Diaz,J.C Campbell,Crystallographically limited submicrometer gratings in(100) and(211) silicon,Opt.Lett.,20:1216,1995.
    66.R L.Bristol,J.A.Britten,R.Hemphill,P.Jelinsky,M.Hurwitz,Silicon diffraction gratings for use in the far- and extreme- ultraviolet,Proc.SPIE,3114:580,1997.
    67.J.Fruhauf,S.Kronert,Wet etching of silicon gratings with triangular profiles,Microsyst. Technol.,11:1287,2005.
    68.M.P Kowalski,R.K.Heilmann,M.L.Schattenburg,C.-H.Chang,F.B.Berendse,W.R.Huter,Near-normal-incidence extreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazed grating,Appl.Opt.,45(8):1676,2006.
    69.D.L.Voronov,R Cambie,E.M Gullikson,V V Yashchuk,H.A.Padmore,Y P Pershin,A G Ponomarenko,V V Kondratenko,Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,Proc.SPIE,7077:08,2008.
    70.黄信凡,李联珠,高文琦,等,利用硅上倾斜V彤槽结构制作闪耀光栅,光学学报,8(1):89,1988
    71.鞠挥,张平,王淑荣,等,偏晶向(111)硅片闪耀光栅的制作,光子学报,33(6):755,2004
    72.付绍军,洪义麟,陶晓明,盛六四,张允武,同步辐射真空紫外球面闪耀光栅研究,中国科学技术大学学报,25(3):298,1995
    73.徐向东,洪义麟,霍同林,周洪军,陶晓明,付绍军,张允武,同步辐射球面闪耀光栅的研制,中国科学技术大学学报,30(2):248,2000
    74.徐向东,周洪军,洪义麟,霍同林,陶晓明,付绍军,光刻胶灰化技术用于同步辐射闪耀光栅制作,微细加工技术,2000(3):35,2000
    1.庄同曾,集成电路制造技术,电子工业出版社(北京),1987.
    2.余思明,半导体硅材料学,中南工业大学出版社(武汉),1992.
    3.李家值,半导体化学原理,科学出版社(北京),1979.
    4.F.Shimura,Semiconductor Silicon Crystal Technology,Academic Press,1989.
    5.Czochralski,Ein neues Verfahren zur Messung des Kristallisationsgeschwindigkeit der Metalle[A new method for the measurement of crystallization rate of metals],Z.Phys.Chem.,92:219,1918.
    6.W.Keller,Floating Zone Silicon,New York:Dekker,1981.
    7.阙端麟,陈修治,硅材料科学与技术,浙江大学出版社(杭州),2000.
    8.宁永功,姬洪,王志红,刘爽,XDR摇摆曲线在单晶基片检测中的应用,现代仪器,1999(4):34,1999
    9.G Binnig,C.F.Quate,Ch.Gerber,Atomic force microscope,Phys.Rev.Lett.,56(9):930,1986.
    10.Dimension~(TM) 3100 Manual,Digital Instruments Veeco Metrology Group,2000.
    11.H.K普尔克尔,著,仲永安,谢于深,吴予似,译,玻璃镀膜,科学出版社(北京),1988.
    12.W.Kern,Handbook of Semiconductor Wafer Cleaning Technology,Noyes Publications (New Jersey),1993.
    1.张乐天,吴远大,邢华,李武爱,郑伟,刘国范,张玉书,AWG用Si基SiO_2波导材料的制备,光电子激光,13(8):868,2002
    2.阙端麟,陈修治.硅材料科学与技术,浙江大学出版社(杭州),2000.
    3.B.E.Deal,A S.Grove,General relationship for the thermal oxidation of silicon,J.Appl.Plays.,36(12):3770,1965.
    4.J T.Law,The high temperature oxidation of silicon,J.Phys.Chem.,61:1200,1957.
    5.M.M.Atalla,Properties of Elemental and Compound Semiconductors,Vol.5,pp.163-181,edited by H.Gatos,Interscience Publishers,Inc.(New York),1960.
    6.J.R Ligenza,W.G Spitzer,The mechanisms for silicon oxidation in steam and oxygen,J.Phys.Chem.Solids,14:131,1960.
    7.J.R.Ligenza,Effect of crystal orientation on oxidation rates of silicon in high pressure steam,J.Phys.Chem.,65:2011,1961.
    8.W.G Spitzer,J.R.Ligenza,Oxygen exchange between silica and high pressure steam,J.Phys.Chem.Solids,17:196,1961.
    9.P J.Jorgensen,Effect of an electric field on silicon oxidation,J.Chem.Phys.,37:874,1962.
    10.J.R.Ligenza,Oxidation of silicon by high-pressure steam,J.Electrochem Soc.,109:73,1962.
    11.B.E.Deal,The oxidation of silicon in dry oxygen,wet oxygen,and steam,J.Electrochem.Soc,110:527,1963.
    12.H.C.Evitts,H.W.Cooper,S.S.Flaschen,Rates of formation of thermal oxides of silicon,J.Electrochem.Soc.,111:688,1964.
    13.B.E.Deal,M.Sklar,Thermal oxidation of heavily doped silicon,J.Electrochem.Soc.,112:430,1965.
    14.崔铮,微纳米加工技术及其应用,高等教育出版社(北京),2005
    15.C-H.Chang,R.K.Heilmann,R.C.Fleming,et al.,Fabrication of sawtooth diffraction gratings using nanoimprint lithography,J Vac.Sci.Technol.B,21(6):2755,2003.
    16.L.F.Johnson,G W.Kammlott,K.A.Ingersoll,Generation of periodic surface corrugations,Appl.Opt.,17(8):1165,1978.
    17.H.Seidel,L.Csepregi,A.Heuberger,H.Baumgartel,Anisotropic etching of crystalline silicon in alkaline solution I,J.Electrochem.Soc.,137:3612,1990.
    1.C.B.Prater,P.K.Hansma,I.-H.Tan,D.G.Lishan,E.L.Hu,Detection of residual photoresist with the atomic force microscope,J.Vac.Sci.Technol.B,10(3):1211,1992.
    2.崔铮,微纳米加工技术及其应用,高等教育出版社(北京),2005.
    3.Z.Yu,L.Chert,W.Wu,H.Ge,S.Y.Chou,Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,J.Vac.Sci.Technol.B,21(5):2089,2003.
    4.Material Safety Data Sheet Microposit S1805 Photo Resist,Shipley,1998.
    5.Microposit S1800 Series Photo Resist,Shipley,1993.
    6.M.Morita,T.Ohmi,E Hasegawa,M Kawakami,M Ohwada,Growth of native oxide on a silicon surface,J.Appl.Phys.,68(3):1272,1990.
    7.http://snf,stanford.edu/Process/Characterization/NativeOx,html
    8.H.Seidel,L.Csepregi,A.Heuberger,H.Baumgartel,Anisotropic etching of crystalline silicon tn alkaline solution I,J.Electrochem Soc.,137:3612,1990
    9.Scanning Probe Microscopy Training Notebook(Version 3.0),Digital Instruments Veeco Metrology Group,2000.
    10.http://www.ntmdt-tips.com
    11.T.Baum,D.J.Schiffrin,AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications,J.Micromech.Microeng,7:338,1997.
    12.B.Sheng,X.Xu,Y.Liu,Y.Hong,H.Zhou,T.Huo,S.Fu,Vacuum-ultraviolet blazed silicon grating anisotropically etched by native-oxide mask,Opt.Lett.,34(8):1147,2009.
    13.C.-H.Chang,J.C.Montoya,M Akilian,et al.,High fidelity,blazed grating replication using nanoimprint lithography,J.Vac.Sci.Technol.B,22(6):3260,2004.
    1.周洪军,霍同林,钟鹏飞,张国斌,郑津津,光谱辐射标准和计量实验站的建设和研究,中国科学技术大学学报,37:402,2007.
    2.B.Vodar,Absorption spectra of gases and absorption and absorption and reflection spectra of solids,J.Quant.Spectrosc.Radiat.Transfer.,2:393,1962.
    3.H.R.Philipp,Influence of oxide layers on the determination of the optical properties of silicon,J.Appl.Phys.,43(6):2835,1972
    4.B.Sheng,X.Xu,Y.Liu,Y.Hong,H.Zhou,T.Huo,S.Fu,Vacuum-ultraviolet blazed silicon grating anisotropically etched by native-oxide mask,Opt.Lett.,34(8):1147,2009.
    5.L.C.Botten,M.S.Craig,R.C.McPhedran,J.L.Adams,J.R.Andrewartha,The finitely conducting lamellar diffraction grating,Opt.Acta,28(8):1087,1981.
    6.L.Li,Multilayer modal method for diffraction gratings of arbitrary profile,depth,and permittivity,J.Opt.Soc.Am.A,10(12):2581,1993.
    7.L.I.Goray,B.C.Chernov,Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,Proc.SPIE 2515:240,1995
    8.M.Neviere,E Popov,Light Propagation in Periodic Media:Differential Theory and Designin,Marcel Dekker,New York,2002.
    9.M.G.Moharam,D.A.Pommet,EB.Grarm,T.K.Gaylord,Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings:enhanced transmittance matrix approach,J.Opt.Soc.Am.A,12(5):1077,1995.
    10.P.Lalanne,G.M.Morris,Highly improved convergence of the coupled-wave method for TM polarization,J.Opt.Soc.Am.A,13(4):779,1996.
    11.G.Granet,Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,J.Opt.Soc.Am.A,16(10):2510,1999.
    12.T.W.Preist,N.P.K.Cotter,J.R.Sambles,Periodic multilayer gratings of arbitrary shape,J.Opt.Soc.Am.A,12(8):1740,1995.
    13.L.Li,J.Chandezon,G Granet,J.-P.Plumey,Rigorous and efficient grating-analysis method moade easy for optical engineers,Appl.Opt.,38(2):304,1999.
    14.L.Li,Oblique-coordinate-system-based Chandezon method for modeling onedimensionally -periodic,multilayer,inhomogeneous,anisotropic gratings,J.Opt.Soc.Am.A,16(10):2521,1999.
    15.R.Petit,ed.,Electromagnetic Theory of Gratings,Springer,Berlin,1980.
    16.L.I.Goray,I.G Keznetsov,S.Yu.Sadov,D.A.Content,Multilayer resonant subwavelength gratings:effect of waveguide modes and real groove profiles,J.Opt.Soc.Am.A,23(1):155,2006
    17.A.Pomp,The integral method for coated gratings:computational cost,J.Mod.Opt.,38(1):109,1991.
    18.B.Kleemann,A.Mitreiter,F.Wyrowski,Integral equation method with parametrization of grating profile theory,and experiments,J.Mod.Opt.,43(7):1323,1996.
    19.http://www.pcgrate.com
    20.P.P.Naulleau,J.A.Liddle,E.H.Anderson,E.M.Gullikson,P.Mirkarimi,F.Salmassi,E.Spiller,Fabrication of high-efficiency multilayer-coated gratings for the EUV regime using e-beam patterned substrates,Opt.Comm.,229:109,2004.
    1.刘祖平,王秋平,胡胜生,李为民,盛六四,王建平,国家同步辐射实验室二期工程的建设、竣工及意义,中国科学技术大学学报,37:337,2007.
    2.Z.Liu,X.Zhang,NSRL phase Ⅱ project:a brief introduction and status,J.Synchrotron Radiation,5:1170,1998.
    3.王秋平,张允武,软X光和极紫外光波段的分光技术,中国科学技术大学学报,37:375,2007
    4.H.Winick,S.Doniach,Synchrotron Radiation Research,Plenum Press(New York),1980.
    5.G.V.Mart,Handbook on Synchrotron Radiation,Vol.2,North-Holland(Amsterdam),1987.
    6.H.G Beutler,The theory of the concave grating,J.Opt.Soc.Am.,35:311,1945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700