海底高分辨率声学探测及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨率声学探测技术是浅海松散沉积地层及其赋存资源调查的重要手段。尽管声学探测具有高效率、高分辨率的特点,但其目前尚存在着数据采集方法试验研究不足,缺少有效的去噪、速度分析和偏移归位成像处理等关键技术,这往往会严重影响到声地层剖面的质量,甚至会导致错误的地质解释。
     本文围绕声地层剖面技术进行了浅海声波传播特性和各种干扰波的成因机制的综合分析研究,探索了压制和消除干扰的数据采集方法,形成了适宜用于声地层剖面数据处理的组合去噪、反褶积处理、偏移成像以及道积分处理等关键技术,并应用于近海海砂资源调查和海底油气渗漏探测中。
     (1)在对声地层剖面探测中存在的干扰因素和自然条件影响进行系统分析的基础上,提出了对所用船只及航行因素、设备操作与换能器安装条件等关键环节应采取的针对性措施。
     (2)针对浅海环境下原始资料中存在直达波、折射波、多次波、低频随机噪声等干扰以及高频能量吸收严重、横向能量不均、振幅一致性差等问题,采用组合去噪和主能量脉冲反褶积处理技术,在保持脉冲反褶积相位特性的同时,主要在有效频带范围内拓宽频谱,从而保证了提高声地层分辨率的可靠性。
     (3)根据实测声地层剖面资料特点,通过分析与集成MBP地震资料处理软件系统的相关模块,采用克希霍夫积分偏移成像速度扫描的方法来获得声地层偏移速度,进而基于该优化选取的速度场进行偏移归位成像处理。这或许是第一次获得了声地层剖面的偏移归位成像。
     (4)采用不依赖测井资料的道积分处理,得到的相对波阻抗剖面较真实地反映了松散沉积物的物性变化,更易于目标地质体与较大套层的对比解释,有利于声地层层序的划分和地震相单元的分析。
     (5)将海底高分辨率声学探测与处理技术应用于我国珠江口近海海砂资源调查中,综合实测地形地貌特征、海底表层沉积物类型和区域地貌资料,按照形态-成因的分类原则,将研究区海底划分为三级地貌类型。一级地貌属南海北部内陆架;二级地貌由近现代海积平原和近现代残留混合堆积平原组成。其中,在近现代海积平原单元内发育有浅槽、侵蚀沟群、沙波、沙丘、古沙堤、凹凸地、陡坎、洼地等三级地貌,在近现代-残留混合堆积平原单元内发育有浅滩、陆架槽谷、沙脊、埋藏古河道、埋藏贝壳沙体等三级地貌;将研究区底质划分为砾砂(SG)、中粗砂(MCS)、细砂(FS)、粘土质粉砂(YT)和粉砂质粘土(TY)等5种类型;将探测深度范围以内的层序地层自上而下划分为冰消期海侵半旋回(层序Ⅰ)、末次冰期中晚期海进-海退旋回(层序Ⅱ)和层末次冰期早期海退半旋回(层序Ⅲ);并划分出9个声反射界面(含亚界面)和8个地震相单元(含亚单元);揭示了在珠江口近海存在4种成因类型的海砂矿,其分别为古残留砂类型、古潮流砂脊类型、古河道类型(或古潮沟类型)及现代潮流砂脊类型;指出了砂矿调查的主要方向:由于残留砂型砂矿直接出露海底,并具有分布范围广海砂品位较佳等特征,应为本区找矿的主要类型。
     (6)海底声学探测结果首次揭示了南黄海盆地北部坳陷选定区块海底油气渗漏现象的存在。渗漏形成的地貌以麻坑、海底圆丘和海底断裂(陡坎)为主,麻坑群大致呈SN向散布;发现了两处海底圆丘,其中,大圆丘的直径约1600m,最大凸起高度约6m;指出了该区海底油气渗漏与穿透或接近海底的断层构造相联系,这些断层为海底油气渗漏提供了通道和气源;通过对海底油气渗漏形成机理及其表征进行分析,推断该区海底油气目前处于微渗漏阶段,这可对该区未来的油气勘探提供重要的参考资料。
Submarine high-resolution acoustic detection technique is an important method to investigate the sedimentary strata and resources in the offshore area. It is well-known that the acoustic detection has characteristics of high efficiency and high resolution. However, besides of the inadequate experimental investigations for data acquisition, it still suffers the problems lacking in key processing techniques such as effective noise elimination, velocity analysis and migration. This may seriously affect the quality of sub-bottom profile (SBP), and even lead to wrong geological interpretations.
     Focusing on the sub-bottom profile, this thesis makes a comprehensive analysis of shallow water acoustic wave propagation characteristics, the producing mechanism of various kinds of noises and their abatement approaches in acquisition. The key techniques of combined noise attenuation, deconvolution, migration imaging and trace integration are integrated to be suitable for SBP data processing. These techniques are then applied in the detections of sea sands and submarine hydrocarbon seepages.
     (1) Based upon the systematical analysis of noise and affection of natural conditions to data acquisition in sub-bottom profile detections, the specific measures are proposed for some key aspects such as survey vessels, navigation, equipment operation and the conditions of transducer installation.
     (2) There usually exist the direct waves, refractions, multiples and low frequency noise on the shallow water sub-bottom profile. Besides, the high frequency absorption, uneven horizontal energy and poor amplitude consistency are usually occurred in the raw data. These problems may be well overcome by using the combined noise attenuation techniques and the main energy impulse deconvolution approach. The processing is aimed at ensuring the reliability of SBP resolution by expanding the spectrum in the effective frequency range and keeping the phase characteristics of impulse deconvolution at the same time.
     (3) Based upon the analysis to the features of raw SBP data, the corresponding modules of MBP seismic software package are integrated to form a processing flow which is suitable for SBP data processing. The migration velocity can be obtained by the image scanning of Kirchhoff integration migration. Thus the SBP migration imaging can be made using the optimum velocity field. This may be the first time obtaining the migrated image in the sub-bottom profile detection.
     (4) The trace integrating technique which is independent on logging data is applied in the data processing. This relative impedance profiles processed by trace integrating may be in more reality to reveal the physical property of sedimentary formations. These profiles make not only the comparison and interpretation relatively easier to the geological features of targets and larger strata units, but also more reliable for the division of the stratigraphic sequence and analysis of seismic facies units.
     (5) The submarine high-resolution acoustic detection and processing techniques are then applied to marine sand investigation in the Pearl River Estuary offshore. Based on the topographical feature and sedimentary types of surface layer, the seafloor in the study area can be divided into 3 zonations of different topographic level according to morphological and genetic classification principle. The inner shelf of northern South China Sea belongs to the first level topography. The second-level topography includes modern marine accumulation plains and modern-residue mixed accumulation of plains. In the modern marine accumulation plain there develops the third-level landform such as shallow groove, erosion gully group, sand waves and dunes, ancient dike, convex, the scarp and depression, and in the modern-residue mixed accumulation of plains there develops shoals, shelf trough, and ridges, buried channels and buried shells. The bottom sediment in the study area can be classified into 5 types, i.e. gravel substrate sand (SG), medium-coarse sand (MCS), fine sand (FS), clayey silt (YT) and silty clay (TY). From seabed surface down to the detectable depth, the sequence stratigraphy can be divided into transgressive half cycle of deglaciation (sequence I), transgressive-regressive cycle of the middle-late glaciation (sequence II) and regressive half cycle of the early glaciation (sequence III). The shallow strata are divided into 9 interfaces of acoustic reflection (including sub-interfaces) and 8 units of seismic facies (including sub-units). The study reveals that there exist 4 genetic types of sea sand deposits in the Pearl River Estuary offshore area, which are the sands of ancient residual sand, sands of ancient tide ridge, sands of the ancient channel sand (or ancient tidal creek type) and sands of modern tide ridge sand. It is found that the ancient residual sand is directly exposed on seabed, widely distributed and has high-grade quality. Therefore it should be the main deposit for the sand exploration in study area.
     (6) It may be the first time that submarine acoustic detection results reveal the presence of submarine hydrocarbon seepage in selected block of the northern depression in the South Yellow Sea Basin. The landforms formed by seepages are predominant in pockmarks, domes and faults (scarp). The pockmarks are roughly spread in SN. Two domes on seabed are found. The bigger one is about 1600m in diameter and about 6m high. The study shows that submarine seepages in the area are associated with the faults penetrating or closing to the seabed. It is the faults that provide channels and sources of seepages. It can be deduced that, from analysis of the formation mechanism and characterization, the hydrocarbon seepage in study area is currently in micro-seepage stage.
引文
[1]Alan Judd, Martin Hovland. Seabed Fluid Flow-The Impact on Geology, Biology, and the Marine Environment. UK:Cambridge University Press,2007.2-9
    [2]金翔龙.海洋地球物理研究与海底探测声学技术的发展.地球物理学进展,2007,22(4):1243-1249
    [3]吴自银,郑玉龙,初凤友等.海底浅表层信息声探测技术研究现状及发展.地球科学进展,2005,20(11):1210-1217
    [4]陈福兴.PGS型中地层地质剖面仪.海洋技术,1995,14(2):14-28
    [5]华祖根.深海浅地层剖面特征及其与多金属结核富集度的关系.东海海洋,1999,17(3):55-61
    [6]潘国富.浅层地震声学剖面的声地层学解释.海洋地质与第四纪地质,1991,11(1):93-103
    [7]李启虎著.声呐信号处理引论.北京:海洋出版社,2000,84-138
    [8]王志雄,高平,莫杰.海底地质勘查现代技术方法的应用现状及发展趋势.海洋地质与第四纪地质,2002,22(2):109-114
    [9]陈卫民.海底勘查技术的最新发展.海洋技术,1996,15(3):25-29
    [10]朱光文.我国海洋探测技术五十年的回顾与展望(二).海洋技术,1999,18(3):1213
    [11]惠绍棠,霍树梅.中国海洋仪器设备研究发展的历史回顾.海洋技术,1998,17(4)126
    [12]T.Missiaen, N.Wardell, J.Dix. Subsurface imaging and sediment characterisation in shallow water environments-Introduction to the special volume. Marine Geophysical Researches,2005,26:83-85
    [13]P. Cobo, C. Ranz, A. Fernandez.Waveform shaping of sonar transducers for improving the vertical resolution in sub-bottom sediments profiling. Marine Geophysical Researches, 2005,26:87-95
    [14]Jorge Iglesias, Soledad Garcia-Gil. High-resolution mapping of shallow gas accumulations and gas seeps in San Simon Bay (Ria de Vigo, NW Spain).Some quantitative data. Geo-Mar Lett,2007,27:103-114
    [15]Irina Popescu, Gilles Lericolais, Nicolae Panin et al. Seismic expression of gas and gas hydrates across the western Black Sea. Geo-Mar Lett,2007,27:173-183
    [16]Derek C.Quigley, J. Scott Hornafius, Bruce P. Luyendyk et al. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geology,1999,27(11):1047-1050
    [17]T.A.C.Zittera, C.Huguenb, J.M.Woodsidea. Geology of mud volcanoes in the eastern Mediterranean from combined side scan sonar and submersible surveys. Deep-Sea Research 152,2005:457-475
    [18]Henrique Duarte, Luis Menezes Pinheiro, Francisco Curado Teixeira. High-resolution seismic imaging of gas accumulations and seepage in the sediments of the Ria de Aveiro barrier lagoon (Portugal). Geo-Mar Lett,2007,27:115-126
    [19]R. P. Kruglyakova, Y.A.Byakov, M.V. Kruglyakova et al. Natural oil and gas seeps on the Black Sea floor. Geo-Mar Lett,2004,24:150-162
    [20]S.Dupre, G. Buffet, J. Mascle, J. P. Foucher et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys. Mar Geophys Res,2008,29:275-290
    [21]M.Hovland. Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. Geo-Mar Lett,2007,27:197-201
    [22]Nicolas Pinet, Mathieu Duchesne, Denis Lavoie et al. Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary (Canada):Significance to hydrocarbon exploration. Marine and Petroleum Geology,2008,25:271-288
    [23]Heiko Sahling, Gerhard Bohrmann, Volkhard Spiess el al. Pockmarks in the Northern Congo Fan area, SW Africa:Complex seafloor features shaped by fluid flow. Marine Geology,2008,249:206-225
    [24]V.A.I.Huvenne, W.R.Bailey, P.M.Shannon et al. The Magellan mound province in the Porcupine Basin. Int J Earth Sci (Geol Rundsch),2007,96:85-101
    [25]K.S.Jeong, J.H.Cho, S.R.Kim et al. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf. Geo-Mar Lett,2004,24:53-62
    [26]BjOrn Lindberg, Christian Berndt, JUrgen Mienert. The Fugl(?)y Reef at 70°N; acoustic signature, geologic, geomorphologic and oceanographic setting. Int J Earth Sci (Geol Rundsch),2007,96:201-213
    [27]Jean Mascle, Olivier Sardou, Lies Loncke et al. Morphostructure of the Egyptian continental margin:Insights from swath bathymetry surveys. Marine Geophysical Researches,2006,27:49-59
    [28]H.Ondreas, K.Olu, Y.Fouquet, J.L.Charlou et al. ROV study of a giant pockmark on the Gabon continental margin. Geo-Mar Lett,2005,25:281-292
    [29]M.V.Ramana, T.Ramprasad, A.L.Paropkari et al. Multidisciplinary investigations exploring indicators of gas hydrate occurrence in the Krishna-Godavari Basin offshore, east coast of India. Geo-Mar Lett,2009,29:25-38
    [30]赵铁虎,张训华,王修田等.南黄海盆地北部坳陷海底油气渗漏的声学探测.石油勘探与开发,2009,36(2):195-199
    [31]L.Somoza, V.Diazdel Riob, R.Leon. Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area:Acoustic imagery, multibeam and ultra-high resolution seismic data. Marine Geology,2003,195:153-176
    [32]张兆富.SES-96参量阵测深/浅地层剖面仪的特点及其应用.中国港湾建设,2001,3:41-44
    [33]C.HUBSCHER, M.BREITZKE, K.MICHELS et al. Late Quaternary seismic Stratigeraphy of the East Bengal Shelf. Marine Geophysical Researches,1998,20:57-71
    [34]S.Chand, L.Rise, D.Ottesen et al. Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea:Morphology and genesis. Marine and Petroleum Geology,2009,26: 1035-1042
    [35]李双林.海洋油气地球化学探测的理论基础—海底烃类渗漏.海洋地质动态,2007,23(11):1-7
    [36]Watking J S, Worzel J L. Serendipity gas seep area, south Texas offsore. American Association of Petroleum Geologists (Bulletin),1978,62 (10):67-74
    [37]Bryant W R, Roemer L B. Structure of the continental shelf and slope of the northern Gulf of Mexico and its geohazards and engineering constraints. CRC Handbook of Geophysical exploration at sea. Florida, CRC press,1983:84-123
    [38]Sassen R, Brooks J M, Macdonald I R et al. Association of oil seeps and chemosynthetic communities with oil discoveries, upper continental slope. Gulf of Mexico.Transactions of the Gulf Coast Assocition of Geological Societies,1993,43 (3):49-55
    [39]Graham A.Logan, Andrew T.Jones et al. Australian offshore natural hydrocarbon seepage studies, a review and re~evaluation. Marine and Petroleum Geology,2010,27:26-45
    [40]陈林,宋海斌.海底天然气渗漏地震探测方法的研究进展.天然气工业,2006,26(7):35-39
    [41]陈多福,黄永样,冯东等.南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义.矿物岩石地球化学通报,2005,24(3):185-188
    [42]陆红锋,陈芳,刘坚等.南海北部神狐海区的自生碳酸盐岩烟囱-海底富烃流体活动的记录.地质论评,2006,52(3):352-357
    [43]LUAN Xiwu, QIN Yunshan. Gas seepage on the sea floor of Okinawa Trough Miyako Section. Chinese Science Bulletin,2005,50 (13):1358-1365
    [44]李列,宋海斌,杨计海.莺歌海盆地中央坳陷带海底天然气渗漏系统初探.地球物理学进展,2006,21(4):1244-1247
    [45]曹雪晴.荷兰海砂资源的开发与管理.海洋地质动态,2007,23(12):21-25
    [46]曹雪晴,胡斌华.英国海洋集料的调查与开发.海洋地质动态,2008,24(6):28-32
    [47]张乔民.香港海沙资源的勘探开发与管理.自然资源学报.2003,18(4):385-393
    [48]John B.Pearce. Marine Sand and Gravel Production in Areas off the Northeast Coast of the United States. Marine Pollution Bulletin,1979,10:14-18
    [49]T.P.Crimesa, D.K.Chester, G.S.P.Thomas. Exploration of sand and gravel resources by geomorphological analysis in the glacial sediments of the Eastern Lleyn Peninsula, Gwynedd, North Wales. Engineering Geology,1992,32:137-156
    [50]T.K.Mallik, V.Vasudevan, P.Aby Verghese.The black sand placer deposits of kerala beach, Southwest India[J]. Marine Geology,1987,77:129-150
    [51]Adam Kubicki, Faustino Manso, Markus Diesing. Morphological evolution of gravel and sand extraction pits, Tromper Wiek, Baltic Sea[J]. Estuarine, Coastal and Shelf Science 2007,71:647-656
    [52]R.C. Chiverrell, G.S.P. Thomas, G.C. Foster. Sediment-landform assemblages and digital elevation data:Testing an improved methodology for the assessment of sand and gravel aggregate resources in north-western Britain[J]. Engineering Geology,2008,99:40-50
    [53]J.Shulmeister, R.M.Kirk. Evolution of a mixed sand and gravel barrier system in North Canterbury, New Zealand, during Holocene sea-level rise and still-stand. Sedimentary Geology,1993,87:215-235
    [54]Ju Yong Kim. Quaternary geology and assessment of aggregate resources of Korea for the national industrial resources exploration and development. Quaternary International, 2001,82:87-100
    [55]Arita M, Morimoto I,Mizuno A, et al. Exploration and exploitation of off shore sand in Japan. UN ESCAP CCOP Technical Bulletin,1985,17:81-99
    [56]Wang Shengjie. Research on marine aggregate resources in China. CCOP Newsletter, 2001,26:20-24
    [57]M J van der Meulen. Sustainable mineral development possibilities and pitfalls illustrated by the rise and fall of Dutch mineral planning guidance. Geological Society,2005:225-232
    [58]M J van der Meulen, T P F Koopmans & H S Pietersen. Construction raw materials policy and supply practice in northwestern Europe. Industrial Minerals Resources, Characteristics and Applications,2003,13:19-30
    [59]M.J.van der Meulen, S.F.van Gessel, J G Veldkamp. Aggregate resources in the Netherlands. Journal of Geosciences,2005,84:379-387
    [60]HUGO PRIEMUS.Spatial Memorandum 2004:A turning point in the Netherlands'Spatial Development policy Journal of Economic and Social Geography,2004,95 (5):578-583
    [61]David R.Hitchcock, Steve Bell. Physical impacts of marine aggregate dredging on seabed resources in coastal deposits. Journal of Coastal Research,2004,20 (1):101-114
    [62]Andrew G. Bellamy.The UK marine sand and gravel dredging industry:an application of Quaternary geology.London:Engineering Geology Special Publications,1998,13:33-45
    [63]Fox R A. The offshore aggregate industry in the U.K.Underwater Technology.1993,19 (2):17-23
    [64]A. A. Archer. Economics of Off-shore Explorationn and Production of Solid Minerals on the Continental Shelf. Ocean Management,1973,1:5-40
    [65]Wyss W., S.Yim. Stratigraphy of Quaternary offshore sand and gravel deposits in the Hong Kong SAR, China. Quaternary International,2001,82:101-116
    [66]S.J.de Groot. The Potential Environmental Impact of Marine Gravel Extraction in the North Sea. Ocean Management,1979,5:233-249
    [67]J.R.Suter, J.Mossa, S.Penland.Preliminary Assessments of the occurrence and effects of utilization of sand and aggregate resources of the Louisiana Inner Shelf. Marine Geology, 1989,90:31-37
    [68]Martin Ira Glassner. Management of Marine Resources as a Binding Force in the Eastern Caribbean. Ocean & Coastal Management,1993,20:63-88
    [69]谭启新,孙岩.中国滨海砂矿.北京:科学出版社,1988,9-11
    [70]王圣洁,刘锡清,戴勤奋等.中国海砂资源分布特征及找矿方向.海洋地质与第四纪地质,2003,23(3):83-89
    [71]杨子庚,王圣洁.关于海洋采砂业.海洋地质动态,1997,181(12):7-11
    [72]曹雪晴,谭启新,张勇等.中国近海建筑砂矿床特征.岩石矿物学杂志,2007,26(2)160-170
    [73]罗文强,张尚坤,张义江等.山东省海砂砾石资源潜力及开发利用前景.海洋地质动态,2008,24(12):23-28
    [74]王圣洁,杨子赓等.中国滨海建筑砂开采的环境地质问题和可持续发展对策.海洋地质动态,2000,16(1):5-8
    [75]R.Simonini, I.Ansaloni, A.M.Bonvicini Pagliai, et al. The effects of sand extraction on the macrobenthos of a relict sands area (northern Adriatic Sea):results 12 months post-extraction. Marine Pollution Bulletin,2005,50:768-777
    [76]R.Simonini, I.Ansaloni, P.Bonini. Recolonization and recovery dynamics of the macrozoobenthos after sand extraction in relict sand bottoms of the Northern Adriatic Sea. Marine Environmental Research,2007,64:574-589
    [77]Panu Oulasvirta, Hannu Lehtonen. Effects of Sand Extraction on Herring Spawning and Fishing in the Gulf of Finland. Marine Pollution Bulletin,1988,19 (8):383--386
    [78]J.E. Robinson, R.C.Newell, L.J.Seiderer. Impacts of aggregate dredging on sediment composition and associated benthic fauna at an offshore dredge site in the southern North Sea. Marine Environmental Research,2005,60:51-68
    [79]Chang S.Kim, Hak-SooLim. Sediment dispersal and deposition due to sand mining in the coastal waters of Korea. Continental Shelf Research,2009,29:194-204
    [80]S.E.Boyd, D.S.Limpenny, H.L.Rees. Preliminary observations of the effects of dredging intensity on the re-colonisation of dredged sediments off the southeast coast of England (Area 222).Estuarine, Coastal and Shelf Science,2003,57:209-223
    [81]王玉广,李淑媛,张宪文等.海沙开采工程环境的影响分析预测研究.海岸工程,2006,25(4):37-47
    [82]阳宁,夏建新.国际海底资源开发技术及其发展趋势.矿冶工程,2000,20(1):1-4
    [83]刘光鼎.刘光鼎选集(用科学发展观统领矿产资源工作).北京:科学出版社,2009:584-590
    [84]中国海洋大学.基于模型的地震勘探数据处理系统(MBP 2.0).中国,国家版权局,注册号2009SR00375,2009
    [85]顾金海,叶学千编.水声学基础.北京:国防工业出版社,1981:54-66
    [86]Robert J.Urick(洪申译).水声原理.哈尔滨:哈尔滨船舶工程学院出版社,1990:190
    [87]缪卓群.舟山海区浅层沉积物声学特性及分层结构初探.东海海洋,1988,6(2):22-27
    [88]蒋德军,高天赋.一种计算浅海海底衰减系数的方法.声学学报,1997,22(5):455-460
    [89]丁东.声的折射、反射与剖面仪信号.水下浅地层剖面仪专辑,1982:54-64
    [90]朱维庆.海洋声学技术和信息处理.科技前沿与学术评论,2000,22(4):41-44
    [91]浅地层剖面仪研制组.QPY-1型浅地层剖面仪设计指标论证.水下浅地层剖面仪专辑,1982:10-15
    [92]王琪,刘雁春,暴景阳.浅剖仪垂直分辨力分析.海洋科学,2003,27(6):77-80
    [93]华乐荪,关平.剖面声呐中多次反射的时变滤波.应用声学,1983,2(4):8-13
    [94]张志殉,赵铁虎,许枫等.极浅海区浅地层剖面高分辨率数据采集技术[研究报告].2000
    [95]Eisenmenger W. Dynamic Properties of Surface Tension of Water and Aqueous Solution of Surface Active Agents with Standing Capillart Waves in the Frequency Range from 10kHz to 1.5MHz. Acoustic,1959,9:327-340
    [96]刘春奎,张叔英,凌鸿烈.电磁脉冲声源系统的分析和测量.声学学报,1966,3(1)1-7
    [97]李宁,陈建峰,黄建国等.各种水下声源的发声机理极其特性.应用声学,2009,28(4):241-248
    [98]英国AAE公司SBP/AAE地层剖面系统说明书.2005
    [99]刘建勋.提高海上单道反射地震记录信噪比和分辨率的方法技术.物探化探计算技术,2007,29(增刊):116-120
    [100]唐建人,李勤学.高分辨率地震勘探理论与实践.北京:石油工业出版社,2001.35-41
    [101]何汉漪.海上地震资料高分辨率处理技术论文集.北京:地质出版社,2001.77-80
    [102]R.E.谢里夫,L.P.吉尔达特.勘探地震学.北京:石油工业出版社,1999.276-286
    [103]李丽青,梁蓓雯,徐华宁.海上单道地震资料中多次波的衰减.石油物探,2007,46(5):457-462
    [104]张昌洪.衰减多次波的几种方法.中国海上油气地质,1996,10(4):261-265
    [105]M. M. Backus.Water reverberations—thrie nature and elimination.Geophysics,1959,24 (2):233
    [106]杨文达,刘望军.海洋高分辨率地震技术在浅部地质勘探中的运用.海洋石油,2007,27(2):18-25
    [107]陆敬安,伍忠良,曾宪军.海洋地震勘探中地震波、鬼波综合效应分析与应用.海洋技术,2006,25(4):76-78
    [108]刘建磊,王修田.海上地震虚反射相位剔除法反褶积.海洋地质与第四纪地质,2002,22(4):116-121
    [109]陆基孟.地震勘探原理(下).北京:石油大学出版社,1993,40-66
    [110]李金山,姜秀萍,主能量脉冲反褶积,中国海洋大学学报(待刊)
    [111]Xiutian Wang, Dongming Xia, Jinshan Li, Xiuping Jiang and Qingbing Tang, Model based processing (Ⅳ):migration velocity analysis. SEG/Houston 2005 Annual Meeting, SPVA 1.7:2261-2264.
    [112]黄绪德.反褶积与地震道反演.北京:石油工业出版社,1992,56-68
    [113]成谷,张宝金,马在田等.积分道与基于Born散射的一维声波方程速度反演.地球物理学进展,2003,18(1):122-127
    [114]赵铁虎,张训华,王修田等.广东珠江口—东平近海浅地层剖面的声学特征及地质意义.物探化探计算技术,2007,29(3):183-188
    [115]李从先.我国河流输沙对海岸和大陆架沉积的影响.同济大学学报,1988,16(2):137
    [116]龙云作,霍春兰,杨胜雄.珠江三角洲现代沉积环境及沉积特征.海洋地质与第四纪地质,1989,9(4):15
    [117]范时清,廖健雄.中南海北部新生代古环境变迁.广西科学院学报,2005,21(1):51
    [118]青岛海洋地质研究所海砂项目组珠江口近海海砂及相关资源潜力调查与评价[内部报告.2005
    [119]赵焕庭.珠江河口演变的基本过程.热带海洋,1984,3(4):1
    [120]金波,李廷桓.珠江口海区海底不稳定性地质因素的地震相分析.海洋地质与第四纪地质,1988,8(3):61
    [121]刘锡清.中国大陆架的沉积物分区.海洋地质与第四纪地质,1990,10(1):13
    [122]刘锡清.中国陆架的残留沉积.海洋地质与第四纪地质,1987,7(1):1
    [123]杨子赓,林和茂主编.中国第四纪地层与国际对比.北京:地质出版社,1996,76-108
    [124]杨子赓主编.海洋地质学.济南:山东教育出版社,2005,347-359
    [125]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社,2005,8-10
    [126]冯志强,冯文科.南海北部地质灾害及工程地质条件评价.南京:河海大学出版社,1996,33,66-81
    [127]潘国富.浅层地震声学剖面的声地层学解释.海洋地质与第四纪地质,1991,11(1):93-104
    [128]陈耀泰.珠江口沉积分区.中山大学学报(自然科学版),1995,34(3):109-113
    [129]李春初,王文介.珠江河口沉积.地理论文选,1986,94-109
    [130]鲍才旺.珠江口陆架区埋藏古河道与古三角洲.海洋地质与第四纪地质,1995,15(2)25-34
    [131]陈耀泰.珠江口伶仃洋表层沉积物的重矿物特征及其对陆架水入侵的反映.中山大学学报(自然科学版),1994,33(4):103-110
    [132]蓝先洪,张训华,张志殉.南黄海沉积物的物质来源及运移研究.海洋湖沼通报,2005,(4):53-58
    [133]李绍全,刘健,王圣洁等.南黄海东侧陆架冰消期以来的海侵沉积特征.海洋地质与第四纪地质,1997,17(4):1-11
    [134]秦蕴珊,赵一阳等.黄海地质(黄海海底与地壳结构).海洋出版社,1989,10:256-285
    [135]孙和清,朱平.中国北部海域活动断裂特征.海洋地质与第四纪地质,1993,13(增刊):63-71
    [136]蔡乾忠.中国东部与朝鲜大地构造单元对应划分.海洋地质与第四纪地质,1995,15(1):7-19
    [137]郭玉贵.中国近海地质(黄海、东海地质及邻域地质构造特征).北京:地质出版社,1997:210-232
    [138]青岛海洋地质研究所资源室.南黄海油气战略选区研究报告[内部报告].2008
    [139]蔡乾忠.黄海含油气盆地区域地质与大地构造环境.海洋地质动态,2002,18(11):8-12
    [140]曲希玉,陈建文,徐淑艳等.南黄海盆地北部坳陷白垩系地震相分析.世界地质,2005,24(2):129-136
    [141]肖国林.南黄海盆地油气地质特征及其资源潜力再认识.海洋地质与第四纪地质,2002,22(2):81-87
    [142]张晶,王伟锋.南黄海盆地含油气系统与油气勘探方向.海洋地质动态,2004,20(4):20-23
    [143]朱平.南黄海盆地北部凹陷含油气系统分析.石油实验地质,2007,29(6):549-553
    [144]曹强,叶加仁,石万忠.低勘探程度盆地烃源岩早期评价—以南黄海北部盆地东北凹为例.石油学报,2009,30(4):522-528
    [145]王嘹亮,易海,姚永坚等.南黄海海域晚古生代—新生代沉积演化.南海地质研究,2002,(00):16-28
    [146]冯志强,姚永坚,曾祥辉等.对黄海中、古生界地质构造及油气远景的新认识.中国海上油气(地质),2002,16(6):367-373
    [147]戴春山,杨艳秋,闫桂京.南黄海中—古生界海相残留盆地埋藏生烃史模拟及意义.石油与天然气地质,2005,26(1):49-56
    [148]温珍河,龚建明.南黄海北部盆地张裂阶段演化特征.中国海上油气地质,1997,11(2):87-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700