石化、火电工业用换热管的腐蚀失效分析及其性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热器是石化、火电、核电等工业领域中用量很大的重要设备之一,换热管则是换热器实现热量交换与传递的核心部件。然而,由于工艺介质的可变性和操作工况的复杂性,例如复合腐蚀、腐蚀与结垢、腐蚀与磨损、腐蚀与冲蚀,以及高温与高压等的交互作用,换热管常会发生过早失效的现象,导致设备整体寿命缩短,经济损失很大,甚至还引发严重的安全事故。基于此,为确保相关换热器的运行安全、防止同类事故的再发生,本文从两个方面展开了一系列的分析和研究:一是结合几个典型的失效案例,对石化装置中重要换热管所发生的过早失效现象开展深入的分析,研究相关的失效机制,提出针对性的预防措施,从而为避免相似工况下在役换热器的过早失效起到借鉴作用;二是针对新一代超超临界及超临界火电机组中用于过热器、再热器等换热管的新型耐热钢材料,特别是最容易产生失效的焊接接头部位,进行了系统的性能评价和分析,从而为在建机组及其换热器的安全可靠性提供实用的实验数据。本论文已开展的研究内容及其成果概述如下:
     1.PTA装置干燥机换热管的失效分析
     某PTA装置中用于提纯的两台干燥机,使用不久就发现其不锈钢换热列管频繁受到局部腐蚀的影响,部分管子甚至还同时发生管壁减薄加速、以至爆管开裂等过早失效现象。为此,特从列管材质、工艺介质、操作工况以及维护管理等四个方面,对造成以上多种失效行为的主要因素进行了全面分析与界定。根据实验结果,明确了在设备维护时因碱洗操作不当引入的超标氯离子是造成这一系列严重局部腐蚀的根本原因,并深入探讨了相关的腐蚀失效机理。最后,针对各不同失效起因,提出了相应的、行之有效的解决方案和预防措施。通过此案例分析,掌握了相似工况下在役换热管可能引起失效的潜在因素及其对应的失效预防方法,对确保换热器整体的安全稳定运行具有重要的工程应用价值。
     2.乙烯装置急冷油/稀释蒸汽换热器管的失效分析
     某石化公司乙烯生产装置中,提供高温急冷油与低温工艺水进行热交换以产生稀释蒸汽供热的换热器,运行仅数月就发现大量碳钢换热管表面出现局部腐蚀凹坑,甚至穿孔破裂等失效缺陷。为迅速判明这一过早失效的真正起因,采用包括三维体式显微镜、SEM、EDS、离子色谱仪、ICP-AES、pH值监测仪等多种先进的表征测试仪器,重点对缺陷的宏微观形貌以及工艺介质的化学特性进行了全面的观察与检测分析。结果表明,设备日常操作时因不恰当的投料行为引起的工艺水pH值剧烈波动,进而使得换热管频繁受到点蚀、酸腐蚀、应力腐蚀开裂等失效机制的交互作用,是导致换热管表面产生局部腐蚀缺陷的根本原因。最后,为清晰阐述这一在复杂运行工况下,由各不同腐蚀原理间的复合效应形成的失效机制,特创新地提出了酸/碱交替腐蚀机理,并明确了其失效缺陷形貌、特征尺寸、以及失效机制间一一对应的关系。
     3.高压聚乙烯装置循环气体冷却器换热管的失效分析
     某高压聚乙烯装置中,为提高乙烯利用率,采用常温工艺水冷却、分离熔融状的乙烯低聚物及其单体。然而由于该循环冷却水系统为敞开式结构,使得水中含有大量从环境中引入的杂质元素,造成水质严重不合格,并由此对循环气体冷却器的正常运行产生影响。据现场调研发现,位于壳程的冷却水已使该夹套式换热器的碳钢内管受到了明显的腐蚀作用,管壁厚度也因此显著减薄,甚至在出口三通处发生了爆管破裂现象。在基本明确了这一由冷却水水质问题引起的失效原因基础上,深入探讨了相关的吸氧腐蚀、缝隙腐蚀、高速水流冲刷磨损等失效原理,及其对换热管造成的动态复合损伤机制。该成果对于在常见的腐蚀与磨损复合环境下服役的换热钢管进行失效机理研究,具有重要的理论参考价值。
     4.T91同种钢焊接接头性能研究
     对某国产T91铁素体耐热钢焊接接头展开了全面的常、高温性能评价以及微观结构分析,论证了其整体性能完全符合超临界火电机组与核电机组的服役要求。该研究成果对推广国产T91钢具有重要的实际意义与经济价值,也为研究与其成分和组织结构相近的T92钢的同、异种钢焊接接头作了试验基础准备。
     5.T92/HR3C异种钢焊接接头结构与性能研究
     对主要面向于超超临界火电机组的新型铁素体耐热钢T92与奥氏体耐热钢HR3C的异种钢焊接接头,进行了结构性能综合评定,包括显微组织、常温力学性能、高温持久强度、焊后残余应力分布等,并讨论了它们间的相互关系。其中,在国内外首次报道了该异种接头的高温蠕变断裂数据及其线性拟合方程,且以此大致推算出其在625℃时的最大许用应力σ105625℃约为40MPa,满足在超超临界蒸汽条件下服役的性能要求。本研究成果对普及新型耐热钢管材料,甚至新一代超超临界火电机组都具有极大的科研与经济价值。
Heat exchangers are one of the significant and substantially-used equipments in engineering areas like petrochemical, fossil power, nuclear power, and so on, and the tubes inside them are the most key parts for heat exchanging and transferring. However, owing to the variability of the process media and the complexity of the service conditions, e.g., the interactions between different corrosion mechanisms, corrosion and scaling, corrosion and abrasion, corrosion and erosion, as well as high temperature and high pressure, such heat exchanger tubes are always encountered with premature failures. As a result, the lifetime of the whole equipments would be shortened, great economic losses would be sufferred, and even safety accidents would be engendered. Thus, in order to ensure safe operation of those heat exchangers and avoid recurrence of similar accidents, this thesis will carry out a series of analyses and researches into two aspects. Based on several typical failure incidents, the first part will deeply investigate the premature failure behaviors of the heat exchanger tubes in some important petrochemical plants, and will also study the relevant failure mechanisms and propose the pertinent prevention methods. Achievements of this research will have a reference value for failure prevention of the in-service heat exchangers that operate under similar service conditions. The second part will conduct systematic performance evaluation and analysis on the welded joints, the most-prone-to-failure components, of the novel heat resistant steels that are mainly applied for the heat exchanger tubes like superheater, reheater, etc, in new-generation ultra-supercritical (USC) and supercritical fossil power plants. Results of it will provide practical experimental data for safety and reliability of the under-construction power plants and their heat exchangers. Detailed research contents and results are summarized as follows:
     1. Failure analysis of heat exchanger tubes in PTA dryers
     The stainless steel heat exchanger tubes of the two dryers that were used for purification in one PTA plant were frequently encountered with localized corrosions not long after beginning of service, and some of them were also detected other failure modes involving accelerated thinning of their wall thickness and even bursting. Consequently, in order to ascertain the main causes of these premature failure behaviors, comprehensive investigations into four aspects were then carried out, including matrix materials, process media, service conditions, and maintenance management. According to the analysis results, the overproof chloride ions introduced by the inappropriate operation in alkali washing procedure during routine maintenance were determined as the root cause of those serious localized corrosions as pitting and crevice corrosion. Subsequently, the relevant corrosion failure mechanisms were deeply discussed, and both the effective pertinent countermeasures and the prevention measures were put forward as well. Based on this incident analysis, the initiating factors and prevention methods of potential failures of the heat exchanger steel tubes operating under similar service conditions were commanded, which would play an important role in safe and smooth operation of the whole heat exchangers in engineering applications.
     2. Failure analysis of quench oil/diluted steam heat exchanger tubes in ethylene plant
     In the ethylene manufacturing plant of one petrochemical works, failure defects like localized concaves and even perforation were detected just after several months' service on the surfaces of most carbon steel tubes of the quench oil/diluted steam heat exchangers that were used for generating diluted steam to supply heat. So as to immediately determine the actual causes of this premature failure, a series of advanced characterization apparatus including3D stereo microscope, SEM, EDS, ion chromatograph, ICP-AES, and pH inspection device, etc were utilized to observe the macro/microscopic morphologies of the defects and analyze the chemical features of the process media. The results showed that the interaction among pitting corrosion, acidic corrosion, stress corrosion cracking because of the frequent sharp fluctuations of the process water pH values that were led by the inappropriate feeding methods during routine operation, was the root cause of the localized defects on tubes'surfaces. Furthermore, aiming to clearly illustrate the combined effects by such complicated corrosion modes, a novel 'acidic/caustic alternating corrosion' mechanism was innovatedly put forward, and its concrete relationships among defect morphologies, featured sizes, and detailed mechanisms were established.
     3. Failure analysis of heat exchanger tubes of circulating cooler in high-pressure polyethylene plant
     For the sake of enhancing the utilization rate of ethylene, circulating coolers that cooled and separated the melted ethylene oligomers and monomers by using room-temperature process water were applied in one high-pressure polyethylene plant. However, since the circulating cooling water, i.e. the process water system was exposed to the environment, it was inevitably polluted and its quality was seriously decreased, which would consequently affect the normal operation of these coolers. Indeed, the carbon steel inner tubes of one circulating cooler with jacket structure were detected severely corroded by such cooling water in the shell side, and their wall thicknesses were also thinned, and one of them even burst at the tee tube near the outlet. Then, on the basis that these failures were undoubtedly induced by the unqualified process water, the dynamic damaging effects combined by dissolved oxygen corrosion, crevice corrosion, and high-speed erosion that were all engendered by the water was discussed in detail. Achievements of this research would have important reference values for studying failure mechanisms of heat exchanger steel tubes that operate under both corrosive and abrasive conditions.
     4. Properties research of T91welded joints
     The properties at both room and elevated temperatures, and the microscopic structures of the welded joints of one China-made T91ferritic heat resistant steels were comprehensively evaluated, demonstrating that their overall performances were qualified enough for being applied in supercritical fossil power plants and nuclear power plants nowadays. The results would have both practical and economic values in popularizing the domestically-made T91steels, and had also paved the way for studying the similar and/or dissimilar welded joints of T92steels, which have similar chemical compositions and microstructures as T91.
     5. Research on structures and properties of T92/HR3C dissimilar steels welded joints
     Comprehensive structural performance evaluation was conducted on the dissimilar steels welded joints between novel T92ferritic and HR3C austenitic heat resistant steels that were mainly applied in the USC fossil power plants, including mirostructures, mechanical properties, creep rupture properties, and residual stresses distribution, etc, and the relationships between them were discussed as well. Among them, the creep rupture data and their linearly fitted equation were the first to be reported at home and abroad. Then, the maximum allowable stress at625℃was accordingly calculated, and the resultant value40MPa was sufficient for serving under current USC conditions. From both the scientific and the economic points of view, results of this study would have significant values in popularizing not only such novel heat resistant steels but also the new-generation USC fossil power plants.
引文
[1]史美中,王中铮.热交换器原理与设计(第4版)[M].南京:东南大学出版社,2009:1.
    [2]Kakac S, Liu HT. Heat exchangers:selection, rating, and thermal design [M]. Boca Raton, FL, USA:CRC Press,2002.
    [3]Bell KJ, Mueller AC. Wolverine tube heat transfer data book [M]. Huntsville, AL, USA:Wolverine Tube, Inc.,2001:32.
    [4]Costa ALH, Queiroz EM. Design optimization of shell-and-tube heat exchangers [J]. Applied Thermal Engineering,2008,28(14-15):1798-1805.
    [5]Saunders EAD. Heat exchangers:selection, design & construction [M]. Harlow, Essex, England:Longman Scientific & Technical,1988.
    [6]Fraas AP. Heat exchanger design,2nd edition [M]. New York, NY, USA:John Wiley & Sons,1989:6.
    [7]GB 151-1999.管壳式换热器[S].北京:中国标准出版社,1999.
    [8]Shah RK, Sekulic DP. Fumdamentals of heat exchanger design [M]. Hoboken, NJ, USA:John Wiley & Sons,2003:14.
    [9]王宇飞.耐磨耐蚀层状复合管的制备及其冲蚀模拟分析[D].上海:复旦大学,2008:1.
    [10]杨振国.核电装置换热器的失效分析及其解决对策[J].金属热处理,2007,32(s1):28-35.
    [11]Yang ZG, Gong Y, Yuan JZ. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part Ⅰ:Electrochemical corrosion [J]. Materials & Corrosion,2011,63(1):7-17.
    [12]Gong Y, Yang ZG, Yuan JZ. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part Ⅱ:Mechanical degradation [J]. Materials & Corrosion,2011,63(1):18-28.
    [13]Gong Y, Yang ZG. Corrosion evaluation of one dry desulfurization equipment-circulating fluidized bed boiler [J]. Materials and Design,2011,32(2):671-681.
    [14]Hu ZF, Yang ZG. Identification of the precipitates by TEM and EDS in X20CrMoV12.1 after long-term service at elevated temperature [J]. Journal of Materials Engineering and Performance,2003,12(1):106-111.
    [15]Hu ZF, Yang ZG. An investigation of the embrittlement in X20CrMoV12.1 power plant steel after long-term service exposure at elevated temperature [J]. Materials Science and Engineering A,2004,383:224-228.
    [16]邱艳丽.阀门、螺栓及发电机定子和转子的失效分析[D].上海:复旦大学,2007:2.
    [17]张峥,陈再良,李鹤林.我国失效分析的现状与差距[J].金属热处理,2007,32(s1):49-52.
    [18]张栋,钟培道,陶春虎,雷祖圣.失效分析[M].北京:国防工业出版社,2004:4.
    [19]杨振国.三元复合钢管的制备方法[P].中国专利:CN1404945,2003-03-26.
    [20]杨振国.一种三元复合钢管结构[P].中国专利:CN2573820,2003-09-17.
    [21]杨振国.三元复合钢管的技术特点及其工程应用[J].水利电力机械,2003,25(1):35-37.
    [22]钟群鹏,张峥,田永江.机械装备失效分析诊断技术[J].北京航空航天大学学报,2002,28(5):497-502.
    [23]侯伟峰.氨水换热管的失效分析[J].石油与化工设备,2010,13(6):52-54.
    [24]Kuznicka B. Erosion-corrosion of heat exchanger tubes [J]. Engieering Failure Analysis,2009,16(7):2382-2387.
    [25]工泳厚.实用涂料腐蚀技术手册[M].北京:冶金工业出版社,1994:3.
    [26]Corrosion costs and preventive strategies in the United States [R]. Houston, TX, USA:NACE,2002.
    [27]Gunter Schmitt. Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control [R]. New York, USA:The World Corrosion Organization,2009.
    [28]Lieser MJ, Xu J. Composites and the future of society:preventing a legacy of costly corrosion with modern materials [R]. Toledo, OH, USA:Owens Corning, 2010.
    [29]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:248.
    [30]刘伟平,孙树仁.硬膜防锈油应用及思考[J].汽车科技,2008,36(6):50-52.
    [31]董德岐.在第四届中国国际腐蚀控制大会暨展览北京新闻发布会上的讲话大会发言[A].见:第四届中国国际腐蚀控制大会.技术推广文集[C].安徽萧县:2009:57-58.
    [32]Hays GF. Now is the time [EB/OL].:World Corrosion Organization,2007-12-26.
    [33]屈晓斌,陈建敏,周惠娣,冶银平.材料磨损失效及其预防研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192.
    [34]孙斓珲.聚合物基纳米复合材料及织物增强纳米复合材料的制备及性能研究 [D].上海:复旦大学,2010:8.
    [35]Barwell FT. Wear of metals [J]. Wear,1957-1958,1:317-332.
    [36]Eyre TS. Wear characteristics of metals [J]. Tribology International,1976,9(5): 203-212.
    [37]Blau PJ. Fifty years of research on the wear of metals [J]. Tribology International, 1997,30(5):321-331.
    [38]Finnie I. Erosion of surfaces by solid particles [J]. Wear,1960,3:87-103.
    [39]Bitter JGA. A study of erosion phenomena, part Ⅰ[J]. Wear,1963,6:5-21.
    [40]Bitter JGA. A study of erosion phenomena. Part Ⅱ[J]. Wear,1963,6:169-190.
    [41]Hutchings IM. Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials [J]. Journal of Physics D:Apply Physics,1992,25: A212-A221.
    [42]Jahamnir S. The mechanics of subsurface damage in solid particle erosion [J]. Wear,1981,61:309-324.
    [43]Tilly GP. A two stage mechanism of ductile erosion [J]. Wear,1973,23:87-96.
    [44]Goyder HGD. Flow-induced vibration in heat exchangers [J]. Chemical Engineering Research and Design,2002,80(3):226-232.
    [45]Pettigrew MJ, Taylor CE. Vibration analysis of shell-and-tube heat exchangers: an overview-Part 2:vibration response, fretting-wear, guidelines [J]. Journal of Fluids and Structures,2003,18(5):485-500.
    [46]Hassan MA, Weaver DS, Dokainish MA. A new tube/support impact model for heat exchanger tubes [J]. Journal of Fluids and Structures,2005,21(5-7): 561-577.
    [47]Helmi Attia M. Fretting fatigue and wear damage of structural components in nuclear power stations-Fitness for service and life management perspective [J]. Tribology International,2006,39:1294-1304.
    [48]Ghiselli AFM, Kulichevsky RM, Sacchi MA, Pastorini AJ, et al. Analytical and experimental flow-induced vibration analysis of a shell and tube cooling water heat exchanger [A], in:Proceedings of the 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, Flow-induced Vibration and Noise [C]. ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA,2002:615-621.
    [49]Griffith AA. The phenomena of rupture and flow in solids [J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,1921,221:163-198.
    [50]Belytschko T, Gu L, Lu YY. Fracture and crack growth by element free Galerkin methods [J]. Modelling and Simulation in Materials Science and Engineering, 1994,2:519-534.
    [51]Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics:theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society,1978,184(1):375-389.
    [52]Belytschko T, Lu YY, Gu L. Element-free Galerkin Methods [J]. International Journal for Numerical Methods in Engineering,1994,37:229-256.
    [53]Liu WK, Li SF, Belytschko T. Moving least-square reproducing kernel methods (I) Methodology and convergence [J]. Computer Methods in Applied Mechanics and Engineering,1997,143:113-154.
    [54]Li SF, Liu WK. Moving least-square reproducing kernel method part Ⅱ:Fourier analysis [J]. Computer Methods in Applied Mechanics and Engineering,1996, 139:159-193.
    [55]Li SF, Liu WK. Meshfree and particle methods and their applications [J]. Applied Mechanics Reviews,2002,55(1):1-34.
    [56]Li SF, Simonsen CB. Meshfree simulations of ductile crack propagations [J]. International Journal for Computational Methods in Engineering Science and Mechanics,2005,6:1-9.
    [57]Ren B, Li SF. Meshfree simulations of plugging failures in high-speed impacts [J]. Computers and Structures,2010,88:909-923.
    [58]Ren B, Li SF, Qian J, Zeng XW. Meshfree simulations of spall fracture [J]. Computer Methods in Applied Mechanics and Engineering,2011,200:797-811.
    [59]Alder BJ, Wainwright TE. Studies in molecular dynamics.Ⅰ. General methods [J]. The Journal of Chemical Physics,1959,31(2):459-466.
    [60]Liu WK, Hao S, Belytschko T, Li SF, et al. Multi-scale methods [J]. International Journal for Numerical Methods in Engineering,2000,47:1343-1361.
    [61]To AC, Li SF. Perfectly matched multiscale simulations [J]. Physical Review B, 2005,72:035414.
    [62]Liu WK, Qian D, Gonella S, Li SF, et al. Multiscale methods for mechanical science of complex materials:Bridging from quantum to stochastic multiresolution continuum [J]. International Journal for Numerical Methods in Engineering,2010,83:1039-1080.
    [63]Qian J, Li SF. Application of multiscale cohesive zone model to simulation fracture in polycrystialline solids [J]. ASME Journal of Engineering Materials and Technology,2011,133:011010.
    [64]Zeng XW, Li SF. A multiscale cohesive zone model and simulations of fractures [J]. Computer Methods in Applied Mechanics and Engineering,2010,199: 547-556.
    [65]崔正丹.炼油厂水相换热器碳钢材料的腐蚀与防护措施研究[D].长沙:湖南大学,2009:3.
    [66]余存烨.石化换热器的故障检查与清洗方法[J].清洗世界,2006,22(5):21-26.
    [67]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005:96.
    [68]徐钢,麦郁穗,钱颂文,凌长明等.石油化工厂设备检修手册第八分册(换热器)[M].北京:中国石化出版社,2004:214.
    [69]龚嶷,杨振国.循环流化床CFB锅炉系统腐蚀磨损状况的安全评价[J].金属热处理,2007,32(s1):170-173.
    [70]龚嶷,杨振国.循环流化床锅炉返料阀门盖腐蚀失效分析[J].金属热处理,2008,33(12):89-92.
    [71]中国石油化工设备管理协会设备防腐专业组.石油化工装置设备腐蚀与防护手册[M].北京:中国石化出版社,1996:6.
    [72]吴性良,朱万森,马林.分析化学原理[M].北京:化学工业出版社,2004:663.
    [73]Revie RW, Uhlig HH. Corrosion and corrosion control:An introduction to corrosion science and engineering,4th edition [M]. Hoboken, NJ, USA:John Wiley & Sons,2008:31.
    [74]TIMET. Corrosion resistance of titanium [R]. Albany, OR, USA:Titanium metals corporation,1997:http://www.timet.com/pdfs/corrosion.pdf.
    [75]LaQue FL. Marine corrosion:causes and prevention [M]. New York, NY, USA: John Wiley & Sons,1975:179.
    [76]姚建峰,林建忠.冷却器中钛冷却管与散热片及钛管板的固定连接工艺[P].中国专利:201010179773.2,2011-01-26.
    [77]杨振国,袁建中等.一种预防核电装置换热器腐蚀失效的管板口密封方法[P].中国专利:201110241519.5,2011-08-22.
    [78]王海涛.浅谈汽车整车腐蚀[J].轻型汽车技术,2007,(2):22-24.
    [79]桂立丰,吴民达,赵源.机械工程材料测试手册腐蚀与摩擦学卷[M].沈阳:辽宁科学技术出版社,2002:5.
    [80]唐崇峰.催化裂化装置再生器制造应力控制[J].石油化工设备技术,2005,26(5):59-61.
    [81]Groysman A. Corrosion for everybody [M]. Dordrecht, the Netherlands:Springer, 2010:101.
    [82]Chu WY, Yao J, Hsiao CM. Stress corrosion cracking of austenitic stainless steel under compressive stress [J]. Corrosion,1984,40(6):302-306.
    [83]Chu WY, Hsiao CM, Wang JW. Sress corrosion cracking of an aluminum alloy under compress stress [J]. Metallurgical Transactions A,1985,16A:1663-1670.
    [84]庄东汉.材料失效分析[M].上海:华东理工大学出版社,2009:291.
    [85]汪光胜,周晓燕,郭志军.乙苯换热器换热管与管板接头开裂失效分析[J].石油化工设备,2008,37(5):93-95.
    [86]王琼琦,王正东,涂善东.乙二醛换热器换热管断裂原因分析[J].压力容器,2009,26(3):49-53.
    [87]Ahmed TM, Alfantazi A, Budac J, Freeman G. Failure analysis of 316L stainless steel tubing of the high-pressure still condenser [J]. Engineering Failure Analysis, 2009,16:1432-1441.
    [88]Pantazopoulos G, Vazdirvanidis A, Tsinopoulos G. Failure analysis of a hard-drawn water tube leakage caused by the synergistic actions of pitting corrosion and stress-corrosion cracking [J]. Engineering Failure Analysis,2011, 18:649-657.
    [89]廖景娱,刘正义等.金属构件失效分析[M].北京:化学工业出版社,2003:102.
    [90]Wranglen G. An introduction to corrosion and protection of metals [M]. London: Chapman and Hall Ltd,1985:107.
    [91]蔡殉.材料科学与工程基础[M].上海:上海交通大学出版社,2010:134.
    [92]Callister WD Jr. Materials Science and Engineering,7th edition [M]. New York, USA:John Wiley & Sons,2007:93.
    [93]龚嶷,杨振国,张宏鹤.循环流化床锅炉一次风进气管断裂失效分析[J].理化检验-物理分册,2009,45(s1):109-113.
    [94]Guo C, Han CJ, Tang YM, Zuo Y, Lin SZ. Failure analysis of welded 0Cr13Al tube bundle in a heat exchanger [J]. Engineering Failure Analysis,2011,18: 890-894.
    [95]曹建,龚嶷,杨振国.超超临界机组用T/P92异种钢焊接接头的失效预防[J].理化检验-物理分册,2009,45(s1):379-383.
    [96]Lins VFC, Guimaraes EM. Failure of a heat exchanger generated by an excess of SO2 and H2S in the Sulfur Recovery Unit of a petroleum refinery [J]. Journal of Loss Prevention in the Process Industries,2007,20:91-97.
    [97]张九渊.表面工程与失效分析[M].杭州:浙江大学出版社,2005:378-380.
    [98]Revie RW, Uhlig HH. Corrosion and corrosion control:An introduction to corrosion science and engineering,4th edition [M]. Hoboken, NJ, USA:John Wiley & Sons,2008:174.
    [99]Azevedo CRF, Alves GS. Failure analysis of a heat-exchanger serpentine [J]. Engineering Failure Analysis,2005,12:193-200.
    [100]Usman A, Nusair Khan A. Failure analysis of heat exchanger tubes [J]. Engineering Failure Analysis,2008,15:118-128.
    [101]Yahut K, Sahin Bayram. Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchanger [J]. Applied Energy,2004,78: 273-288.
    [102]Khushnood S, Khan ZM, Afzaal Malik M, et al. A review of heat exchanger tube bundle vibrations in two-phase cross-flow [J]. Nuclear Engineering and Design, 2004,230:233-251.
    [103]刘正义,魏兴钊,许麟康,陈灵,潘涵.石油管材空泡腐蚀失效特征研究[J].金属热处理,2007,32(s1):6-10.
    [104]Virk MA, Butt MA, Chughtai A, Ahmad M, et al. Failure analysis of heat exchanger fluid vapor phase vent lines in a Polyester plant [J]. Engineering Failure Analysis,2010,17:447-454.
    [105]Klenowicz Z, Darowicki K, Krakowiak S, Krakowiak A. Corrosion-erosion damage of heat exchanger tubes by desalted crude oil flowing at shell side [J]. Materials & Corrosion,2003,54:181-187.
    [106]Mochizuki H, Yokota M, Hattori S. Effects of materials and solution temperature on cavitaion erosion of pure titanium and titanium alloy in seawater [J]. Wear, 2007,262:511-528.
    [107]U.S. Energy Information Administration. International Energy Outlook [EB/OL]. 2011-9.
    [108]刘铁男.增强忧患意识明确任务要求扎实做好2012年能源发展改革工作[R].北京:国家能源局,2012.
    [109]杨富,章应霖,任永宁,李为民.新型耐热钢焊接[M].北京:中国电力出版社,2006:6.
    [110]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [111]Viswanathan R, Henry JF, Tanzosh J, Stanko G, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. Journal of Materials Engineering and Performance,2005,14(3):281-292.
    [112]Beer JM. High efficiency electric power generation:The environmental role [J]. Progress in Energy and Combustion Science,2007,33:107-134.
    [113]Masuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ International,2001,41(6):612-625.
    [114]邵天佑,李法众,韩克刚.华能玉环电厂4×1000MW超超临界机组锅炉用钢[J].热力发电,2006,35(12):78-80.
    [115]束国刚.T/P91钢国产化工艺组织和性能改进的研究与应用[D].武汉:武汉大学,2004:12.
    [116]Ohgami M, Araki S, Naoi H, Ogawa T, et al. Development of a 9Cr-0.5Mo-1.8W steel for boiler tubes [J]. ISIJ,1990,76(7):1124-1130.
    [117]丛相州,徐广信,魏骁,安锦平等.超超临界机组P92钢管件的国产化研究[J].中国电力,2007,40(7):17-20.
    [118]赵旺初.P92钢管件通过技术鉴定实现国产化[J].热能动力工程,2008,23(2):169.
    [119]束国刚,刘江南,石崇哲,王正品,赵彦芬等.超临界锅炉用T/P91钢的组织性能与工程应用[M].西安:陕西科学技术出版社,2006:3.
    [120]曹建.超超临界机组用T/P92异种钢焊接接头结构与性能的研究[D].上海:复旦大学,2011:20.
    [121]祝凯.Mg处理冶炼工艺对船板钢母材和焊接热影响区影响的研究[D].上海:复旦大学,2011:3.
    [122]Cahn RW. The coming of materials science [M]. Oxford, UK:Elsevier Science Ltd,2001:14.
    [123]Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel [J]. Materials Science & Engineering A,2001,319-321:784-787.
    [124]Lu Z, Faulkner RG, Riddle N, Martino FD, Yang K. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels [J]. Journal of Nuclear Materials,2009,386-388:445-448.
    [125]王双宝,伍翠兰,吾之英,陈汪林,陈江华.T92钢管650℃蠕变断裂后的显微组织研究[A].见:先进电站用耐热钢与合金研讨会论文集[C].上海:中国 动力工程学会材料专业委员会,2009.
    [126]Kim B, Jeong C, Lim B. Creep behavior and microstructural damage of martensitic P92 steel weldment [J]. Materials Science & Engineering A,2008, 483-484:544-546.
    [127]Falat L, Vyrostkova A, Homolova V, Svoboda M. Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints [J]. Engineering Failure Analysis, 2009,16:2114-2120.
    [128]王学,潘乾刚,刘洪,曾会强,陶永顺.超超临界机组用P92钢焊接细晶区高温蠕变行为研究[J].中国电机工程学报,2010,30(2):104-108.
    [129]Svobodova M, Douda J, et al. Similar and dissimilar weld joints of creep-resisting steels [A]. in:Proceedings of the 18th International Conference on Metallurgy and Materials [C]. Hradec Nad Moravici, Czech Republic,2009:136-142.
    [130]Vyrostkova A, Homolova V, Pecha J, Svoboda M. Phase evolution in P92 and E911 weld metals during ageing [J]. Materials Science & Engineering A,2008, 480:289-298.
    [131]Gong Y, Cao J, Ji LN, Yang C, Yao C, Yang ZG, et al. Assessment of creep rupture properties for dissimilar steels welded joints between T92 and HR3C [J]. Fatigue & Fracture of Engineering Materials & Structures,2011,34(2):83-96.
    [132]Cao J, Gong Y, Yang ZG, Luo XM, Gu FM, Hu ZF. Creep fracture behavior of dissimilar weld joints between T92 martensitic and HR3C austenitic steels [J]. International Journal of Pressure Vessels and Piping,2011,88(2-3):94-98.
    [133]Cao J, Gong Y, Yang ZG Microstructural analysis on creep properties of dissimilar materials joints between T92 martensitic and HR3C austenitic steels [J]. Materials Science & Engineering A,2011,528(19-20):6103-6111.
    [134]Cao J, Gong Y, Zhu K, Yang ZG, Luo XM, et al. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels [J]. Materials & Design,2011,32(5):2763-2770.
    [135]曹建,纪丽娜,龚嶷,杨超,姚骋,杨振国等.T92/S304H异种钢焊接接头的组织与性能研究[J].东北大学学报(自然科学版),2010,31(s1):300-303.
    [136]曹建,杨振国.T92异种钢焊接接头的组织性能及蠕变失效机制[J].金属热处理,2011,36(s1):269-272.
    [137]金彦,顾福明,叶上云,杨振国.T92/HR3C异种钢焊接接头蠕变断裂研究[J].锅炉技术,2010,41(3):45-48.
    [138]顾福明,罗晓明,叶上云,杨振国.T92/HR3C异种钢焊接接头性能研究[J].金 属加工(热加工),2011,62(6):65-68.
    [139]李新梅,张忠文,邹勇,杜宝帅,邹增大.T92/Super304H异种钢焊接接头的性能研究[J].材料导报,2011,25(9):99-101.
    [140]刘俊建,陈国宏,余新海,王家庆等.T92/HR3C异种钢焊接接头的组织结构和力学性能[J].材料热处理学报,2011,32(2):54-60.
    [141]Pernicone N, Cerboni M, Prelazzi G. An investigation on Pd/C industrial catalysts for the purification of terephthalic acid [J]. Catalysis Today,1998,44:129-135.
    [142]刘一横,陈瑞庚,郑琪.TA干燥机国产化技术[J].化工设计,2000,10(3):29-31.
    [143]Pellegrini R, Agostini G, Groppo E et al.0.5wt.% Pd/C catalyst for purification of terephthalic acid:Irreversible deactivation [J]. Journal of Catalysis,2011,280: 150-160.
    [144]王新民,郭文玲.PTA装置中换热设备国产化问题简介[J].聚酯工业,2007,20(3):54-55.
    [145]ASME CASE N-708-2010. Use of JIS G4303, Grades SUS304, SUS304L, SUS316, and SUS316L Section Ⅲ, Division 1 [S]. USA:ASME,2010.
    [146]GB 13296-2007.锅炉、热交换器用不锈钢无缝钢管[S].北京:中国标准出版社,2007.
    [147]Brooks CR, Choudhury A. Failure Analysis of Engineering Materials [M]. New York, NY, USA:McGraw-Hill,2002:552.
    [148]Vuillemin B, Philippe X, Oltra R, Vignal V, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corrosion Science,2003,45:1143-1159.
    [149]ASTM G46-94(2005). Standard Guide for Examination and Evaluation of Pitting Corrosion [S]. USA:ASTM International,2005.
    [150]刘国强,朱白勇,柯伟.不锈钢和镍基合金在含溴醋酸中的腐蚀行为[J].腐蚀科学与防护技术,2000,12(5):296-299.
    [151]余存烨.涤纶生产设备的腐蚀与防护技术[J].腐蚀与防护,2004,25(9):388-391.
    [152]李明,李晓刚,杜翠薇,程学群.PTA氧化设备腐蚀失效分析[J].腐蚀科学与防护技术,2005,17(4):282-285.
    [153]梁斌,巩建鸣,涂善东.AISI 316L和SAF 2205不锈钢在含溴醋酸溶液中腐蚀行为的研究[J].机械工程材料,2006,30(1):56-59.
    [154]Turnbull A, Ryan M, Willetts A, Zhou SQ. Corrosion and electrochemical behaviour of 316L stainless steel in acetic acid solutions [J]. Corrosion Science, 2003,45:1051-1072.
    [155]Pardo A, Merino MC, Coy AE, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions [J]. Corrosion Science,2008,50:1796-1806.
    [156]Schaffer JP, Saxena A, Antolovich SD, et al. The Science and Design of Engineering Materials,2nd edn. [M]. New York, NY, USA:McGraw-Hill,1999: 773.
    [157]Suresh Kumar M, Sujata M, Venkataswamy MA, Bhaumik SK. Failure analysis of a stainless steel pipeline [J]. Engineering Failure Analysis,2008,15:497-504.
    [158]侯峰,徐宏,许林云,谭晓勇,刘阿龙.PTA装置不锈钢材料腐蚀磨损的探讨[J].合成纤维工业,2005,28(6):34-36.
    [159]邱艳丽,杨振国.碱性介质中旋塞阀磨损失效分析[J].材料工程,2008,53(6):60-63.
    [160]Gong Y, Cao J, Meng XH, Yang ZG Pitting corrosion on 316L pipes in terephthalic acid (TA) dryer [J]. Materials & Corrosion,2009,60(11):899-908.
    [161]杨振国,龚嶷,孟新昊.PTA装置干燥机316L不锈钢列管的腐蚀失效分析[J].理化检验-物理分册,2009,45(s):6-16.
    [162]中国石油化工设备管理协会.石油化工装置设备腐蚀与防护手册[M].北京:中国石化出版社,1996:286-316.
    [163]王可,张洪林.当代乙烯技术进展[J].当代化工,2006,35(2):117-121.
    [164]GB 9948-2006.石油裂化用无缝钢管[S].北京:中国标准出版社,2006.
    [165]章炳华.乙烯EA1123稀释蒸汽发生器腐蚀原因分析[J].腐蚀与防护,2007,28(9):479-485.
    [166]Ul-Hamid A, Tawancy HM. Corrosion of carbon steel caustic header in the presence of chloride ions [J]. Engineering Failure Analysis,2009,16:825-832.
    [167]O'Brien TF, Bommaraju TV, Hine F. Handbook of Chlor-Alkali Technology, Volume I:Fundamentals [M]. New York, NY, USA:Springer,2005:1337.
    [168]Singh Raman RK, Rihan R, Ibrahim RN. A novel approach to determination of threshold for stress corrosion cracking (KISCC) using round tensile specimens [J]. Metallurgical and Materials Transactions A,2006,37A:2963-73.
    [169]Reinoehl JE, Berry WE. Natural conditions for caustic cracking of a mild steel [J]. Corrosion,1972,28(4):151-160.
    [170]Carter CS, Hyatt MV. Stress corrosion cracking and hydrogen embrittlement of iron base alloys [A]. in:Proceedings of the International Corrosion Conference Series [C]. Houston, TX, USA,1977:524.
    [171]Song FM. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH [J]. Corrosion Science,2009,51: 2657-2674.
    [172]Gong Y, Yang C, Yao C, Yang ZG. Acidic/caustic alternating corrosion on carbon steel pipes in heat exchanger of ethylene plant [J]. Materials & Corrosion, 2011,62(10):967-978.
    [173]龚嶷,杨振国.乙烯装置急冷油/稀释蒸汽换热器列管交替腐蚀研究[J].金属热处理,2011,36(s1):240-244.
    [174]Otegui JL, Fazzini PG. Failure analysis of tube-tubesheet welds in cracked gas heat exchangers [J]. Engineering Failure Analysis,2004,11:903-913.
    [175]Azevedo CRF, Alves GS. Failure analysis of a heat-exchanger serpentine [J]. Engineering Failure Analysis,2005,12:193-200.
    [176]Usman A, Nusair Khan A. Failure analysis of heat exchanger tubes [J]. Engineering Failure Analysis,2008,15:118-128.
    [177]ASME SA-106.高温用无缝碳钢公称管[S].美国:ASME,2010.
    [178]纪贵.世界标准钢号手册[M].北京:中国标准出版社,2004:71.
    [179]Gong Y, Zhong J, Yang ZG. Failure analysis of bursting on the inner pipe of a jacketed pipe in a tubular heat exchanger [J]. Materials & Design,2010,31(9): 4258-4268.
    [180]Foley DC, Hartwig KT, Maloy SA, Hosemann P, Zhang X. Grain refinement of T91 alloy by equal channel angular pressing [J]. Journal of Nuclear Materials, 2009,389:221-224.
    [181]Hosemann P, Kabra S, Stergar E, Cappillo MJ, Maloy SA. Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91 [J]. Journal of Nuclear Materials,2010,403:7-14.
    [182]ASME SA-213/SA-213M. Specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat-exchanger tubes [S]. USA:ASME,2001.
    [183]GB 5310-2008.高压锅炉用无缝钢管[S].北京:中国标准出版社,2008.
    [184]ASME SFA-5.28. Specification for low-alloy steel electrodes and rods for gas shielded arc welding [S]. USA:ASME,2004.
    [185]ASTM E8/E8M-08. Standard test methods for tension testing of metallic materials [S]. USA:ASTM,2008.
    [186]ASTM E290-97a. Standard test methods for bend testing of material for ductility [S]. USA:ASTM,2004.
    [187]ISO 783. Metallic materials-Tensile testing at elevated temperature [S]. Geneve, Switzerland:ISO,1999.
    [188]ASTM E139-06. Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials [S]. USA:ASTM,2006.
    [189]Metrode Products Ltd. Welding consumables for P91 steels for the power generation industry [EB/OL]. http//www.metrode.com.
    [190]束国刚,刘江南,石崇哲,王正品,赵彦芬等.超临界锅炉用T/P91钢的组织性能与工程应用[M].西安:陕西科学技术出版社,2006:219.
    [191]Watanabe T, Tabuchi M, Yamazaki M, Hongo H, Tanabe T. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture [J]. International Journal of Pressure Vessels and Piping,2006,83:63-71.
    [192]Jandova D, Kasl J, Kanta V. Creep resistance of similar and dissimilar weld joints of P91 steel [J]. Materials at High Temperatures,2006,23(3/4):165-170.
    [193]Lenzen M. Life cycle energy and greenhouse gas emissions of nuclear energy:A review [J]. Energy Conversion & Management,2008,49:2178-2199.
    [194]Abu-Khader MM. Recent advances in nuclear power:A review [J]. Progress in Nuclear Energy,2009,51:225-235.
    [195]Ingersoll DT. Deliberately small reactors and the second nuclear era [J]. Progress in Nuclear Energy,2009,51:589-603.
    [196]Piera M, Lafuente A, Abanades A, Martinez-Val JM. Hybrid reactors:Nuclear breeding or energy production? [J]. Energy Conversion & Management,2010,51: 1758-1763.
    [197]Cho JR, Lee BY, Moon YH, Van Tyne CJ. Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments [J]. Journal of Materials Processing Technology,2004,155-156: 1690-1695.
    [198]Yaghi AH, Hyde TH, Becker AA, Williams JA, Sun W. Residual stress simulation in welded sections of P91 pipes [J]. Journal of Materials Processing Technology, 2005,167:480-487.
    [199]Gong Y, Yang ZG, Yang FY. Heat strength evaluation and microstructures observation of the welded joints of one China-made T91 steel [J]. Journal of Materials Engineering and Performance,2012, doi:10.1007/s 11665-011-0048-4.
    [200]杨富,章应霖,任永宁,李为民.新型耐热钢焊接[M].北京:中国电力出版社,2006:107.
    [201]ASME SFA-5.14. Specification for nickel and nickel-alloy bare welding electrodes and rods [S]. USA:ASME,1998.
    [202]Klenk A, Issler S, Shibli IA, Williams JA. Some characteristics of weld repair for creep applications [J]. OMMI (Power Plant:Operation Maintenance and Materials Issues),2003,2(1):1-32.
    [203]Hasegawa T, Abe YR, Tomita Y, Maruyama N, Sugiyama M. Microstructural evolution during creep test in 9Cr-2W-V-Ta steels and 9Cr-1Mo-V-Nb steels [J]. ISIJ International,2001,41(8):922-929.
    [204]王亮,刘宗德,陈鹏,李红川.T92钢时效硬度变化试验及蠕变寿命预测研究[J].压力容器,2008,25(3):1-6.
    [205]Gong Y, Cao J, Ji LN, Yang C, Yao C, Yang ZG, Wang J, et al. Assessment of creep rupture properties for dissimilar steels welded joints between T92 and HR3C [J]. Fatigue & Fracture of Engineering Materials & Structures,2011,34(2): 83-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700