葫芦科植物病毒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葫芦科作物在浙江省和周边地区的栽培面积不断扩大,其栽培模式也呈现多样化趋势。凡是种植瓜类作物的地区都有病毒病的发生,但是,我国在该科作物的病毒病研究相对滞后。本研究对我国部分地区的葫芦科作物进行了病毒分离和鉴定,确定小西葫芦黄化花叶病毒(Zucchini yellow mosaic virus,ZYMV)和黄瓜花叶病毒(Cucumber mosaic virus,CMV)是侵染葫芦科植物的2种主要病毒病原,系统检测了浙江地区该科作物上的ZYMV和CMV的季节和寄主分布情况,并在分子水平上进行了病毒基因组变异规律和变异趋势的摸索和病毒致病性研究,研究结果如下。
     在浙江地区和全国部分地区采集自然发病的葫芦科作物田间样品,通过病毒分离和寄主反应测定、病毒dsRNA分析、形态学观察等方法,获得了13个CMV分离物、16个ZYMV分离物,1个TMV分离物,4个未知病毒分离物。自然发病的田间植株通常表现重花叶、畸形,植株矮化,果实表面瘤状增生等病毒病症状。田间作物受2种病毒或多种病毒复合侵染时,表现的症状更为严重。中国大陆获得的ZYMV分离物,在藜科、豆科等植物上产生局部坏死斑,系统侵染葫芦科植物,不侵染茄科植物。病毒粒子呈弯曲线形,粒体长为750nm,CP蛋白分子量约为36.0kDa;ZYMV侵染的西葫芦叶肉细胞内观察到典型的柱状内含体。获得的CMV分离物在藜科、豆科等植物上产生局部症状,系统侵染茄科、葫芦科等植物,病毒粒体大小约为29nm,CP分子量约为24.2kDa。CMV接种侵染的心叶烟薄壁细胞中,大量球形病毒散布于细胞质中,病毒粒子结晶体呈菱形、多边形或不规则形等。
     通过RT-PCR、T载体连接、转化和重组质粒测序,研究了来自中国大陆4种作物上9个ZYMV分离物的CP基因和3'-UTR区的核苷酸序列,并与其它地区报道的16个分离物进行了同源性比较。9个来自我国大陆地区ZYMV分离物的CP基因均为837个核苷酸(nt),分别编码279个氨基酸,其3'-UTR区的序列(不包括PolyA尾)为210~211nt。ZYMV CP基因核苷酸序列同源性具有一定的寄主和地域相关性,但是,总体上其关联程度不甚明确。其氨基酸序列同源性的寄主相关性程度高于地域相关性程度。25个ZYMV分离物的CP氨基酸序列根据其变异程度分为2个区:N端约41个氨基酸为高度变异区、“CP核心区”和C端氨基酸序列为保守区。根据CP氨基酸保守区可以将ZYMV分为5个基因型,基因型内氨基酸同源性高于95%。保守区CP氨基酸同源性的寄主相关性程度高于地域相关性程度。3'-UTR区序列相对保守,不形成明显的基因型分组。但是,个别分离物UTR区明显高于其它分离物(达245nt)。以上研究结果初步揭示了ZYMV作为单链RNA病毒通过快速变异适应与寄主相互作用的趋势:ZYMV作为单链RNA病毒通过与寄主相互作用而表现寄主适应性变异的趋势。
    
    摘要
     对来自杭州南瓜、番茄上的CMV分离物进行了CP基因核昔酸和CP氨基酸序列
     分析,并与国内外已发表的不同地区、寄主来源的CMV分离物进行了比较。系统进
     化树分析表明:CMV分离物明显分为2个亚组,本研究获得的2个分离物都属于亚组
     I。4个葫芦科来源的CMV分离物均属于亚组I。不同来源的CMV分离物没有表现
     出寄主和地区适应性。
     通过在浙江地区分别于2002年夏季6一8月、秋季10一11月定点采集葫芦科作物田
     间样品,以32P标记的ZYMv和CMV基因组cDNA作为探针进行杂交检测。检测结
     果表明:ZYMV和CMV在葫芦科作物上的发生表现出显著的季节性差异。夏季采集
     的22个样品中有21个感染CMV,发生率为95.5%;只有5个样品感染ZYMV,发生
     率为22.7%,在秋季ZYMV明显成为优势病毒,其自然发生率为59.1%,所有秋季样
     品中均没有检测到CMV。ZYMV的发生在不同作物、地区间具有一定的差异性:在
    夏季检测的7种作物中,南瓜上ZYMV的发生率为66.7%,2个甜瓜样品中有l个感
    染ZYMV,其余作物均没有检测到该病毒。秋季葫芦科栽培品种较少,主要为南瓜与
    丝瓜,其中南瓜上ZYMV的发生率为80.0%,丝瓜上为40.0%,2个葫芦样品中1个
    检测到ZYMV。不同作物和地区之间CMV的发生没有表现明显的差异性。
     通过在3种葫芦科作物品种上单独和混合接种CMV和ZYMV,对各处理的症状
    和病毒负荷量进行了定量分析。ZYMV和CMV对3种寄主的致病性测定结果表明:
    丝瓜供试品种对CMV的侵染相对敏感,而西葫芦供试品种对ZYMV的侵染更敏感,
    2种病毒在黄瓜供试品种上均未表现出明显的致病性;ZYMv与CMV的复合侵染使
    丝瓜和西葫芦的发病症状明显加重,表现强协生作用。接种病毒后29d各处理的杂交
    检测结果显示:在病症表现最严重的西葫芦植株体内基本检测不到CMV或ZYMV;
    丝瓜上CMV接种处理和混合接种处理的植株体内检测到高含量存在的CMV,ZYMV
    接种处理中检测到高浓度的病毒,但混合接种丝瓜中未检测到ZYMV。尽管外观症状
    不明显,黄瓜3个接种处理中均可检测到高负荷量的CMV或ZYMV。显示了该黄瓜
    品种对病毒具备耐受抗性,与丝瓜和葫芦比较,黄瓜具有推迟发病的抗病性。接种29d
    各处理CMv含量的ELISA检测结果与杂交检测结果基本一致。
     选择16个葫芦科作物常见品种进行田间接种试验,分别以 ZYMV、CMv单独接
    种
The production of cucurbitaceous crops is increasing recently in Zhejiang Province and other parts of south-east China, where the agricultural economy is relatively well developed, and the crop system is become more flexible. Viral diseases occur in all the area where cucurbits are planted. But the research work on viruses infecting this family of plant remain behind in compare with that for other crops. In this report, viral pathogens naturally occurred on cucurbitaceous crops were isolated and identified systemically. We found that Zucchini yellow mosaic virus (ZYMV) and Cucumber mosaic virus (CMV) were both principal viruses infecting cucurbits in Zhejiang Province and many other parts of Mainland China. Based on this, we studied the genomic diversity of the above two viruses and their seasonal occurrence. The pathogenicity of ZYMV and CMV was also investigated and crop resistance, for different varieties was also compared for against these viruses.
    Based on host reaction,"double-stranded RNA analysis, viral particle purification and morphological observation, thirteen virus isolates were identified as CMV, sixteen as ZYMV. one as Tobacco mosaic virus (TMV) and other four as unidentified. Infected cucurbit crops exhibited severe mosaic, distortion, stunt, and lump formation on fruits. The symptom usually become more severe when infected with more than one virus.
    ZYMV isolates obtained from Mainland China, were found to produce local infection to Chenopodiaceae and Fabaceae species tested, and produced systemic infection to plants of Cucurbitaceae but no infection to Solanaceae. Their virus particles are of filamentous shape of about 750 nm in length, and the coat proteins (CP) are about 36.0 kDa when tested with SDS-PAGE. Cucurbits infecting CMV were found to produce local infection to Chenopodiaceae and Fabaceae species tested, and produced systemic infection to plants of both Cucurbitaceae and Solanaceae. Their virus particles are of spherical morphorlogy of about 29 nm in diameter, and the coat proteins (CP) are about 24.0 kDa.
    For understanding the genomic variation, geological distribution and host adoption of ZYMV the 3' end sequence of its genome including the coat protein (CP) gene and 3' end
    
    
    un-translated region (UTR) were compared, after RT-PCR and cloning of the part genome. Nine Mainland isolates originally isolated from naturally infected Cucurbita moschata , Cucumis melo, Benincasa hispida and B. hispida var. Chieh-qua, were collected and identified from Zhejiang Province, Hainan Province, Shangdong Province, Shanxi Province and Beijing, respectively. The coat protein genes of all the Mainland-China isolates consisted of 837 nucleotides (nt) coding for 279 amino aids. Their 3' end UTR region composed of 210 to 211 nt not including the poly (A) tail. The above sequence data obtained in our study was then compared with previously reported sequences of 16 other ZYMV isolates obtained from other part of the word. In certain degree, similarity of nucleic acid sequence for CP gene was found being related with the host and geological origination, but not very obvious. Similarity of the CP amino acid sequences deduced from nucleic acid of the 25 ZYMV isolates reached a higher sequence similarity and a clearer relationship to the host and geological origination. The relationship extent of sequence similarity to host origin is higher than its extent to geological origin. According to sequence similarity, the amino acid sequence of ZYMV CP was divided into two parts-"the high variable region", containing about 41 amino acids at its N end, and "the conservative region", containing coat protein core-region and C terminal amino acids. The 25 ZYMV isolates could be classified
    into five genotypes according to "the conservative region", with a 95% sequence similarity
    within each genotype. The 3' end UTR of ZYMV was relatively conservative but some isolates were relatively longer. It was hard to differ ZYMV isolates into genotypes according to the UTR. The above results showed the trend of ZYMV variation
引文
陈集双,柴立红,李全胜等.黄瓜花叶病毒猖獗与气候变暖关系及其对策.生态农业研究,2000,84(4):23-26.
    陈集双,李德葆.侵染半夏的两种病毒的分离纯化和初步鉴定.生物技术,1994,4:24-28.
    陈集双,盛方镜.一串红花叶病及其病原研究.浙江农业大学学报,1995,21(1):5-10.
    陈集双,张耀洲,冯明光.黄瓜花叶病毒萝卜分离株卫星RNA的克隆及其与12个卫星RNA核苷酸序列的比较.浙江大学学报(农业与生命科学版),2001,27(3):249-254.
    陈集双,周雪平.九种Potyviruses柱状内含体结构的比较研究.电子显微学报,1995,14(1):39-46.
    陈集双.黄瓜花叶病毒及其卫星RNA的分子生态学研究.浙江大学博士学位论文,2001.
    陈再廖,周雪平.丝瓜病毒病病原的初步研究.浙江农业学报,1997,9(1):36-39.
    程宁辉,杨金水,胡容霞等.苏浙部分地区黄瓜花叶病毒(CMV)株系群划分初探.上海农业学报,1996,12(4):26-32.
    崔泳汉,康良仪.延边地区烟草病毒种类及病毒病的防治微生物学报,1992,32(1):47-55.
    古勤生,Roggero P,Lenzi R等.北方地区小西葫芦黄花叶病毒的酶联检测和西瓜品种抗病性鉴定.果树学报,2002,19(3):184-187.
    古勤生,范在丰,李怀方.葫芦科作物病毒名录.中国西瓜甜瓜,2002(1):45-47.
    洪健,陈集双.马铃薯Y病毒科的细胞内含体及在病毒检测中的应用.蔬菜病毒病害及植物病毒化学防治研究进展.中国农业科学出版社,1998:30-35.
    洪健,陈集双,李德葆.不同CMV分离物侵染寄主的超微结构变化.中国病毒学,2000,15(1):66-72.
    洪健,陈集双.植物病毒的电镜诊断.电子显微学报,1999,18(3):274-289.
    洪健,李德葆,周雪平.植物病毒分类图谱.科学出版社,2001.
    姜华,房德纯,韦石泉等.西瓜花叶病毒(WMV-2)两株系寄主的病生理研究.植物病理学报,1995,1:73-76.
    康东木,许勇,康国斌等.葫芦科作物抗主要病毒病研究进展.北京农业科学,2001,19(4):15-20.
    李德葆,周雪平,许建平等.基因工程操作.技术上海科学出版社,1996.
    李凡,周雪平,陈海如.抗植物病毒病基因工程研究进展.福建农业大学学报,2001.30(增刊):39-44.
    李风梅,崔崇士,杨国慧.南瓜病毒病的研究进展.东北农业大学学报,2002,33(1):100-104.
    李利君,周仲驹,谢联辉.甘蔗花叶病毒3′末端基因的克隆及外壳蛋白序列分析比较.中国病毒学,2001,16(1):45-50.
    李向东,李怀方,范在丰等.马铃薯Y病毒属病毒HC-Pro研究进展.2000,31(4):437-440.
    
    
    林钧安,高锦梁,洪健等.实用生物电子显微术.辽宁科学技术出版社,1989.
    鲁瑞芳,李为民,彭学贤.植物病毒协生作用及其分子机理.中国病毒学,2001,16(3):195-201.
    裘维蕃.植物病毒学.科学出版社,1985.
    全广明.2002年浙江农业发展的状况、趋势与对策.浙江蓝皮书—2003年浙江发展报告(经济卷).杭州出版社,2003:9-20.
    尚佑芬.国内外植物病毒研究发展概况.山东农业科学,1998,(1):51-54.
    施曼玲,周雪平.植物病毒病的诊断技术.微生物学通报,2000,27(2):149-151.
    唐启义,冯明光.实用统计分析及其计算机处理平台.中国农业出版社,1987.
    田波,裴美云.植物病毒研究方法.科学出版社,1987.
    田波.病毒卫星RNA及其致弱病毒的机理—我国病理学基础研究进展之一例.微生物学通报,1996,23(6):345-252.
    田文会(主编).蔬菜病毒病害及植物病毒化学防治研究进展.中国农业科学出版社,1998.
    魏梅生.常用酶联诊断方法.植物病毒检测技术及试剂盒应用(国家质量监督检验检疫总局动植物检疫实验所),2002:22-24.
    吴云锋.植物病毒学原理与方法.西安地图出版社,1999.
    徐平东,李梅,林奇英等.黄瓜花叶病毒两亚组分离物寄主反应和血清学性质比较研究.植物病理学报,1997,27(4):353-360.
    徐平东,谢联辉.黄瓜花叶病毒亚组研究进展.福建农业大学学报,1998,27(1):82-91.
    徐平东,周仲驹,林奇英.黄瓜花叶病毒亚组Ⅰ和Ⅱ分离物外壳蛋白基因的序列分析与比较.病毒学报,1999,15(2):164-171.
    许良忠,郭玉晶,张书圣.植物病毒病化学防治研究进展.青岛化工学院学报,2000,21(4):293-297.
    杨崇良.植物病毒研究及进展.山东农业科学,2000,6:50-51.
    张秀华,李国宏,田波等.植物病毒弱毒株系及其应用.植物病理学报,1980,10:49-54.
    张银东,张锡炎,曾宪松.香蕉CMV-BH外壳蛋白基因转化香蕉的研究初报.热带作物学报,1995,16(增刊):19-25.
    郑光宇,董涛.在新疆发生的小西葫芦黄化花叶病毒的研究初报.植物病理学报,1991,21(1):72.
    周雪平,濮祖芹,方中达.含卫星RNA的黄瓜花叶病毒弱株系的分离鉴定及在病毒病防治上的应用.中国病毒学,1994,9(4):319-326.
    Abou Jawdah Y, Sobh H, EI. Zammar S, et al. Incidence and management of virus diseases of cucurbits in Lebanon. Crop Protection, 2000,19(4): 217-224.
    Adlerz W C. Cucurbit potyvirus transmission by alate aphids (Homoptera:Aphididae) trapped alive. Journal of Economic Entomology, 1987, 80: 87-92.
    
    
    Andrejeva J, Puurand , Merits A, et al. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects transmission and accumulation. J Gen Virol, 1999, 80:1133-1139.
    Antignus Y, Raccah B, Gal-On A, et al. Biological and serological characterization of zucchini yellow mosaic virus and watermelon mosaic virus-2 isolates in Israel. Phytoparasitica, 1989, 17: 289-298.
    Aranda M A, Fraile A, Dopazo J, et al. Contribution of mutation accumulation and RNA recombination to the evolution of a plant pathogenic RNA. J Mol Evol, 1997, 44: 81-88.
    Atkins D, Young M, Uzzell S, et al. The expression of the antisense and ribozyme genes targeting citrus exocortic viroid in transgenic plants. J Gen Viral, 1995, 76:1781-1790.
    Atreya C D, Raccah B, Pirone T P. A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology, 1990, 178: 161-165.
    Atreya P L, Lopez-Moya J J, Chu M, et al. Mutational analysis of the coat protein N-terminal amino acids involved in potyviral transmission by aphids. J Gen Virol, 1995, 76: 265-270.
    Barnett O W. Modern technology improves plant virus taxpnomy or melding the molecular and classical. Phytopathology, 1993, 83: 33-34.
    Bourdin D, Lecoq H. Evidence that heteroencapsidation between two potyvirus is involved in aphid transmissiabble isolate form mixed infection. Phytopathology, 1991, 81: 1459-1464.
    Bourdin D, Lecoq H. Increase in cucurbit aphidborne yellows virus concentration by co-infection with sap-transmissible viruses does not increase its aphid transmissibility. Journal of Phytopathology, 1994, 141: 143-152.
    Brunt A, Crabtree K, Gibbs A, et al. Virus of Tropical Plants. Red Wood Press, 1990.
    Calvert L A, Chabrial S A. Enhancement by soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean. Phytopathology, 1983, 73: 992-997.
    Carr J P, Gal-On A, Palukaitis P, et al. Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and longdistance movement. Virology, 1994, 199: 439-447.
    Cassdy B G, Nelson T S. Differences in protein phenotypes in tobacco plants expression coat protein genes from peanut stripe potyvirus with or without an engineered ATG. MPMI, 1995, 8: 357-365.
    Chen J S, Du Z Y, Chen X A, et al. Development of oligonucleotide microarray for simultaneous detection of six RNA viruses and a viroid from plant tissue.2003, unpublished.
    Chen J S. Isolation and characterization of plant viruses. Microbial Research Techniques. Sciences Press,1999: 123-139.
    Chen Ruyu, Mao Liyuan,Wang Huilin, et al. Phosphorus. Sulfer and Silicon, 1994, 89: 89-95.
    Chrijnwerkers C C F M, Huijberts N, Bos L. Zucchini yellow mosaic virus; two outbreaks in the Netherlands and seed transmissibility. Plant Pathology, 1991, 97:187-191.
    Clark M K, Adams A N. Characteristics of the microplate method of enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses. J Gen Virol, 1997, 34: 475-483.
    
    
    Colinet D, Kummert J, Lepoivre P. Evidence for the assignment of two strains of SPLV to the genus Potyvirus based on coat protein and 3' non-coding region sequence data. Virus Research, 1997, 49: 91-100.
    Crisan D, Cadoff E M, Mattson J C. Polymerase chain reaction: amplification of DNA from fixed tissue. Clin Biochem, 1990, 23: 489-495.
    David Stipp. Gene Chip Breakthrough, 1997, 31: 44-53.
    Delwart E L, Shpaer E G, McCutchan F E, et al. Genetic relationships determined by a DNA heteroduplex mobility assay: Analysis of HIV-1 env genes. Science, 1993, 262: 1257-1261.
    Desbiez C, Lecoq H. Zucchini yellow mosaic virus. Plant Pathology, 1997, 46: 809-829.
    Dougherty W G, Carrington J C, Cary S M, et al. Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal, 1988, 7: 1281-1287.
    Edwardson J R, Christie R G. The potyvirus. Florida agricultural experiment station monogr, 1991, 4: 1244.
    Edwardson J R, Christie R G, Ko N J. Potyvirus cylindrical inclusions -subdivision Ⅳ. Phytopathology, 1984, 74:1111-1114.
    Edwardson J R. Electron microscopy of cytoplasmic inclusions in cells infected with rod shaped virus. Am J Bot, 1966, 53: 359.
    Edwardson J R. Some properties of the potato virus Y-Group. Florida agricultural experiment station monogr, 1974, 4: 398.
    Fang G, Grumet R. Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Molecular Plant -Microbe interactions, 1993, 6: 358-367.
    Fanquet M C, Mayo M A. Abbreviations for plant virus names. Arch Virol, 1999, 144: 1249-1273.
    Fargette D, Fanquel C, Thouvenel J C. Yield losses induced by African cassava mosaic virus in relation to the mode and date of infection. Tropical Pest management, 1998, 34: 89-91.
    Fernández A, Laín S, García J A. RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coil. Mapping of an RNA binding domain. Nucl Acids Res, 1995, 23:1327-1332.
    Fletcher J D, Russell A C, Butler R C. Seed borne cucumber mosaic virus in New Zealand lentil crops:yield effects and disease incidence. Crop and Horticultural Science, 1999, 27(3): 197-204.
    Fletcher J D, Wallace A R, Rogers B T. Potyviruses in New Zealand buttercup squash (Cucurbita maxima Duch.): yield and quality effects of ZYMV and WMV 2 virus infections. Crop and Horticultural Science, 2000, 28(1): 17-26.
    Fondong V N, Pita J S, Rey M E C, et al. Evidence of synergism between Africa cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J Gen Vivol, 2000, 81: 287-297.
    Frenkel M J, Ward C W, Shukla D D. The use of 3' -noncoding nucleotide sequence in the taxonomy of potyviruses: application to watermelon mosaic virus 2 and soybean mosaic virus. J Gen Virol, 1989, 70:2775-2783.
    
    
    Frischmuth T, Stanley J. Recombination between viral DNA and the transgeneic coat protein gene of African cassava mosaic geminivirjus. J Gen Virol, 1998, 79: 1265-1271.
    Fuchs M, Provvidenti R, Slightom J L, et al. Evaluation of transgenic tomato plants expressing the coat protein gene of cucumber mosaic virus strain WL under field condition. Plant Dis, 1996, 80: 270-275.
    Fuchs M, Xue B, Gonsalves C V. Greenhouse and field resistance to cucumber mosaic virus (CMV) in transgenic tomatoes, squash, and melons expressing the coat protein gene of CMV-white leaf. Abstr Int Congr Plant Pathol, 1993,6: 191.
    Gal-on A, Antignus Y, Rosner A, et al. Nucleotide sequence of the zucchini yellow mosaic virus capsidencoding gene and its expression in Escherichia coli.Gene, 1990, 87: 273-277.
    Gal-on A, Antiguns Y, Rosner A, et al. A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J Gen Vivol, 1992, 73: 2183-2187.
    Golemboski D B, Lomonossoff G P. Plants transformed with a tobacco mosaic virus non-structural sequence are resistant to the virus. Proc Natl Acad Sci USA, 1990, 87:6311-6315.
    Gonsalves D, Chee P, Provvidenti R. Conparison of coat protein in-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions by vectors. Bio/Technology, 1992, 10:1562-1570.
    Greene A E, Allison R F. Recombination between viral RNA and transgenic plant transcripts. Science, 1994, 263: 1423-1425.
    Harrison B D, Robinson D J. Molecular variation in vector-borne plant viruses epidemiololgical significance. Philosophical Transactions of the Royal Society of London-B, 1988, 321:447-462.
    Kallerhoff J, Perez P, Bouzozbaa S, et al. Beet necrotic yellow vein virus coat protein-mediated proection in sugarbeet (Beeta vulgaris) protoplast. Plant Cell Rep, 1990, 9:224-228.
    Karyeija R F, Kreuze J F, Gibson R W, et al. Synergistic interaction of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology, 2000, 369: 26-36.
    Lecoq H, Pitrat M, Clément M. Identification et caractérisation d'un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie, 1981, 1: 827-834.
    Lin S S, Hou R F, Yeh S D. Heteroduplex Mobility and Sequence Analyses for Assessment of Variability of Zucchini yellow mosaic virus. Virology, 2000, 90(3): 228-235.
    Lisa V, Boccardo G, D'Agostino G, et al. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology, 1981, 71: 667-672.
    Lovisolo O. Virus and viroid diseases of cucurbits. Acta Horticultirae, 1980, 88: 33-82.
    Mahgoub H A, Desbiez C, Wipf-Schebel C, et al. Biological and serological variability of zucchini yellow mosaic virus in Sudan. Journal of Phytopathology-Phytopathologische Zeitschrift, 1998, 146(7): 333-337.
    Mark A, Jandreaki. Novel Method of DNA Analysis. Clinica in Laborotary Medicine, 1995, 4: 817-837.
    
    
    Matthews R E F. Plant Virology. Aademic Press, 1991.
    Moore P J, Fenczik C A, Deom, C M, et al. Developmental changes in the plasmodesmata in transgenic tobacco expressing the movement protein of tobacco mosaic virus. Protoplasma, 1992, 170:115-127.
    Morris T J, Dodds J A. Isolation and analysis of double-stranded RNA form virus infected plant and fungal tissue. Phytopathology, 1979, 67: 854-858.
    Oertel U, Schubert J, Fuchs E. Sequence comparison of the 3'-terminal parts of the RNA of four German isolates of sugarcane mosaic potyvirus (SCMV). Arch Virol, 1997,142:675-687.
    Ohshima K, Yamaguchi Y, Hirota R, et al. Molecular evolution of Turnip mosaic virus:evidence of host adaptation, genetic recobination and geographical spread. J Gen Vivol, 2002, 83(5): 1511-1521.
    Oshima N. The control of tomato mosaic disease with attenuated virus of a tomato strain of TMV. Review of Plant Pretection Research, 1975, 8: 26-135.
    Paludaitis P, Roossinck M J, Dietzgen R G. Cucumber mosaic virus. Adv Virus Res, 1992, 41: 281-348.
    Palukaitis P, Roossinck M J, Dietzgen R G, et aL Cucumber mosaic virus. Adv Virus Res, 1992, 41: 281-348.
    Poolpol P, Inouye T. Enhancement of cucumber mosaic virus multiplication by zucchini yellow mosaic virus in doubly infected cucumber plants. Annals of the Phytopathological Society of Japan, 1986, 52: 22-30.
    Provvidenti R. Resistance to viral diseases of cucurbits. Resistance to Viral Diseases of Vegetables: Genetics and Breeding. Portand, 1993: 8-43.
    Rebecca G, Guowei F. cDNA cloning and sequence analysis of the 3' -terminal region of zucchini yellow mosaic virus RNA. J Gen Vivol, 1990, 71: 619-1622.
    Riechmann, J L, La'n S, Garc'a J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992, 73:1-16.
    Saito T, Meshi T. Coat protein gene sequence of TMV encodes a host response determinant. Prosessings of the National Academy of sciences USA, 1987, 84: 6074-6077.
    Schena M, Shalon D, Davis R, et aL Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(20): 467-470.
    Scholthof K B. A synergism induced by satellite panicum mosaic virus. Mol Plant-Microbe Interact, 1999,12: 163-166.
    Schubert J, Rabenstein F. Sequence of the 3' -terminal region of the RNA of a mite-transmitted potyvirus from Hordeum murinum L. Eur J Plant Pathol, 1995, 101: 123-132.
    Schuster G. Investigation on the inhibition of potato virus X by some amino acid analogs. Biochem physiol Pflanz. 1992. 199(3): 195.
    Schuster G. The present state of knowledge on the antiphytovital compound DHT. Math-naturwiss Reihe, 1982, 31(4): 295.
    Shih-Shun L, Roger F H, Shyi-Dong Y. Heteroduplex Mobility and Sequence Analyses for Assessment of Variability. of Zucchini yellow mosaic virus. Phytopathology, 2000, 90(3): 228-235.
    
    
    Shukla D D, Frenkel M J, Ward C W. Structure and the function of the Potyvirus genome with special reference to the coat protein coding region. Plant Pathology, 1991,13(1): 178-191.
    Shulda D D, Ward C W. Amino acid sequence homology of coat proteins as a basis for identification and classification of the potyvirus group. J Gen Virol, 1988, 69: 2703-2710.
    Shukla D D,Ward C W. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research, 1989, 36:273-314.
    Silvio U I, Haenni A L, Bemardi F. Potyvirus proteins: a wealth of functions. Virus Research, 2001, 74:157-175.
    Stephanie Kreis, Toni Whistler. Rapid identification of measles virus strains by the heteroduplex mobility assay. Virus Research, 1997, 47: 197-203.
    Takeshita M, Suzuki M, Kuwata S, et al. Involvement of cucumber mosaic cucumovirus RNA2 and RNA3 in viral systemic spread in radish plant. Arch Virol, 1998, 143(6): 1109-1117.
    Taschner P E M, Van M, Brederode F T, et al. Plants transformed with a mutant alfalfa mosaic virus coat protein gene are resistant to the mutant but not to wild-type virus. Virology, 1994, 203: 269-276.
    Tenllado F, Garcia-Luque I. Nicotiana benthamiama plants transformed with the 54 KDa region of the pepper mild mottle tobamo virus replicase gene exhibit two types of resistance responses against viral infection. Virology, 1995, 211:170-183.
    Tricoli D M, Carney K J, Russell P F, et al. Field evaluation of transgenic squash coating single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus. Bio/Technology, 1995, 13: 1458-1465.
    Urcuqui-Inchima S, Anne-Lise H, Francoise B. Potyvirus proteins: a wealth of functions. Virus Research,2001, 74: 157-175.
    Van Regenmorte M H V, Fauquet C M, Bishop D H L, et al. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses, 2000.
    Vance V B, Berger P H, Carrington J C, et al. 5' prominal sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology, 1995, 206: 583-590.
    Vance V B. Replication of potato virus X RNA is altered in coinfection with potato virus Y. Virology.1991, 182: 486-494.
    Wang Y Z, Gaba V, Palukaitis P, et al. Characterization of synergy between cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology, 2002, 92(1): 51-58.
    Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology.1991, 32: 269-296.
    Wisler G C, Purcifull D E, Hiebert E. Characterization of the P1 protein and coding region region of the zucchini yellow mosaic virus. J Gen Virol, 1995, 76:37-45.
    Yuki V A, Rezende J A M, Kitajima E W, et al. Occurrence, distribution, and relative incidence of five viruses infecting cucurbits in the state of Sao Paulo, Brazil. Plant Disease, 2000, 84(5): 516-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700