高压高水基液压阀的理论及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采煤工作面用的液压支架是一种复杂的煤矿机械,它能够可靠有效地支撑和控制工作面的顶板,保证工人安全和各种作业的正常进行。电液控制液压支架是当前先进采煤技术装备的重要标志之一,而高压高水基电磁先导阀是电液控制系统的核心元件,其结构复杂、精密度高,目前世界上只有德国和美国等少数国家研究和生产制造,属高难技术。我国曾尝试过自行设计、制造这种液压阀,但由于没有运用多学科理论和现代数字技术等手段去深入研究液压阀的关键技术问题,只是凭借经验和已有的资料进行设计,致使研制失败。因此,目前我国高压高水基电磁先导阀仍然依靠进口,成为制约我国采煤技术由机械化向自动化发展的关键技术之一。
     本论文首先研究高压高水基液压阀的冲蚀磨损与密封泄漏机理等关键技术问题。然后,将该成果应用于液压支架电磁先导阀的理论分析和结构设计中,使基础研究与实际应用相结合,为成功开发高水基电磁先导阀提供理论支持。作者以计算流体力学(CFD)理论、分形(FRACTAL)理论与多刚体系统动力学理论等为依托,采用理论、仿真、试验相结合的方法,建立液压阀流场仿真模型、泄漏机理模型、动力学仿真模型和系统仿真模型,并进行数值计算分析,为此类液压阀的设计提供可靠的理论依据。
     高水基液压阀流动过程的壁面磨损行为,严重影响液压阀的使用寿命。作者综合应用计算流体动力学(CFD)理论与冲蚀(EROSION)理论的分析方法,研究高速高压条件下液压阀的冲蚀磨损机理,建立高水基液压阀流体湍流和冲蚀的数学模型。通过可视化模拟,预测了煤粒对高水基平面阀和球阀不同部位的冲蚀磨损分布,比较准确地确定了冲蚀磨损对关键元件的影响区位和程度。研究阀芯和顶杆间的微动磨损与冲蚀的交互破坏,指出了采用侧顶杆结构可以避免磨损叠加。另外,作者对几种非金属材料的冲蚀磨损特性进行实验研究,为高水基液压阀密封副材料的优选提供了依据。
     作者使用现代数字技术,开展高水基介质液压阀气蚀(CAVITATION)问题的研究,以解决这个难于用实验方法研究的问题。通过高水基液压阀流体气蚀的数学模型,研究高水基液压阀低压密封的汽穴形成,找出最易产生气穴与气蚀现象的位置。分析表明,低压区对应气体体积百分比高的气穴区域,侧顶杆结构同样可以减轻液压阀的气蚀磨损。
     分形(FRACTAL)几何学的建立,为研究复杂无规律的现象提供了新的理论与方法。在考虑端面形貌变化的基础上,作者提出了基于分形理论研究高水基液压阀的微观密封机理的思路。分析了密封副端面粗糙轮廓波谷面积和弹性接触点面积的微观接触机理及相互关系。以缝隙流动的N-S方程为基础,推导出泄漏量与表面粗糙度、分形参数、密封接触比压之间的关系及相应的计算公式,建立了泄漏量分形模型。通过数值仿真,讨论了分形参数、密封力与泄漏量间的相互关系,结果表明,控制表面形貌参数可以有效降低液压阀泄漏量。另外,作者对泄漏量与不同的表面粗糙度、密封比压、密封面宽度之间的关系进行了试验研究,得出了具有工程应用指导意义的定量结论。
     针对电液控制支架的特殊要求,作者设计了先导阀的螺线管结构电磁铁。模拟了磁感应强度的大小及其在空间的磁场分布情况,并对电磁铁的关键结构参数进行优化,保证该电磁铁响应速度快,动作平稳可靠。通过可视化模拟和分析得知,磁通密度最高的地方是衔铁与极靴导套端重叠部分,极靴内径单侧间隙的变化对吸力起决定作用。最后,对电磁铁的吸力特性进行试验,验证了数值分析的正确性。
     在研究电磁先导阀的运动特性时,虚拟样机技术有助于做出前瞻性的决策。为了评定先导阀动态特性,作者引入位移响应曲线来衡量其动态性能。通过求解先导阀的动态数学模型,获得反映动态特性的数值计算结果。综合考虑先导阀内部运动元件的接触碰撞及运动拓扑关系,建立先导阀详细的三维实体模型。研究阻尼系数、质量和刚度变化对先导阀动力学特性的影响,准确地预知其在实际工况下的动态性能。根据预定的系统性能和预期的目标反复修正几何参数,最终达到预期的动态响应性能,为先导阀的设计开辟了一条新的思路。
     电磁先导阀工作口压力的变化,会引起其内部流场相应变化,而先导阀出口压力又受到液控主阀、立柱等负载的影响。因此,作者从系统角度对先导阀的动态响应进行研究,建立了基于AMESim的支架电液控制系统的仿真模型,得到先导阀工作口的不同压力、流量响应曲线,为先导阀流场仿真的初始边界条件的设定提供依据。在此基础上,研究先导阀的流场分布。根据先导阀的压力损失、速度分布等随流量、出口压力和入口位置的变化关系,确定高水基电磁先导阀的最佳合理结构。
     本文的研究工作涉及多学科理论和现代试验技术,主导思想是在创新体系下进行多种学科的交叉与融合,以此途径对高压高水基液压阀的理论问题及设计方法进行研究,从而解决实际问题。
The powered support of fully mechanized coal face is a kind of complicated coal mine machinery, which can sustain and control the roof of working face reliably and efficiently, guaranteeing coal miner's safety and the operation of normal tasks. The electro-hydraulic controlled powered support is one of the important signs in the currently advanced excavate coal equipment. High pressure and high water-based (HPHWB) solenoid pilot valve is the key component of the electro-hydraulic control system which has complex structure and high precision. At present it was researched and manufactured only in some countries like Germany and America. It belongs to a difficult technology. Our country ever made an attempt to design and manufacture the hydraulic valve independently, but failed, because it needs further research on the key technology of HPHWB hydraulic valve based on the synthesis means of multidiscipline theory and modern digital technique, except the experience and old data. Thereby, HPHWB solenoid pilot valve still depends on import in our country, which becomes one of the pivotal technologies that restrict domestic development in coal mining technique from mechanization to automation.
     The thesis first discusses the key technology problem of erosion wear and sealing leakage mechanism for HPHWB hydraulic valve; then applies the result-to the theory analysis and structural design of solenoid pilot valve, thus combining the basic research with practical application and offering a theoretical support for development pilot valve. Based on computational fluid dynamics (CFD), fractal theory and multi-rigid-body system dynamics theory and so on, the author establish flow field simulation model, leakage mechanism model, dynamics simulation model and system simulation model of hydraulic valve by combining means of theory, simulation and examination, and then make analysis of numerical calculation. Credible theory basis is offered for the hydraulic valve design.
     Wall faces abrasion of HPHWB hydraulic valve affect strongly the operation life of hydraulic valve. The author researches erosion wear mechanism of hydraulic valve under the high velocity and high pressure condition by combining technology of CFD and erosion theory, and establishes erosive mathematical model of HPHWB hydraulic valve. By visual simulation, erosion wear distribution of coal particles eroding plain valve and ball valve are predicted; accurately indicate the influencing position and degree of key components eroded. Moreover, the author research interactive breakage of fretting wear and erosion wear between valve core and pole. A means for avoiding wear superposition is suggested by changing the center pole structure to sidepiece pole structure. In addition, the author makes experimental investigation to several kind nonmetals, and offer basis for optimum seeking of sealing material of HPHWB hydraulic valve.
     Using modern digital technique, the author carries on cavitation study of high water-based medium hydraulic valve to solve the problem difficult to research by experiment. By using cavitation mathematical model of high water-based hydraulic valve, cavitation form of low pressure sealing will be researched, and the positions that produce cavitations will be easily found. Analyses show that low-pressure zone corresponds with the cavitation zone of high vapor volume fraction, and sidepiece pole structure can likewise reduce cavitation.
     The foundation of fractal geometric provides new theory and means for the research on complex and ruleless phenomenon. On the basis of surface appearance changing, the author puts forward train of thoughts of microscopic seal mechanism for HPHWB hydraulic valve, and analyzes microscopic contact mechanism of wave trough and elastic point contact area of rough surface. Then the author derive the calculating formulas of leakage rate and surface roughness, fractal parameter, sealing contact pressure based on aperture current N-S equation, establishes leakage model of fractal parameters, and discuss the relations of fractal parameter, seal force and leakage rate by numerical simulation. Results show controlling surface appearance parameters are able to availably reduce leakage rate of hydraulic valve. Besides, after experiment studying the relation of leakage rate between different surface roughness, seal contact pressure, and the seal width, the author comes to the quantitative conclusion that is meaningful to engineering application.
     As to peculiar request of the electro-hydraulic controlled powered support, the author uses the solenoid structure design electromagnet that adapt to pilot valve in the powered support. Flux density and flux lines contour are simulated, and the key structure parameters of electromagnet are optimized to make sure that the electromagnet response speed is rapid and operating smooth is reliable. Results show that the highest place of flux density is superposition of armature and guide sleeve end of pole piece, and the changing for pole piece inside diameter unilateral gap settle on the thrust characteristic. Finally, experiment confirms the validity of numerical analysis.
     When the movement property of solenoid pilot valve is studied, virtual prototype technology contributes to a forward-looking decision. In order to evaluate dynamic characteristics of pilot valve, the author introduced displacement response curve to measure its dynamic performance. Numerical computational results are obtained by solving the dynamic mathematic model of pilot valve. The author make three-dimensional solid model based on considering synthetically contact and topological relation of pilot valve interior movement components, and study the changes of damping coefficient, mass and stiffness to dynamic characteristics effect of pilot valve, predict accurately its dynamic performance under the real operating condition. Geometric parameters are repeatedly modified in accordance with preconcerted system performance and prospective target; finally achieve perfect dynamic response performance. A new thought is opened up for pilot valve design.
     Pressure change in the operating orifice of solenoid pilot valve will cause its internal change in flow field, while outlet pressure change of pilot valve is affected by hydraulic-controlled main valve and leg and so on. Therefore, the author conduct a research on dynamic response of pilot valve from view of system, establishes simulation model of electro-hydraulic controlled system based on AMESim, and obtain different flow-pressure characteristic curve of operating orifice of pilot valve, and then offer basis for initial boundary set of flow field simulation of pilot valve. Flow field distribution of pilot valve are studied on the basis of the above conclusion; and reasonable structure of HPHWB pilot valve is established according to varying relations that pressure loss and velocity distribution change with flow rate, outlet pressure and inlet position of pilot valve.
     Studies program of the paper involved multidisciplines theory and modern experiment technology, which predominant idea is overlapping and fusion of multidisciplines under innovative system. Based on the approach, the author research on theory problem and design method of high pressure and high water-based hydraulic valve, and resolve the practical problem.
引文
[1]姜东权.提高液压支架阀类使用寿命和密封性能的途径[J].煤矿机械,1990.2:35-41
    [2]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程,2000,11(12):1430-1433
    [3]杨曙东,李壮云.水压传动的发展及其关键基础技术[J].机床与液压,2000,5:6-9
    [4]Sorensen P.Latest Development in the Application of Water Hydraulics.Fluid Power Theme days in IHA,Water Hydraulics,Tampere,Finland,Sept,1997
    [5]Koskinen K.T,Vilenius M.J.Water Hydraulics-A Versatile Technology Journal of the Japan Hydraulics & Pneumatics Society 1998.v29(7):13-19
    [6]Eastport International.Development of Seawater Hydraulic Rock Drill..AD-A235873,Jan.,1988
    [7]Joy Mining Machinery.Complete Long wall Systems,2005,2
    [8]Shieid Support Systems of DBT.Custom Designed Shield Support Systems for Long wall Applications,2005,1
    [9]U·帕谢德哥,申爱民译.D B T公司的自动化长壁开采设备[J].中国煤炭,2003,29(6):62-63
    [10]Vaughan N.D,Johnston D.N,Edge K.A.Numerical simulation of fluid flow in poppet valves.Proc.Instn Mech Engrs,Part C,Journal of Mechanical Engineering Science,1992,206:119-127
    [11]Johnston D,et al,Experimental investigation of flow and force characteristics of hydraulic poppet and disc valves,Instn Mech.Engrs.,Part A,1991,205:161-170
    [12]Weber S T,Johnston,Edge K A.Flow visualization of a load control valve.The Seventh Scandinavian International Conference on Fluid Power,SICFP,01,Sweden,2001:87-102
    [13]I.Finnie.3rd U.S.National Congr.of Appl.Mech.,1958,527
    [14]Finnie.Erosion of Surfaces by Solid Particles.Wear3(1960)87-103
    [15]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312
    [16]陈冠国,郝雪第.关于冲蚀磨损问题[J].河北理工大学学报,1997,19(4)
    [17]Alister Forder,Martin Thew,David Harrison.A numerical investigation of solid particle erosion experienced within oilfield control valves.Wear 216(1998)184-193
    [18]Lars Nokleberg,Terje Sontvedt.Erosion of oil&gas industry choke valves using computational fluid dynamics and experiment.International Journal of Heat and Fluid Flow 19(1998)636-643
    [19]Nokleberg,L.,Sontvedt,T.Erosion in choke valves-oil and gas industry applications.WEAR 186-187(1995.),401-412
    [20]M.Atkinson,E.V.Stepanov,D.P.Goulet,et al.,High pressure testing sand erosion in 3D flow channels and correlation with CFD,Wear(2007),doi:10.1016/j.wear.2007.01.100
    [21]G.I.Parslow,D.J.Stephenson,J.E.Strutt,et al.Investigation of solid particle erosion in components of complex geometry.Wear 233-235(1999)737-745
    [22]M.S.Wallace,W.M.Dempster,T.Scanlon,et al.Prediction of impact erosion in valve geometries.Wear 256(2004)927-936
    [23]Yoshiro Iwai,Kazuyuki N.Slurry wear properties of pump lining materials.wear210,1997:211-219
    [24]袁格侠,段旭昌,钱学梅,等.超高压针阀的失效机理[J].阀门,2002,5:15-17
    [25]李小明,张德友,林东.复合陶瓷控制阀的研制[J].阀门,2006,4:31-33
    [26]李方俊,高澜庆,周士瑜.固体颗粒对滑阀运动副表面的作用[J].北京科技大学学报,1996, 18(3):206-209
    [27]李方俊,周士瑜,夏连海.固体颗粒污染物对先导式溢流阀性能的影响[J].液压与气动,1996,1:28-30
    [28]查柏林,王汉功,徐可为.硬密封球阀耐冲蚀陶瓷涂层研究[J].润滑与密封,2005,7:25-26
    [29]杨启明,周锡容,谯英.新型压裂泵阀材料的耐磨损性能研究[J].西南石油学院学报,2001,23(6):73-76
    [30]Oshima,Ryoichiro.Simple rule of cavitation inception in large butterfly-valves..Nippon Kikai Gakkai Ronbunshu,B Hen,1988,54(504):1885-1890
    [31]Oshima Shigeru,Timo Leino,Matti Linjama.Experimental Study on cavitation in Water hydraulic Poppet valve,Transactions of the Japan Fluid Power System Society,2002,33(2):29-35
    [32]Ishii Y,Yonezawa Y,Tsukiji T,S.lshii.Flow visualization in a three-dimensional poppet valve.The 4th triennial international symposium on fluid control,fluid measurement,and visualization 1994TOULOUSE FRANCE.1994:1095-1099
    [33]Inoue Fumihiro,Outa Eisuke,et al.Experimental study on control valve cavitation(3rd Report,vortex shedding and cavitation inception on a contoured Plug),Transactions of the Japan Society of Mechanical Engineers,Part B,1993,59(562):1905-1912
    [34]Zhang Hou,Bathe Klaus-Jurgen.Direct and iterative computing of fluid flows fully coupled with structures.Computational Fluid and Solid Mechanics,MIT Conference on Computational Fluid and Solid Mechanics Vol.2 Jun 12-15,2001,1440-1443
    [35]Dupont Philippe,Casartelli Emesto.Numerical Prediction of the cavitation in pumps.ASME,Fluids Engineering Division(Publication),2002,257(2):825-833
    [36]Priyatosh Barman.Computational Fluid Dynamics(CFD)Analysis to Predict and Control the Cavitation Erosion in a Hydraulic Control Valve,SAE 2002 World Congress,Detroit,Michigan,USA,1-5
    [37]J.S.Shang,Three decades of accomplishments in computational fluid dynamics,Progress in Aerospace Sciences,2004,40,173-197
    [38]弓永军,周华,杨华勇.阀芯结构对纯水溢流阀抗气蚀特性的影响研究[J].农业机械学报,2005,36(8):50-54
    [39]高红,傅新,杨华勇.球阀阀口气穴流场的数值模拟与实验研究[J].中国机械工程,2003,14(4):338-340
    [40]朱碧海,李壮云,贺小峰,等.水压阀关键技术的研究[J].润滑与密封,2004,5:132-133
    [41]杨曙东,李壮云,余祖耀,等.工程陶瓷水压元件摩擦副零件的设计研究[J].液压与气动,2002,1:4-7
    [42]姚如一,周骥平.电磁球阀的失效分析及优化设计[J].扬州工学院学报,1994,6(6):1-5
    [43]Wensel R G,Metcalfe R.O-ring seal studies for space shuttle solid rocket booster joints.Canadian Aeron,Space J.1988,34(4):204-212
    [44]Scott R S.Seal material selection,design and performance-advancements from the space shuttle booster redesign.AIAA 89-2774,1989
    [45]董洪波,钱志博,陈建宁,何正嘉.阀座组件的密封特性分析和实验研究[J].润滑与密封,2005,6:30-32
    [46]戴远敏,李建英,刘海之.提高液控单向阀密封性的实践与研究[J].液压与气动,2006,6:76-78
    [47]俞树荣,高扬,张希恒.基于有限元的浮动球阀密封比压分析[J].阀门,2006,2:25-28
    [48]徐滟,王渭.三偏心蝶阀密封接触问题的有限元分析[J].润滑与密封,2006,6:56-60
    [49]潘仁度.密封副的细微泡沫状泄漏[J].润滑与密封,2005,9:210-211
    [50]Sanjeev Kulkarni,Winston Borrero.Analysis of a check valve seal for nuclear plant.Sealing Technology,2006,10,10-12
    [51]顾永泉.机械密封比压选用原则[J].石油化工设备,2000,29(2):21-24
    [52]张增禧,王曙,顾伯勤.垫片密封泄漏模型研究[J].压力容器,2001,18(2):4-6
    [53]Ikeuchi K.,Mori H.,Nishida T.A.,Face Seal with Circumferential Pumping Grooves and Rayleigh Steps,ASME Jour.Of Tribology,1988,110,313-319
    [54]Bonneau D,Huitric J,Tourneri B.Finite Eienlent Analysis of Groove Gas Thrust Bearings and Groove Gas Face Seals.ASME Journal of Tribology,1993,115:348-354
    [55]Shifeng Wu,Ray Clark.Positioning of Hydrodynamic Lift Features on Non-Contacting Mechanical Gas Seal Rings,Tribology Transactions,2000,43,498-506
    [56]Ho-Chieh Wong,Noritsugu Umehara,Koji Kato.The effect of surface roughness on friction of ceramics sliding in water[J].Wear,1988,218
    [57]冯秀,顾伯勤.金属垫片泄漏模型理论研究[J].润滑与密封,2006,8:78-80
    [58]樊灵,屈宗长,司玉宝.涡旋压缩机动静盘加工精度与泄漏量模型的理论研究[J].制冷学报,1999,3:12-15
    [59]Benoit B.Mandelbrot,大自然的分形几何学[M],陈守吉,凌复华译,上海:上海远东出版社,1998
    [60]Packer R J.The role of modeling in system design and acceptance.Radar System Modeling(Ref.No.1998/459),IEE Colloquium on Published.1998,5/1-5/6
    [61]U.Jasnoch,H.Kress.Towards a Virtual Prototyping Environment.IFIP workshop on VP,1994
    [62]Shizuo Sumid,Masao Nagamatsu,Sigeki Hiramuatsu.Hierarchical functional model for automobile development,Technical Notes/JSAE,Review 19(1998),351-371
    [63]R.Bergman,J,D.Baker.Enabling collaborative engineering and science at JPL,Advances in Engineering Software 31(2000),661-668
    [64]王行仁.面向二十一世纪,发展系统仿真技术[J].系统仿真学报,1999,10(2)
    [65]包金宇,廖文和,薛善良.虚拟样机技术初探[J].机械制造与自动化,2003(6).1-3,6
    [66]姜士湖,闫相祯.虚拟样机技术及其在国内的应用前景[J].机械,2003,30(2).4-6,9
    [67]李静华,刘令容.虚拟技术与仿真技术的现状和发展趋势[J],电子测量与仪器.2000 增刊.594-600
    [68]张旭,祖旭,薄瑞峰.协同虚拟样机技术及其在工程机械产品中的应用[J].矿山机械,2004,32(2),44-46
    [69]王刚,杨莺,刘少军.虚拟样机技术在工程机械领域的应用[J].工程机械.2003,34(8),11-13
    [70]廉自生,李文英,刘混举.VP技术在液压支架设计中的应用探讨[J].煤矿机械,1998,9:12-14
    [71]彭力明,王耘,赵国华.基于ADAMS/Hydraulics的连续阀口流量数学模型的建立[J].液压与气动,2004,3:11-13
    [72]张书诚,鲍俊瑶.挖掘机液压元件的建模及仿真[J].传动技术,2002,20(2):19-22
    [73]董信根,芮丰.本安型电磁先导阀[J].煤矿机电,1992(4),3-5
    [74]芮德宇.液压传动系统中压力损失的探讨[J].机床与液压,1998(3),49-53
    [75]黎保新.电磁换向阀的新进展[J].机床与液压,1995(4),237-240
    [76]王殿楹.高水基电磁先导阀的研究[J].重型机械.1996(5):9-14
    [77]张良.液压支架电液控制系统的应用现状及发展趋势[J].煤炭科学技术,2003,31(2),5-8
    [78]王国法,朱军,张良.液压支架电液控制系统的分析和展望[J].煤矿开采,2000(2),5-8
    [79]李效甫.综采液压支架电液控制系统[J].煤矿开采,2001(2),5-6
    [80]T.S.Eyer.treatise on materials science and technology[J],wear,1979(13):363-365
    [81]张栋.机械失效的痕迹分析[M].北京:国防工业出版社,1996
    [82]陈孙艺.流体对管件冲蚀的研究和防护[J].石油化工腐蚀与防护,2003,20(5):59-62
    [83]梁工英,杨琛,苏俊义.激光表面处理对球墨铸铁冲蚀性能的影响[J].摩擦学学报,2000,20(2):115-118
    [84]林建忠,吴法理,余钊圣.一种减轻固粒对壁面冲蚀磨损的新方法[J],摩擦学学报,2003,23(3):231-235
    [85]盛敬超.液压流体力学[M],北京,机械工业出版社,1980,81-85
    [86]林建忠.湍动力学[M].杭州:浙江大学出版社,2001
    [87]王福军.计算流体动力学分析—CFD软件原理与应用[M],北京,清华大学出版社,2004,1-17,24-26,121-123
    [88]B.E.Launder,D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,1972
    [89]V.Yakhot,S.A.Orzag.Renormalization group analysis of turbulence:basic theory.J Scient Comput,1:3-11,1986
    [90]P.Moin,Progress in eddy simulation of turbulence flows.AIAA Paper,97-576,1997
    [91]W.P.Jones,B.E.Launder.The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence.International Journal Heat Mass Transfer,16:1119-1130,1973
    [92]Tabakoff W.Particulate Flow and Blade Erosion[J]Von Karman Inst Fluid Dynamics,Lect Ser,1988,2:2-25
    [93]Menguturk M,Sverdrup E F.Calculated Tolerance of a Large Electric Utility Gas Turbine to Erosion Damage by Coal Gas Ash Particles[J].ASTMS Spec Tech Pub 664,Philadelphia,PA,1979:193-224
    [94]J.K.Edwards,K.Jeremy,B.S.McLaury,S.Brenton,S.A.Shirazi,and A.Siamack.Supplementing a CFD Code with Erosion Prediction Capabilities.In Proceedings of ASME FEDSM'98:ASME 1998 Fluids Engineering Division Summer Meeting,Washington D.C.,June 1998
    [95]J.K.Edwards,B.S.McLaury,and S.A.Shirazi.Evaluation of Alternative Pipe Bend Fittings in Erosive Service.In Proceedings of ASME FEDSM'00:ASME 2000 Fluids Engineering Division Summer Meeting,Boston,June 2000
    [96]材料耐磨抗蚀及其表面技术丛书编委会.材料的冲蚀磨损与微动磨损[M],北京:机械工业出版社,1987,10
    [97]章磊,毛志远,黄兰珍.钢的冲蚀磨损与机械性能的关系及其磨损机理的研究[J].浙江大学学报(自然科学版),1991,25(2):188-194
    [98]Sare I R,Mardel J l,Hill A J.Wear-resistant metallic and elastomeric materials in the mining and mineral processing industries—an overview.Wear,250(n1)2001,1-10
    [99]周晓谦.环氧树脂涂层的耐冲蚀磨损性能[J].合成树脂及塑料,2004,21(3):66-68
    [100]卢德宏,蒋业华,周荣.聚氨酯弹性体的浆液冲蚀磨损模拟研究[J].金属矿山,2003,3:35-36
    [101]齐鄂荣,曾玉红.工程流体力学[M].武汉:武汉大学出版社,2005,85-85
    [102]弓永军.纯水液压控制阀关键技术研究[D].浙江:浙江大学,2005,5
    [103]A.K.Singhal,H.Y.Li,M.M.Athavale,et al.ematical Basis and Validation of the Full Cavitation Model.ASME FEDSM'01,New Orleans,Louisiana,2001
    [104]H.休戈.布赫特.工业密封技术[M].北京:化学工业出版社,1988.8-19
    [105]张学良,黄玉美,傅卫平,等.粗糙表面法向接触刚度的分形模型[J].应用力学学报,2000,17(2):31-35
    [106]山田昭夫,角张毅.关于具有结合部的结构动态特性研究(C).日本机械学会论文集(日),1983,49(438):182-190
    [107]周建男,陈长征,周劬惟.轧钢机械滚动轴承[M].冶金工业出版社,2001,4
    [108]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002,1
    [109]Mandelbrot B B.How long is the coast of Britain? statistical self-similarity and fractional dimension.Science,1967,155:636-638
    [110]Majumdar A,Bhushan.B.Role of fractal geometry in roughness characterization and contact mechanics of suffaces[J].Tribol(ASME),1990,112:205-216
    [111]潘玉良,吴立群,张云电.分形模型参数与粗糙度R_α参数关系的研究[J].中国工程科学,2004,6(5):49-51
    [112]Jordom D L.Measurement and Characterization of Multiscale Surfaces[J].Wear,1986,109(1):127-134
    [113]Majumdar A,Tien C L.Fractal Characterization and Simulation of Rough Surfaces[J].Wear,1990,136(2):313-327
    [141]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16(4):375-384
    [115]Majumdar A,Bhushan B.Fractal model of elastic-plastic contact between rough surface[J].Journal of Tribology(ASME),1991,113:1-11
    [116]孙见君,顾伯勤,魏龙.弹簧比压对机械密封性能影响的分形分析[J].润滑与密封,2006,6:67-70
    [117]Bhushan B.Analysis of the Real Area of Contact between a Polymeric Magnetic Medium and a Rigid Surfaee[J].ASME Journal of Tribology.1984,106(1):26-34
    [118]盛选禹,雒建斌,温诗铸.基于分形接触的静摩擦系数预测[J].中国机械工程,1998,9(7):16-18
    [119]机械工程手册编辑委员会.机械工程手册(二)[M].北京:机械工业出版社,1982,3
    [120]廖义德,王清,李壮云.水压电磁阀阀口密封性能试验研究[J].郑州大学学报,2003,23(2):71-73
    [121]蒋庆华.阀孔密封[J].自动化仪表,1993,(6):11-13
    [122]黄谊.液压与气压传动[M].北京:机械工业出版社,2000.5
    [123]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982,10
    [124]何存兴.液压元件[M].北京:机械工业出版社,1982,2
    [125]王春行,徐渌.液压伺服控制系统[M].北京:机械工业出版社,1989,6:25-36
    [126]Yu Keshen,Koji Takahashi,Tomoyasu Nonoshita,Shigeru Ikeo.Numerical analysis of the JET issuring from a poppet valve,55-60
    [127]M.Borghi,M.Milani,R.Paoluzzi.Transient flow force estimation on the pilot stage of a hydraulic valve,fluid power systems and technology,1998(5),157-162
    [128]Roger Yang,Ph.D.CFD simulation of oil flow and flow induced forces inside hydraulic valves,national fluid power association and society of automotive engineers,2002,201-207
    [129]曹秉刚,史维祥,等.内流式锥阀液动力的理论探讨[J].西安交通大学学报,1995,29(7):1-6
    [130]曹秉刚,郭卯应,中野和夫,等.锥阀流场的边界元法解析[J].机床与液压,1991(2):2-10
    [131]蔡国廉.电磁铁[M].电工技术文库,1964,4:92-120
    [132]张冠生,陆建国.电磁铁与自动电磁元件[M].北京:机械工业出版社,1982,1:12-209
    [133]金为丰,李金伟.防爆型比例电磁铁的设计[J].矿山机械,1996,4:17-20
    [134]颜凌云.耐高压比例电磁铁的设计[J].工程机械,1995,1:13-17
    [135]路甬祥,胡大紘.电液比例控制技术[M].北京:机械工业出版社,1988,11:57-65
    [136]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2004,5:21-121
    [137]Emson C R I,Trowbridge C W.A Status Report on Electromagnetic Field Computation.IEEE Transactions on Magnetics,1994,30(4):1533-1540
    [138]Ansoft company user manual.Ansoft helps of magnetostatic,1998
    [139]刘国强,赵凌志,蒋继娅.ANSOFT工程电磁场有限元分析[M].北京:电子工业出版社,2005,8
    [140]机械工程手册编委会.机械工程手册第五卷[M].北京:机械工业出版社,1982,3
    [141]蔡廷文.液压系统现代建模方法[M].北京:中国标准出版社,2002
    [142]维滕伯格 J.多刚体系统动力学[M].北京:北京航空学院出版社,1986
    [143]洪嘉振.多体系统动力学—理论、计算方法和应用[M].上海:上海交通大学出版社,1992
    [144]刘延柱,洪嘉振.多刚体系统动力学[M].北京:高等教育出版社,1989
    [145]罗伯森著,初延爽(译).多体系统动力学[M].南京:南京航空院,1984
    [146]李军,邢俊文,覃文洁等.ADAMS实例教程[M].北京:北京理工大学出版社,2002
    [147]付永领,祁晓野.AMESim系统建模和仿真[M].北京:北京航空航天大学出版社.2006,6
    [148]林躜.黄方平.AMESim/Matlab的仿真及其在单向阀优化设计中的应用[J].液压气动与密封,2006,2:15-16
    [149]李谨,邓卫华.AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64
    [150]邢科礼,冯玉,金侠杰,等.基于AMESim/Matlab的电液伺服控制系统的仿真研究[J].机床与液压,2004(10):57-58
    [151]邢福康,蔡坫,刘玉堂等.煤矿支护手册[M].北京:煤炭工业出版社,1993,2
    [152]阎景惠.支架液压系统工作方式的研究[J].煤矿机电,1993,2:22-25
    [153]王国法.液压支架技术[M].北京:煤炭工业出版社,1998,10
    [154]赵衡山.高产高效工作面液压支架的发展[J].煤炭科学技术,1992,1
    [155]寇子明.液压支架动态测试分析与检测[M].北京:冶金工业出版社,1996,9
    [156]Selamet G.Ercelebi and Tuncel M.Yegulalp,Reliability and Availability Analysis of Mining System,Mining Industry Section A,1993,No,102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700