鄂尔多斯盆地内蒙古能源基地地下水开发与植被演化风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地内蒙古能源基地位于干旱半干旱地区,地表水短缺,地下水资源是能源基地规划建设的重要保障,由于生态环境脆弱,大规模开发地下水必将对地表植被产生影响,如何进行地表植被破坏的风险评价,破坏程度是否可以接受,是当地政府十分关心的问题。
     通过对遥感NDVI植被指数解译,结合野外典型路线和植被样方调查,详细分析了植被年际年内时空特征,并将植被划分为草甸草原、典型草原、荒漠化草原、草原化荒漠4类地带性植被和沙地、湿地2类非地带性植被。植被分布宏观上主要受大气降水的控制,湿地、洼地、梁地等微地貌对植被的生长也起着重要的控制作用,通过分析风积砂、风积砂盖风化基岩、粘土和粉土3种主要包气带含水率,指出风积砂包气带结构有利于水分的保存,对于干旱区植被生长十分重要。
     区域上地带性植被中的沙地植被总体上与地下水位埋深关系不大,非地带性植被中湿地植被与地下水关系密切。选择萨拉乌苏组地层分布区哈图才当水源地和白垩系地层分布区的浩勒报吉水源地为典型区,详细分析了地下水位、土壤含盐量和地下水矿化度与植被关系。综合前述研究,进行了基于地下水的植被敏感性区划,将其划分为敏感区和非敏感区,并将敏感区进一步划分为一级、二级和三级敏感区。
     利用GMS地下水数值模拟软件建立了研究区区域地下水数值模型,面积6.2万km~2,网格大小1000×1000m,剖分为322行249列,活动单元为62848个。以2006年为基准年,分别对地下水开采10年、20年、30年和50年的水位埋深进行了预测。在ArcGIS中对2006年8月的地下水位埋深图完成从等值线图到栅格数据的插值处理,离散为与植被覆盖率图像元一致的236×236m的单元网格,并统计建立地下水位与植被覆盖率的定量对应关系。通过未来不同时间点预测地下水位与植被覆盖率的耦合分析,对地下水开发条件下植被覆盖率变化状况进行风险评价,结果表明在地下水开采条件下,敏感区面积将缩小1.25万km~2,区内东南部和部分湖泊区的地表植被覆盖率将显著减小。
Inner Mongolia Energy base is located in the Ordos Basin,and with the characteristics of arid and semi-arid climates. Due to the shortage of surface water, groundwater resources plays an important role for planning and construction of the energy base. For the fragile of ecological environment, large-scale exploitation of groundwater will impact on the vegetation. Thus the government is very concern how to evaluate the risk of vegetation damage, and whether the damage is acceptable or not.
     Through interpretation of remote sensing NDVI vegetation index, and combined with a typical field vegetation sampling survey, the interannual temporal and spatial characteristics of vegetation is analyzed detailedly. Then the vegetation is classified into four kind of zonal wegetations (Meadow steppe, typical steppe, desertification steppe, steppe desert) and two kind of azonal vegetations (Saudi, wetlands). The distribution of vegetation is macroscopically controlled by precipitation. The micro-topography such as wetlands, depressions, ridge also play an important control role on the growth of vegetation. The analysis of water content in three kinds of major unsaturated zone (sand, aeolian sand-covered weathered bedrock, clay and silt) indicates that aeolian sand vadose zone structure is favour of water conservation,and is very important for vegetation growth in arid areas.
     The sandy vegetation in regional zonal vegetation has little to do with groundwater depth, however the wetland vegetation in azonal vegetation is much related to groundwater. The relations of the water table, soil salinity and groundwater salinity to vegetation are analyzed detailedly in two typical water resource areas, one is the Hatucaidang water sources area in Salawusu Formation, and another is the Haolebaoji water resource in the Cretaceous strata. Integrated the above study, the sensitivity analysis of vegetation based on groundwater is carried out, the study area is divided into sensitive areas and non-sensitive areas. The sensitive areas are further divided into primary, secondary and tertiary sensitive areas.
     A numerical model of groundwater in the study area is built using GMS software, the area is 62,000 km~2 descretized 322 rows and 249 columns, the grid size is 1000×1000m, and the number of active cells is 62848. Based on the exploitation of groundwater in 2006, the groundwater table is predicted after exploitation of 10, 20, 30 and 50 years, respectively. The contour map of groundwater depth in Jun of 2006 is interpolated into raster data by using ArcGIS and to discrete vegetation coverage with the same image element unit 236×236m grid. The quantitative correspondence between the groundwater table and vegetation coverage is established statistically. By coupled analysis of the predicted groundwater water table and vegetation coverage in different time, the change feature of vegetation coverage under groundwater development is assessed. The results show that under the groundwater pumping conditions, the sensitive area will reduce the 12500 km~2, the vegetation coverage in the southeast of the study area and the lake area will be significantly reduced.
引文
[1]Amilcare P, et al . Ecohydroloy- a challenging multidisciplinary research perspective[J] . Hydro logical Sciences Journal, 2002, 47(5) : 811-822 .
    [2]Argus Interware Inc. Argus Open Numerical Environments2A GIS Modelling System[R] . 4 ed. 1997.
    [3]Barlow P M, Harbaugh A W. USGS directions in MODFLOW development [M]. 2006 : 771- 774.
    [4]Belcher W R , F A D’Agnese , G M O’Brien. Introduction , Chapter A of Death Valley regional Groundwater Flow System , Nevada and California-Hydrogeological Framework and transient Groundwater Flow Model [R] . US Geological Survey, 2004.
    [5]Brigham Young University– Engineering Computer Graphics Laboratory. SEEP2D Primer. 1998.
    [6]Brigham Young University-Environmental Modelling Research Laboratory. Groundwater Modelling System (GMS) , GMS 3. 1 Tutorials[R] . 2000
    [7]Brigham Young University-Environmental Modeling Research Laboratory. Groundwater Modeling System Tutorials Volume II. 2002.
    [8]Chen J Q , J Xia . Facing the challenge: barriers to sustainable water resources development in Ch ina [J ] . Hydro logical Science Journal, 1999, 44 (4) : 507-516 .
    [9]Chiang W H , Kinzelbach W. 3D2groundwater modeling with PMWIN a simulation system for modeling groundwater flow and pollution[M] . Springer ,2001.
    [10]Chunmiao Zheng & Gordon D. Bennett. Applied Contaminant Transport Modeling Theory and Practice. 1995.
    [11]David W. Pollock. A particle tracking post-processing package for MODFLOW. the U. S. Geological Survey finite-difference ground-water flow model. 1994.
    [12]Eileen P. Poeter, Mary C. Hill. Documentation of UCODE, A Computer Code for Universal Inverse Modeling. U.S. Geological Survey Water-Resources Investigations Report, 98-4080。
    [13]Engelen G B , Kloosterman F H. Hydrological system analysis: Methods and application [M] . Water Science and Technology Library,1996.
    [14]Engelen GB , Jones G P. Developments in the analysis of groundwater flow systems [M] . IAHS Publication ,1986 : 365.
    [15]Faunt C C , Blainey J B , Hill M C , et al . Transient numerical model , Chapter F of Death Valley regional Groundwater Flow System , Nevada and California Hydrogeological Framework and Transient Groundwater Flow Model [R] . US Geological Survey, 2004c.
    [16]Faunt C C , F A D’Agnese , GM O’Brien. Hydrology, Chapter D of Death Valley regional Groundwater Flow System, Nevada and California-Hydrogeological Framework and Transient Groundwater Flow Model [ R] . US Geological Survey , 2004a.
    [17]Faunt C C , Sweekind D S , Belcher W R. Three-dimensional hydrogeological framework model , Chapter E of Death Valley regional Groundwater Flow System, Nevada and California-Hydrogeological Framework and Transient Groundwater Flow Model [R] . US Geological Survey, 2004b.
    [18]Freeze R A , Witherspoon P A. Theoretical analysis of regional groundwater flow: Analytical and numerical solutions to the mathematical model [J] . Water Resources research, 1966, 2 (4) : 641- 656.
    [19]Freeze R A , Witherspoon P A. Theoretical analysis of regional groundwater flow: Effect of water table configuration and subsurfacepermeability variation [J] . Water Resources research, 1967, 3 (2) : 623 - 634.
    [20]Freeze R A , Witherspoon P A. Theoretical analysis of regional groundwater flow: Quantitative interpretations [J] . Water Resources research, 1968, 4 (3) : 581 -590.
    [21]Freeze R A. Thee-dimensional, transient, saturated-unsaturated flow in a groundwater basin [J] . Water Resources Research, 1971, 7 (2) :347- 366.
    [22]Gogu R G, Carabin G, Hallet V , et al . GIS2based hydrogeological databases and groundwater modeling [J ] . Hydrogeological Journal , 2001 , 9 :555 - 569.
    [23]Habermehl M A. Groundwater movement and hydrochemistry of theGreat Artesian basin, Australia [C]. Australia Geological Society of Australia, Extended Abstract . 1992, 43:228- 236.
    [24]Harbaugh A W, Banta E R , Hill M C , et al . The US Geological Survey’s modular ground water flow model-User guide to modularisation concepts and the ground water flow process [R] . US Geological Survey Open2File Report 00 - 92. 2000.
    [25]Harbaugh A W. MODFLOW - 2005 , the US Geological Survey’s modular ground water flow model2The groundwater flow process [R] . US Geological Survey Techniques and Methods 6 - A16. Reston , Virginia , 2005.
    [26]Hatton T J. Et Al Eagleson’s optimality theory of an eco-hydrological quilibrium: quovadis? [J] . Functional Ecology, 1997, 11:665-674 .
    [27]Herczeg A L, Torgersen T, Chivas A R, et al. Geochemistry of groundwaters from the Great Artesian basin, Australia[J]. Journal of hydrology. 1991, (126):225- 245.
    [28]Hill M C , Tiedeman C R. Effective groundwater model calibration , with analysis of sensitivity , predictions and uncertainty[M] . New York : Wiley and Sons , 2007.
    [29]Hill M C. The practical use of simplicity in developing groundwater models [J] . Groundwater , 2006 , 44 (6) : 775 - 781.
    [30]Hsin-Chi J. Lin, David R. Richards and Cary A. Talbot, et. al. FEMWATER: A Three-Dimensional Finite Element Computer Model for Simulation Density-Dependent Flow and Transport in Variably Saturated Media. 1996.
    [31]Hynes H B N. The Ecology of Running Water [M] . Canada:Univ Toronto Ontario, 1970 . Idso S.B., Jackson R.D., Reginato R.J. Estimating evaporation: a technique adaptable to remote sensing. Science. 1975. 189: 991~992。
    [32]Jackson R.D., Reginato R.J., Idso S.B., et al.. Estimation of daily evapotranspiration from one time-of-day measurements. Agric. Water Manage. 1983. 7: 351~362。
    [33]James L D. N SF research in hydrological sciences[J] . Journal of Hydrology, 1995, 172: 3-14 .
    [34]Javandel I and Withespoon P A. Applocation of the finite element method to transient flow in porous media. J Soe Petrol Eng. 1968. 8(3). P241~245.
    [35]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference groundwater flow model [R] . US Geological Survey Open File Report 83 - 875 , 1988.
    [36]Menenti M., Bastiaanssen W.G.M., Vaneick D. Determination of surface hemispherical reflectance with the thematic map data. Rem. Sens. Env. .1989a. 28: 327~337。
    [37]Menenti M., Bastiaanssen W.G.M., Vaneick D., et al. Linear relationships between surface reflectance and temperature and theirapplication to map actual evaporation of groundwater. Adv. Space. Res. 1989b. 9(1): 165~176。
    [38]Michael G. McDonald and Arlen W. Harbaugh. A modular three-dimensional finite-difference ground-water flow model. 1999.
    [39]Mike Bonell. Eco-hydrology—a completely new idea? [J] . Hydrological Sciences- Journal-des Sciences Hydrologiques, 2002, 47(5) : 809-810 .
    [40]Nuttle W K. Eco-hydro logy’s past and future in focus[J] . Ecos, 2002, 83: 205 .
    [41]Pinder G. F., E. O. Frind. Application of Galerkin’s procedure to aquifer analysis. Water Resour. Res. 1972. 8(1):108-120.
    [42]Pinder G. F., J. D. Bredehoeft. Application of the digital computer for aquifer evaluation. Water Resour. Res. 1968. 4 (5):1069-1093.
    [43]Pooer K R. The Open Society and its Enemies[M] . London: Rout ledge and Kegan Paul, 1980 .
    [44]Radke B M, Ferguson J , Cresswell R G, et al . Habermehl. Hydrochemistry and implied hydrodynamics of the Cadna2owie2Hooray Aquifer Great Artesian Basin [R] . Canberra : Bureau of Rural Sciences , Australian , 2000.
    [45]Rodriguez I . Ecohydrology: a hydrological perspective of climate-soil-vegetation dynamics[J] . Wat. Resour Res, 2000, 36: 3-9 .
    [46]Rumbaugh J , Rumbaugh D. Groundwater Vistas 5.0 , 1996-2005[R] . Environmental Simulation , Inc , 2005.
    [47]San Juan C A , Belcher W R , Laczniak R J , et al . Hydrological components for model development , Chapter C of Death Valley regional Groundwater Flow System , Nevada and California2Hydrogeological Framework and Transient Groundwater Flow Model [R] . US Geological Survey ,2004.
    [48]SEAM3D: A Numerical Model for Three-Dimensional Solute Transport Coupled to Sequential Electron Acceptor-Based Biological Reactions in Groundwater. US Army Corps of Engineers Waterways Experiment Station Environmental Laboratory. 2002.
    [49]Steven F. Carle and Graham E. Fogg. Transition Probability-Based Indicator Geostatistics. Mathematical Geology. 1996. 128(4):453~476。
    [50]Steven F. Carle. T-PROGS: Transition Probability Geostatistical Software Version2.1. 1999.
    [51]Sun R J , Weeks J B , Grubb H F. Bibliograph of regional aquifer system analysis program of the US Geological Survey , 1978 - 96 [R] . Water Resources Investigation Report 97- 4074. Austin , Texas : US Geological Survey , 1997.
    [52]T. P. Clement. A Modular Computer Code for Simulation Reactive Multispecies Transport in 3-Dimensional Groundwater Systems. The U. S. Department of Energ. 1997.
    [53]Toth J . A conceptual model of the groundwater regime and the hydrogeological environment [J] . Hydrology, 1970 , 10 : 164 -176.
    [54]Toth J . A theoretical analysis of groundwater flow in small drainage basins [J] . Geophysical Research , 1963, 68(16) : 4795 - 4812.
    [55]Toth J . Groundwater discharge : a common generation of diverse geological and morphological phenomena [M]. Bulletin of the International Association of Scientific Hydrology, 1971 , XVI (1P3) : 7 - 24.
    [56]Toth J . Properties and manifestations of regional groundwater movement [C] . Montreal : Proc. 24th International Geological Congress , 1972 : 153 - 163.
    [57]Van Genuchten M Th, Wierenga P J . Mass Transfer Studiesin Sorbing Porous Media. [J] . Analytical Solutions SoilSci Soc Am J,1976,40 :473-480.
    [58]Van Genuchten, M Th, Wierenga P J . Mass Transfer Studies in Sorbing Porous Media.Ⅲ[J ] . Soil Sci Soc Am J,1977,41 :278-285.
    [59]Waterloo Hydrogeological. Visual MODFLOW Pro, 3D groundwater flow and contaminant transport modeling[R] . 3. 1ed. 2001.
    [60]Welsh W D. Great Artesian Basin transient groundwater model [R] . Canberra : Bureau of Rural Sciences , Department of Agriculture , Fisheries and Forestry , Australia ,2006.
    [61]Welsh WD. GABFLOW, A steady state groundwater flow model of the Great Artesian Basin. Land and Water Sciences Division [ R ] . Canberra : Bureau of Rural Sciences , Department of Agriculture , Fisheries and Forestry , Australia , 2000.
    [62]Xia Jun and K. Tackeuch i, Barriers to sustainable management of water quantity and quality, Guest editors for Special Issue[J] .Hydrological Science Journal . 1999, 44 (4) : 503-505 .
    [63]Xia Jun,David Y. Chen, Water problems and opportunities in hydrological Sciences in China[J] . Hydrological Science Journal, 2001, 46 (6) : 907-921 .
    [64]Zalewski M , et al . Ecohydrology- A new paradigm for the sustainable use of aquatic resources[M ] . International Hydrological Programme IHP-V, 1997 .
    [65]Zalewski M. Ecohydrology. The scientific background to use ecosystem properties as management tools toward sustainability of water resources[J] . Eco Engng, 2000, 16: 1-8 .
    [66]Zbigniew W K. ecohydrology-seeking consensus on interpretation of the notion[J] . hydrol Sci J , 2002, 47 (5) : 799-804 .
    [67]曹剑锋,冶雪艳,王福刚,等.河南境内黄河流域地下水系统划分与系统分析[J] .吉林大学学报(地球科学版),2002,32 (3) :251 254.
    [68]陈崇希.“防止模拟失真,提高仿真性”是数值模拟的核心[J].水文地质工程地质,2003(2):1-5
    [69]陈梦熊,马凤山.中国地下水资源与环境[M] .北京:地震出版社,2002 :385 417.
    [70]陈梦熊,许志荣.地下水系统的基本概念与研究方法.地下水系统研究论文选编,1984: 1- 13.
    [71]陈雨孙,孙宝祥,王宥智.非稳定有限分析格式.工程勘察,1991,(2):23-27
    [72]陈雨孙.有限元法应用于水文地质的回顾及解析有限元法的提出.工程勘察,1994,(2):23-28
    [73]陈祖煜.土质边坡稳定分析—原理·方法·程序[M] .北京:中国水利水电出版社, 2003.
    [74]党学亚,张茂省.晋西南峨眉台塬的岩溶水系统及岩溶水资源潜力[J].水文地质工程地质,2007,34(4) :70 - 73.
    [75]丁继红、周德亮、马生忠.国外地下水模拟软件的发展现状与趋势.勘察科学技术,2002, (1):37~42。
    [76]董维红,苏小四,侯光才,等.鄂尔多斯白垩系地下水盆地地下水化学类型的分布规律[J] .吉林大学学报:地球科学版,2007,37 (2) :288-292.
    [77]方红远,王浩,甘泓.水资源合理配置及水量调控模式.水利发展研究. 2002.(12):12~15。
    [78]房佩贤,卫中鼎,廖资生.专门水文地质学[M] .北京:地质出版社,1996.
    [79]冯玉明.太原地区水文地质概念模型[J].陕西水利科技,1996,(12):6-11.
    [80]何芳,吴吉春.基于马尔可夫链的多元指示地质统计模型.水文地质工程地质. 2003.30(5):28~32。
    [81]何满潮,刘成禹,武雄.延吉盆地强膨胀性软岩边坡加固对策研究[J] .吉林大学学报:地球科学版, 2005 ,35 (4) :496 - 500.
    [82]河北省地质调查院.华北平原(河北部分)地下水资源调查评价报告. 2003。
    [83]侯光才,张茂省,刘方,等.鄂尔多斯盆地地下水勘查研究[M] .北京:地质出版社,2008.
    [84]侯光才,张茂省.鄂尔多斯盆地地下水资源与可持续利用[M] .西安:陕西科学技术出版社,2004 : 40 - 45.
    [85]侯光才,林学钰,苏小四,等.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报(地学版),2006,36(3):391- 398.
    [86]侯光才,刘方,王永和,等.鄂尔多斯盆地地下水勘查报告.中国地质调查局西安地质调查中心,2006.
    [87]黄金廷,王文科,何渊,等.鄂尔多斯沙漠高原湖淖群的形成演化及生态功能探讨[J].资源科学,2006,28(2):140- 146.
    [88]姜联合,王建中,郑元润.鄂尔多斯高原植物群落季节生长格局模拟[J].生态学报,2005,25(4):733- 739.
    [89]金晓媚,万力,张幼宽,等。银川平原植被生长与地下水关系研究。地学前缘,2007,14(3):197-203。
    [90]李朝生.鄂尔多斯高原北部沙区植被–环境关系与生态建设对策研究[D].北京:中国林业科学研究院,2005.
    [91]李明辉,王剑,谢渊,等.鄂尔多斯盆地白垩纪岩相古地理与地下水相关性探讨[J] .沉积与特提斯地质, 2003 , 23(4) :34-40.
    [92]李云峰,冯建国,王玮,等.鄂尔多斯盆地白垩系含水层系统分析[J] .西北地质,2004,37 (1) :69 90.
    [93]李云峰,李金荣,侯光才,等.从水文地球化学角度研究鄂尔多斯盆地南区白垩系地下水的排泄途径[J] .西北地质,2004,37 (3) :91-95.
    [94]梁永平,韩行瑞,时坚,等.鄂尔多斯盆地周边岩溶地下水系统模式及特点[J] .地球学报,2005,26 (4) :365 - 369.
    [95]林坜,杨峰,崔亚莉,邵景力. FEFLOW在模拟大区域地下水流中的特点.北京水务, 2007年第1期, 43-46
    [96]林学钰,王金生等著.黄河流域地下水资源极其可更新能力研究.郑州:黄河水利出版社. 2006。
    [97]林学钰等编著.地下水水量水质模拟及管理程序集.长春:吉林科学技术出版社,1988
    [98]刘洁,柏彦奇,孙海涛.概念模型建模方法研究[J].长春理工大学学报(自然科学版) ,2007,( 3) : 126- 130.
    [99]刘世安,黄忠信,陈延,等.鄂尔多斯盆地白垩系地下水形成分布规律[J] .干旱区资源与环境,1996,10 (1) :113.
    [100]马耀明,王介民.非均匀陆面上区域蒸发(散)研究概况.高原气象. 1997. 16(4):446~452。
    [101]钱会,窦妍,李西建,等.都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J] .水文地质工程地质,2007,34 (2) :107-112.
    [102]钱家忠,葛晓光,李如忠,等.张集水源地孔隙水化学特征及其环境效应[J] .煤田地质与勘探,2004,32 (1) :37-39.
    [103]钱家忠,吴剑锋,朱学愚,等.地下水资源评价与管理数学模型的研究进展.科学通报,2001,46(2):99-104
    [104]沈照理.应该继续重视与开展水2岩相互作用的研究—为《水文地质工程地质》创刊40年而作[J] .水文地质工程地质,1997,24 (4) :16-20.
    [105]孙芳强,侯光才,窦妍,方长生,姜军,张乐中.鄂尔多斯盆地白垩系地下水循环特征的水化学证据—查布水源地为例.吉林大学学报(地球科学版). 2009,39(2):269-275
    [106]孙讷正.地下水流的数学模型和数值方法,北京:地质出版社. 1981。
    [107]孙亚乔,钱会,张黎,等.基于矩形图的天然水化学分类和水化学规律研究[J] .地球科学与环境学报,2007,29 (1) :75-79.
    [108]万力,曹文炳,胡伏生,梁四海,金晓媚.生态水文学与生态水文地质学,地质通报,2005,24(8):700-703
    [109]王大纯等著.水文地质学基础,北京:地质出版社. 1995。
    [110]王德潜,刘祖植,尹立河.鄂尔多斯盆地水文地质特征及地下水系统分析[J].第四纪研究,2005,25(1) :6 - 13.
    [111]王冬.鄂尔多斯白垩系盆地北部潜水硝酸盐污染成因分析及防治对策[J].地下水,2006,28 (4) :56-57.
    [112]王芳,梁瑞驹,杨小柳,等。中国西北地区生态需水研究(1)—干旱半干旱地区生态需水理论分析,自然资源学报,2002,17(1):1-8
    [113]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J] .地球科学进展, 2001, 16 (3): 314-323 .
    [114]王让会,樊自立.利用遥感和地理信息系统技术研究塔里木河下游阿拉干地区土地沙漠化[J] .遥感学报,1998 ,2(2) :137 - 142.
    [115]王让会.塔里木河流域生态环境演变概念模型[J] .南京林业大学学报,1999 ,23 (6) :15 - 18.
    [116]王让会.新疆英巴扎地区植被动态变化的监测与分析[J] .国土资源遥感,1999 , (1) :41 - 48.
    [117]王文科,侯光才,刘方,等.鄂尔多斯白垩系自流水盆地水文地质特征及勘查评价中的几个问题[C]/ /鄂尔多斯盆地下水资源与可持续利用.西安:陕西科学技术出版社,2004.
    [118]王晓明,代革联,巨天乙,等.可视化的地下水数值模拟.西安科技学院学报,2004,24(2):184-186
    [119]文冬光,沈照理,钟佐,等.地球化学模拟及其在水文地质中的应用[J] .地质科技情报,1995,14 (1) :99-104.
    [120]文冬光.用同位素方法论区域地下水资源属性[J] .地质科学,2002,27 (3) :141 - 147.
    [121]武强,董东林.试论生态水文学主要问题及研究方法[J] .水文地质工程地质, 2001, (2) : 69-72 .
    [122]西安地质矿产研究所.鄂尔多斯盆地地下水勘查报告[ R] .西安:西安地质矿产研究所,2006.
    [123]谢渊,王剑,李明辉.鄂尔多斯盆地早白垩世岩相古地理与地下水水质和分布的关系[J] .地质通报,2004 ,23 (11) :1094 - 1102.
    [124]谢渊,王剑,殷跃平,等.鄂尔多斯盆地白白垩系含水层沉积学初探[J] .地质通报,2003 , 22 (10) :819 - 828.
    [125]谢渊,王剑,江新胜,等.鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J].沉积学报,2005,23(1):73- 83.
    [126]徐恒力主编.水资源开发利用与保护.北京:地质出版社. 2000。徐慧珍,段秀铭,高赞东,等.济南泉域排泄区岩溶地下水水化学特征[J] .水文地质工程地质,2007,34 (3) :15-19.
    [127]徐卫亚,张志腾.滑坡失稳破坏概率及可靠度研究[J].灾害学, 1995, 10(4):33-37.
    [128]薛禹群,吴吉春.地下水数值模拟在我国—回顾与展望.水文地质工程地质,1997,(4):21-24
    [129]薛禹群,朱学愚,吴吉春,等.地下水动力学[M] .北京:地质出版社, 1997.
    [130]薛禹群,吴吉春.面向21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,( 5) :1- 3.
    [131]薛禹群,谢春红著.地下水数值模拟.北京:科学出版社,2007
    [132]杨郧城,侯光才,马思锦.鄂尔多斯盆地地下水中氚的演化及其年龄[J] .西北地质,2004,37(1) :97 -100.
    [133]杨郧城,侯光才,张茂省,等.双Packer系统在鄂尔多斯盆地地下水勘查中的应用[J] .西北地质,2005,38(1):113 - 115.
    [134]杨郧城,沈照理,文冬光,等。鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源,地球学报,2008,29(5)553-562
    [135]杨泽元,王文科,王雁林,等.秃尾河流域表生生态环境评价指标体系研究[J].水资源保护,2006,22(5):22- 27.
    [136]张二勇,李长青,李旭峰,区域地下水流数值模拟的方法和实践-以华北平原为例,中国地质,2009,36(4),920-926.
    [137]张宏仁.有限单元法的水头反常问题.水文地质工程地质,1992(5):22-24
    [138]张茂省,尹立河.区域地下水模拟现状与发展趋势[C]/ /鄂尔多斯盆地地下水资源与合理开发利用.西安:陕西科学技术出版社,2004.
    [139]张人权,梁杏,靳孟贵,等.当代水文地质学发展趋势与对策[J] .水文地质工程地质,2005,32 (1) :51-56.
    [140]张人权.地下水资源特性及其合理开发利用[J ].水文地质工程地质,2003,30(6):1 - 5.
    [141]张蔚榛主编.地下水非稳定流计算和地下水资源评价.北京:科学出版社.1983
    [142]张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1- 16.
    [143]张仲根,唐忠林,骆祖江.水文地质概念模型的水动力场研究方法—“流场分析法”[J].江苏地质,2007,(2):143- 146.
    [144]张宗祜、沈照理等.华北平原地下水环境演化.北京:地质出版社. 2002。
    [145]赵文智,王根绪,等译.生态水文学陆地环境和水生环境植物与水分关系[M].北京:海洋出版社, 2002 .
    [146]赵振宏,侯光才,王冬,等.地下水流系统特征———以白垩系地下水盆地为例[J].地下水,2007, (3) :14- 16.
    [147]中国地质大学(北京).地下水生态安全分区评价指标研究(04-03-03),水利部重大项目《水利与国民经济发展研究》.2002。
    [148]中国地质调查局西安地质调查中心.陕北能源化工基地地下水勘查报告.2007.
    [149]周兴佳.塔里木河下游绿色走廊的沙漠化及其防治[J ].中国沙漠,1983 ,3 (1) :27 - 31.
    [150]朱学愚、钱孝星、刘新仁.地下水资源评价.南京:南京大学出版社. 1987。
    [151]祝晓彬.地下水模拟系统( GMS )软件.水文地质工程地质,2003.30(5):53~55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700