双功能基因APE1与miRNAs相互调控介导骨肉瘤放疗敏感性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     放疗是骨肉瘤治疗的重要手段之一。放疗抵抗是影响患者疗效和预后的关键因素。前期研究表明,脱嘌呤脱嘧啶核酸内切酶(APE1)具有DNA损伤修复和氧化还原双功能,在骨肉瘤放疗抵抗中发挥核心调节作用,敲低APE1能显著增强骨肉瘤放疗敏感性。然而其介导骨肉瘤放疗敏感性的机制不清。MicroRNAs(miRNAs)能在转录后水平负性调节靶基因的表达,对肿瘤发生、细胞凋亡和应激反应具有重要的调控作用,为研究和发现APE1基因调控通路和相互作用蛋白,阐明APE1介导的骨肉瘤放疗敏感性的机制提供了新的研究方向。此外,miRNAs作为内源性的小分子,在调控肿瘤细胞放疗敏感性中具有明显的优势,为骨肉瘤的分子靶向治疗提供了新的策略。晚近的研究陆续报道了p53等肿瘤关键基因相互作用的miRNAs,但与APE1相互作用的miRNAs国内外鲜见报道。
     研究目的
     本研究旨在鉴定和研究APE1相互作用miRNAs及其在骨肉瘤放疗抵抗中的作用。
     研究方法
     1.通过生物信息学、miRNAs芯片和qRT-PCR筛选鉴定APE1-knockdown骨肉瘤细胞的miRNAs差异表达谱,分析其靶基因涉及的细胞生物学功能和信号通路。
     2.通过生物信息学、 EMSA、 RNAi和qRT-PCR实验初步验证APE1-转录因子-miRNAs的作用关系。
     3.利用生物信息学、双荧光素酶报告基因实验、AP位点切除实验及EMSA鉴定miRNAs对APE1的靶向调控作用,在细胞和动物水平验证miRNAs靶向抑制APE1对骨肉瘤细胞放疗后增殖和凋亡的影响。
     研究结果
     1. APE1-knockdown骨肉瘤细胞中有13个miRNAs显著变化,其中miR-451、miR-1290、miR-765、miR-483-5p、miR-513a-5p、miR-129-5p和miR-31上调,miR-29b、miR-197、let-7b、miR-324-5p、let-7i和miR-484下调,其靶基因分别涉及TGF-β、Wnt、MAPK和p53等细胞信号通路,与细胞生存、增殖、粘附和肿瘤发生有关。
     2.生物信息学分析提示,转录因子与miRNAs启动子区有结合位点; APE1-knockdown后可下调NF-κB的DNA结合活性,而抑制NF-κB可下调let-7b和let-7i的表达。
     3. miR-513a-5p和miR-765能与APE1mRNA3’UTR区结合抑制APE1蛋白表达;miR-513a-5p可抑制APE1的AP位点剪切活性和NF-κB、p53、AP-1的DNA结合活性;在细胞和动物水平给予X射线照射后,过表达miR-513a-5p可增加凋亡,抑制骨肉瘤细胞增殖和Bcl-2的表达。
     结论
     1. APE1能直接影响骨肉瘤细胞miRNAs的表达;生物信息学分析表明APE1通过调控miRNAs可能影响下游靶基因的表达,参与肿瘤发生、细胞生存、增殖、粘附等生物学过程和多个信号通路,与骨肉瘤的发生发展、侵袭转移密切相关。
     2.生物信息学分析表明APE1-转录因子-miRNAs具有相互作用;初步证实APE1通过调控NF-κB的DNA结合活性可能调控let-7b和let-7i的表达。
     3.首次证实APE1是miR-513a-5p和miR-765的靶基因,二者可靶向结合APE1mRNA3’UTR区抑制APE1蛋白表达。
     4. miR-513a-5p通过抑制APE1的DNA损伤修复和氧化还原双功能,抑制骨肉瘤细胞增殖,诱导细胞凋亡,在细胞及动物水平均能增加骨肉瘤的放疗敏感性。
Background
     Radiation therapy is one of the most commonly used clinical treatments forosteosarcoma. The resistance of osteosarcoma to radiotherapy remains an important elementinterfering with therapeutic effect and prognosis. Apurinic/apyrimidinic endonuclease/redoxeffector factor (APE1), with dual functions of both DNA repair and redox activity, is the keygene in regulating radioresistance in osteosarcoma. Previous studies have shown thatknocking down APE1expression by siRNA significantly sensitized human osteosarcomacells to radiation. Although the essential function of APE1has been confirmed, knowledge ofits regulation or interactome in mediating radioresistance is still scanty. Through suppressinggene expression by binding to the3’-untranslated region (3’-UTR) of target genes,microRNAs (miRNAs) play a large range of biological roles in tumorigenesis, apoptosis andstress reactions. We postulated that miRNAs may play important roles in APE1regulatorynetwork and interactome. It might also provide a plausible explanation to the APE1-dependent radioresistance in osteosarcoma. Additionally, as a class of endogenous singlestranded non-coding RNA, miRNAs has been considered to be a more effective andpromising target to increase radiosensitivity of cancer. Recently, studies have reported somemiRNAs interaction with many important tumor-associated genes such as p53. However, todate, little report concerning the interaction between APE1and miRNAs are available in thecurrent scientific literature.
     Objective
     To identify the interaction network between APE1and miRNAs in osteosarcoma andinvestigate the APE1-dependent modulation of radiation sensitivity by miRNAs in humanosteosarcoma.
     Materials and Methods
     1. Microarray and qRT-PCR were used to confirm the change of microRNAs (miRNAs) in APE1-knockdown osteosarcoma HOS cells followed by analysis with comprehensivebioinformatics-based analysis.
     2. APE1-transcription factors-miRNAs network was predicted and identified bybioinformatics-based analysis, EMSA, RNAi and qRT-PCR in osteosarcoma HOS cells.
     3. Then we used luciferase report gene vectors, Western blot, AP site activity assay andEMSA to identify miRNAs are the targeted regulation factor of APE1. At last, we generatedmiRNA overexpression lentiviral vector and used cell proliferation assay, cell apoptosis,immunohistochemisty, Western blot and qRT-PCR to investigate the miRNAs increaseosteosarcoma radiosensitivity by targeting APE1in vitro and vivo.
     Results
     1. Both microarray and qRT-PCR demonstrated that13miRNAs were significantlychanged (>2-fold) in APE1-knockdown HOS cells; seven of them (miR-451, miR-1290,miR-765, miR-483-5p, miR-513a-5p, miR-129-5p and miR-31) were up-regulated and theother six (miR-29b, miR-197, let-7b, miR-324-5p, let-7i and miR-484) were down-regulated.Furthermore, pathway analysis showed that these miRNAs and their target genes affected bythe expression of APE1were involved in pathways relating to cell signaling (such as TGF-β,Wnt, MAPK and the p53signaling pathway), cell survival, proliferation, adhesion andcancers.
     2. APE1could regulate both miRNAs and transcription factors. There were putativebinding sites of NF-κB, p53, HIF-1α, AP-1, PEBP2, ATF, NF-Y, Pax-2, CREB and c-Myb inthe promoters of several downregulated miRNAs, indicating that APE1may regulatemiRNAs via transcription factors. The DNA binding activity of NF-κB was inhibited afterAPE1-knockdown in osteosarcoma cells. And the expressions of let-7b and let-7i weredecreased by NF-κB siRNA.
     3. MiR-513a-5p and miR-765significantly suppressed APE1protein expression bybinding to the3’UTR of APE1mRNA. Overexpression of miR-513a-5p could inhibit theactivity of APE1in AP site repair and the DNA binding activity of NF-κB、p53and AP-1.Flowing with ionizing radiation, overexpression of miR-513a-5p in osteosarcoma couldinhibit cells proliferation and promote cell apoptosis in vitro and vivo. Besides, the expressionof Bcl-2was decreased in osteosarcoma HOS cells. Conclusion
     1. Our data provide evidence that APE1appears to have a direct influence on globalmiRNAs expression. According to the bioinformatics-based analysis, APE1may regulatemiRNAs to affect the expression of target genes. These interactions may be involved incancers, cell survival, cells proliferation, adhesion and many cell signal pathways, especiallywith regard to the tumorigenesis, development, invasion and metastasis of osteosarcoma.
     2. The bioinformatics-based analysis has showed the network associated with APE1,transcription factors and miRNAs. APE1may regulate the expression of let-7b and let-7i viatranscription factor NF-κB.
     3. APE1is the target gene of miR-513a-5p and miR-765. MiR-513a-5p can suppressDNA damage repair activity and redox activity of APE1, and sensitize human osteosarcomato radiation through suppressing cells proliferation and promoting apoptosis in vitro and vivo.
引文
1. Wang LL. Biology of osteogenic sarcoma. Cancer J,2005;11:294-305.
    2. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res,2009;152:3-13.
    3. Schwarz R, Bruland O, Cassoni A, Schomberg P, Bielack S: The role of radiotherapy inoseosarcoma. Cancer Treat Res,2010;152:147-164.
    4. Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M: Bone tumors in adolescents andyoung adults. Curr Treat Options Oncol,2008;9:67-80.
    5. Machak GN, Tkachev SI, Solovyev YN, Sinyukov PA, Ivanov SM, Kochergina NV, et al:Neoadjuvant chemotherapy and local radiotherapy for high-grade osteosarcoma of theextremities. Mayo Clin Proc,2003;78:147-155.
    6. PosthumaDeBoer J, Würdinger T, Graat HC, van Beusechem VW, Helder MN, vanRoyen BJ, Kaspers GJ. WEE1inhibition sensitizes osteosarcoma to radiotherapy. BMCCancer,2011;11:156.
    7. Delaney TF, Park L, Goldberg SI, et al. Radiotherapy for local control of osteosarcoma.Int J Radiat Oncol Biol Phys,2005;61:492-498.
    8. Connell PP, Kron SJ, Weichselbaum RR. Relevance and irrelevance of DNA damageresponse to radiotherapy. DNA Repair (Amst),2004;3(8-9):1245-1251.
    9. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G: Cell death bymitotic catastrophe: a molecular definition. Oncogene,2004;23:2825-2837.
    10. Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, et al: Smallmoleculeinhibition of Wee1kinase by MK-1775selectively sensitizes p53-deficient tumor cells toDNA-damaging agents. Mol Cancer Ther,2009;8:2992-3000.
    11. Wang D, Luo M, Kelley MR.Human apurinic endonuclease1(APE1) expression andprognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNAdamaging agents using silencing RNA APE1expression inhibition. Mol Cancer Ter,2004;3:679-686.
    12. Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian APendonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci,2010;67:3589-3608.
    13. Evans AR, Limp-Foster M, Kelly MR. Going APE over ref-1. Mutat Res,2000;461:83-108.
    14. Fan J, Wilson DM. Protein-protein interactions and posttranslational modifications inmammalian base excision repair. Free Radic Biol Med,2005,38(9):1121-1138.
    15. Tell G, Quadrifoglio F, Tiribelli C. The many functions of APE1: not only a DNA repairenzyme. Antioxid Redox Signal,2009;11(3):601-620.
    16. Tell G, Wilson DM, Lee CH. Intrusion of a DNA repair protein in the RNome world: isthis the beginning of a new era? Mol Cell Biol,2010;30(2):366-371.
    17. Yang J, Yang D, Cogdell D, Du X, Li H, Pang Y, Sun Y, Hu L, Sun B, Trent J, Chen K,Zhang W. APEX1gene amplification and its protein overexpression in osteosarcoma:correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat,2010;9(2):161-169.
    18.李梦侠,王东,向德兵,张云嵩,杨宇馨,龙在云.电离辐射诱导骨肉瘤细胞DNA损伤修复蛋白APE1线粒体定位研究.第三军医大学学报,2007;29(15):1458-1461.
    19.卿毅,王东,仲召阳,李增鹏,张沁宏. pSilence APE1提高骨肉瘤放疗敏感性的动物实验研究.中国肿瘤临床,2007;34(4):230-233.
    20. Wang D, Zhong ZY, Li MX, Xiang DB, Li ZP. Small interfering RNA enhances thesensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci,2007;98(12):1993-2001.
    21. Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1as atherapeutic and chemopreventive target. Mol Aspects Med,2007;28:375-395.
    22. Wu HH, Cheng YW, Chang JT, Wu TC, Liu WS, Chen CY, Lee H, Subcellularlocalization of apurinic endonuclease1promotes lung tumor aggressiveness via NF-kappaB activation, Oncogene,2010;29:4330-4340.
    23. Abbotts R, Madhusudan, S. Human AP endonuclease1(APE1): from mechanisticinsights to druggable target in cancer. Cancer Treat Rev,2010;36(5):425-435.
    24. Barnes T, Kim WC, Mantha AK, et al. Identification of APE1as the endoribonucleasethat cleaves c-myc mRNA. Nucleic Acids Res,2009;37(12):3946-3958.
    25. Busso CS, Lake MW, Izumi T. Posttranslational modification of mammalian APendonuclease (APE1). Cell Mol Life Sci,2010;67(21):3609-3620.
    26. Tell G, Pellizzari L, Pucillo C, Puglisi F, Cesselli D, Kelley MR, DiLoreto C, Damante G.TSH controls Ref-1nuclear translocation in thyroid cell, J. Molecular Endocrinology,2000;24:383-390.
    27. Kim WC, King D, Lee CH. RNA-cleaving properties of human apurinic/apyrim-idinicendonuclease1(APE1). Int J Biochem Mol Biol,2010;1:12-25.
    28. Barterl DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004;116:281-297.
    29. Esquela-Kerscher A, Slack FJ. Oncomirs microRNAs with a role in cancer. Nat RevCancer,2006;6:259-269.
    30. CHO WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer,2007;6:60.
    31. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancermanagement. Lancet Oncol,2012;13(6): e249-258.
    32. Zhao LQ, Bode AM, Cao Y, Dong ZG. Regulatory mechanisms and clinical perspectivesof miRNA in tumor radiosensitivity. Carcinogenesis,2012;33(11):2220-2227.
    33. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E,Reinert KL, Brown D, Slack FJ. RAS Is Regulated by the Let-7MicroRNA family. Cell,2005,120(5):635-647.
    34. He L, He XY, Lim LP., Stanchina ED, Xuan ZY, Liang Y, Xue W, Zender L, Magnus J,Ridzon D, Jackson AL., Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. AmicroRNA component of the p53tumour suppressor network. Natrue,2007;447:1130-1134.
    35. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat RevCancer,2006;6(4):259-269.
    36. Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. ImmunolRev,2012;246(1):205-220.
    37. Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z, Xie J. Caffeic acid phenethyl ester inducesgrowth arrest and apoptosis of colon cancer cells via the β-catenin/Tcf signaling.Anti-cancer drugs,2006;17(7):753-762.
    38. Eisen MB, Spellman PT, Brown PO and Botstein D. Cluster Analysis and Display ofGenome-Wide Expression Patterns. Proc Natl Acad Sci USA,1998;95:14863-14868.
    39. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res,2009;152:3-13.
    40. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1,is essential for early embryonic development in mice. Proc Natl Acad Sci U S A,1996;93:8919-8923.
    41.王东,仲召阳,李增鹏,杨镇洲, Kelley MR.双功能基因APE1敲低后人体骨肉瘤细胞基因表达谱变化的研究.第三军医大学学报,2007;29(1):1-4.
    42. Gougelet A, Pissaloux D, Besse A, Perez J, Duc A, et al. Micro-RNA profiles inosteosarcoma as a predictive tool for ifosfamide response. Int J Cancer,2011;129:680-690.
    43. Osaki M, Takeshita F, Sugimoto Y, et al. MicroRNA-143regulates human osteosarcomametastasis by regulating matrix metalloprotease-13expression. Mol Ter,2011;19:1123-1130.
    44. Lulla RR, Costa FF, Bischof JM, et al. Identification of Differentially ExpressedMicroRNAs in Osteosarcoma. Sarcoma,2011;732690.
    45. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, et al. Anderson, Molecularprofilingun covers a p53-associated role for microRNA-31in inhibiting the proliferationof serous ovarian carcinomas and other cancers. Cancer Res,2010;70:1906-1915.
    46.王东,仲召阳,李增鹏,卿毅,张沁宏. pSilence APE1对骨肉瘤诱导血管内皮细胞迁徙抑制作用的实验研究.第三军医大学学报,2006;28(2):93-96.
    47. Van J MT, Helleman J, Berns EM, Wiemer EA. MicroRNAs in ovarian cancer biologyand therapy resistance. Int J Biochem Cell Biol,2010;42:1282-1290.
    48. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451in resistanceof the MCF-7breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ter,2008;7:2152-2159.
    49. Wang D, Xiang DB, Yang XQ, et al. APE1overexpression is associated with cisplatinresistance in non-small cell lung cancer and targeted inhibition of APE1enhances theactivity of cisplatin in A549cells. Lung Cancer,2009;66(3):298-304.
    50. Chattopadhyay R, Das S, Maiti AK, et al. Regulatory role of human AP-endonuclease(APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. MolCell Biol,2008;28:7066-7080.
    51. Bhattacharyya A, Chattopadhyay R, Hall EH, et al. Mechanism of hypoxia-induciblefactor1alpha-mediated Mcl1regulation in Helicobacter pylori-infected human gastricepithelium. Am J Physiol Gastrointest Liver Physiol,2010;299: G1177-1186.
    52. Marenstein D.R., Wilson DM, Teebor GW. Human AP endonuclease (APE1) demonstratesendonucleolytic activity against AP sites in single-stranded DNA, DNA Repair,2004;4:527-533.
    53. Kole AJ, Swahari V, Hammond SM, et al. miR-29b is activated during neuronalmaturation and targets BH3-only genes to restrict apoptosis. Genes Dev,2011;15;25(2):125-30.
    54. Park SY, Lee JH, HaM, et al. miR229miRNAs activate p53by targeting p85alpha andCDC42. Nat StructMol Biol,2009;16(1):23-29.
    55. Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA229on apop tosis, tumorigenicity,and p rognosis of hepatocellular carcinoma. Hepatology,2010;51(3):836-845.
    56. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7microRNAfamily. Cell,2005;120(5):635-647.
    57. Yong SL, Anindya D. The tumor suppressor microRNA let-7repressed the HMGA2oncogene. Genes Dev,2008,21:1025.
    58. Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellualrtransformation and tumorigenesis. Nat Genet,2007;39(5):673-677.
    59. Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in theMG-63osteosarcoma cell line compared with osteoblasts. Oncol Lett,2012;4(5):1037-1042.
    60. Hafsi H, Hainaut P. Redox Control and Interplay Between p53Isoforms: Roles in theRegulation of Basal p53Levels, Cell Fate, and Senescence. Antioxid Redox Signal,2011;15:1655-1667.
    61. Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1)regulated by the p53-MDM2signaling pathway. Oncogene,2009;28:1616-1625.
    62. Zhang Y, Wang J, Xiang DB, Wang D, Xin X. Alterations in the expression of theapurinic/apyrimidinic endonuclease-1/redox factor-1(APE1/Ref-1) in human ovariancancer and indentification of the therapeutic potential of APE1/Ref-1inhibitor. Int JOncol,2009;35:1069-1079.
    63. Kelley MR, Cheng L, Foster R, et al. Elevated and altered expression of themultifunctional DNA base excision repair and redox enzyme Ape1/ref-1in prostatecancer. Clin Cancer Res,2001;7:824-830.
    64. Yuk JM, Yang CS, Shin DM, et al. A dual regulatory role of apurinic/apyrimidinicendonuclease1/redox factor-1in HMGB1-induced inflammatory responses. AntioxidRedox Signal,2009;11:575-588.
    65. Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J. Differentially regulated micro-RNAs andactively translated messenger RNA transcripts by tumor suppressor p53in colon cancer.Clin Cancer Res,2006;12:2014-2024.
    66. Gaiddon C, Moorthy NC, Prives C. Ref-1regulates the transactivation and pro-apoptoticfunctions of p53in vivo. EMBO J,1999;18:5609-5621.
    67. Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M, Aizawa S, TanakaH, Kataoka K, Watanabe H, Handa H. Spatial redox regulation of a critical cysteineresidue of NF-kappa B in vivo. J Biol Chem,2002;277:44548–44556.
    68. Tell G, Pellizzari L, Cimarosti D, Pucillo C, Damante G. Ref-1controls pax-8DNA-binding activity. Biochem Biophys Res Commun,1998;252:178-183.
    69. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear proteinthat facilitates AP-1DNAbinding activity. EMBO J,1992;11:653-665.
    70. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNAbinding activity is mediated by a DNA repair enzyme. EMBO J,1992;11:3323-3335.
    71. Huang RP, Adamson ED. Characterization of the DNAbinding properties of the earlygrowth response-1(Egr-1) transcription factor: evidence for modulation by a redoxmechanism. DNA Cell Biol,1993;12:265-273.
    72. Ando K, Hirao S, Kabe Y, Ogura Y, Sato I, Yamaguchi Y, Wada T, Handa H. A newAPE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, andactivation of their DNA-binding activity. Nucleic Acids Res,2008;36:4327-4336.
    73. Su H, Meng S, Lu Y, et al. Mammalian hyperplastic discs homolog EDD regulatesmiRNA-mediated gene silencing. Mol Cell,2011;43(1):97-109.
    74. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoicacid-induced differentiation of human acute promyelocytic leukemia. Oncogene,2007;26(28):4148-4157.
    75. Mott JL, Kurita S, Cazanave SC, el at. Transcriptional Suppression of mir-29b-1/mir-29aPromoter by c-Myc, Hedgehog, and NF-kappaB. J Cell Biochem,2010;110(5):1155-64.
    76. Blower PE, Verducci JS, Lin S, et al. MicroRNA expression profiles for the NCI-60cancer cell panel. Mol Cancer Ther,2007;6(5):1483-1491.
    77. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs. Nature,2005;433(7027):769-773.
    78. Olive PL. DNA damage and repair in individual cells: applications of the comet assay inradiobiology. Int J Radiat Biol,1999;75(4):395-405.
    79. G hler T, Reimann M, Cherny D, et al. Specific interaction of p53with target bindingsites is determined by DNA conformation and is regulated by the C-terminal domain. JBiol Chem,2002;277(43):41192-41203.
    80. Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M, et al. Highperformanceaffinity beads for identifying drug receptors. Nat Biotechnol,2000;18:877-881.
    81. Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, et al.Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res,2005;33:4711-4724.
    82. Aziz MH, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: in vitro and invivo studies and the underlying mechanisms (review). Int J Oncol,2003;23:17-28.
    83. Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo areepigenetically regulated in a tissue-specific manner. Environ Mol Mutagen,2009;50(2):105-113.
    84. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation ofmicroRNA in prostate cancer cell lines. Prostate,2008;68(15):1599-1606.
    85. Della Vittoria Scarpati G, Falcetta F, Carlomagno C, et al. A specific miRNA signaturecorrelates with complete pathological response to neoadjuvant chemoradiotherapy inlocally advanced rectal cancer. Int J Radiat Oncol Biol Phys,2012;83(4):1113-1119.
    86. Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs.Adv Exp Med Biol.2013;768:97-126.
    87. Barrett LW, Fletcher S, Wilton SD.Regulation of eukaryotic gene expression by theuntranslated gene regions and other non-coding elements. Cell Mol Life Sci,2012;69(21):3613-34.
    88. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, EinavU, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved andnonconserved human microRNAs. Nat Genet,2005;37:766-770.
    89. Landgraf P, Rusu M, Sheridan R. A mammalian microRNA expression atlas based onsmall RNA library sequencing. Cell,2007;129:1401-1414.
    90. Gong AY, Zhou R, Hu G, Li X, Splinter PL, O'Hara SP, LaRusso NF, Soukup GA, DongH, Chen XM. MicroRNA-513regulates B7-H1translation and is involved inIFN-gamma-induced B7-H1expression in cholangiocytes. J Immunol,2009;182(3):1325-1333.
    91. Gong AY, Zhou R, Hu G, Liu J, Sosnowska D, Drescher KM, Dong H, Chen XM.Cryptosporidium parvum induces B7-H1expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis,2010;1;201(1):160-169.
    92. Sojin S, Kyo Chul M, Keon Uk P, Eunyoung H. MicroRNA-513a-5p mediates TNF-αand LPS induced apoptosis via downregulation of X-linked inhibitor of apoptotic proteinin endothelial cells. Biochimie,2012;94(6):1431-1436.
    93. Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng JL, Xu JH, Cheng JQ, Lin JY, Ma X.Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNAmicroarray analysis. Childs Nerv Syst,2009;25(1):13-20.
    94. Zhang X, Zhu J, Xing R, et al. miR-513a-3p sensitizes human lung adenocarcinoma cellsto chemotherapy by targeting GSTP1. Lung Cancer,2012;77(3):488-494.
    95. Fung H, Demple B. Distinct roles of Ape1protein in the repair of DNA damage inducedby ionizing radiation or bleomycin. J Biol Chem,2011;286(7):4968-77.
    96. Angkeow P, Deshpande SS, Qi B, Liu YX, Park YC, Jeon BH, Ozaki M, Irani K. Redoxfactor-1: an extra-nuclear role in the regulation of endothelial oxidative stress andapoptosis. CellDeath Differ,2002;9:717-725.
    97. Jin Z, May W S, Gao F, Flagg T, Deng X. Bcl2suppresses DNA repair by enhancingc-Myc transcriptional activity. J Biol Chem,2006;281(20):14446-14456.
    98. Zhao J, Gao F, Zhang Y, Wei K, Liu Y, Deng X. Bcl2inhibits abasic site repair bydown-regulating APE1endonuclease activity. J Biol Chem,2008;283(15):9925-9932.
    1. Esquela-Kerscher A, Slack F J. Oncomirs-microRNAs with a role in cancer,2006,6(4):259-269.
    2. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, andtiming. Cell,2003;113(6):673-676.
    3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell,2004;116(2):281-297.
    4. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res,2007;61(5):24-29.
    5. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequentlylocated at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004;101(9):2999-3004.
    6. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lungcancer diagnosis and prognosis. Cancer Cell,2006;9(3):189-98.
    7. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer,2007,6:60.
    8. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers.Nature,2005;435(7043):834-838.
    9. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulateangiogenesis. Trends Pharmacol Sci,2008;29(1):12-15.
    10. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated withprognosis and progression in chronic lymphocytic leukemia. N Engl J Med,2005;353(17):1793-1801.
    11. Blower PE, Verducci JS, Lin S, et al. MicroRNA expression profiles for the NCI-60cancer cell panel. Mol Cancer Ther,2007;6(5):1483-1491.
    12. Koturbash I, Boyko A, Rodriguez-Juarez R, et al. Role of epigenetic effectors inmaintenance of the long-term persistent bystander effect in spleen in vivo.Carcinogenesis,2007;28(8):1831-1818.
    13. Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo areepigenetically regulated in a tissue-specific manner. Environ Mol Mutagen,2009;50(2):105-113.
    14. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation ofmicroRNA in prostate cancer cell lines. Prostate,2008;68(15):1599-1606.
    15. Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alterresistance to cytotoxic anticancer therapy. Cancer Res,2007;67(23):11111-11116.
    16. Nasser MW, Datta J, Nuovo G, et al. Down-regulation of micro-RNA-1(miR-1) in lungcancer. Suppression of tumorigenic property of lung cancer cells and their sensitization todoxorubicin-induced apoptosis by miR-1. J Biol Chem,2008;283(48):33394-33405.
    17. Xia L, Zhang D, Du R, et al. MiR-15b and miR-16modulate multidrug resistance bytargeting BCL2in human gastric cancer cells. Int J Cancer,2008;123(2):372-379.
    18. Rainer J, Ploner C, Jesacher S, et al. Glucocorticoid-regulated microRNAs and mirtronsin acute lymphoblastic leukemia. Leukemia,2009;23(4):746-752.
    19. Blower PE, Chung JH, Verducci JS, et al. MicroRNAs modulate the chemosensitivity oftumor cells. Mol Cancer Ther,2008;7(1):1-9.
    20. Fujita Y, Kojima K, Hamada N, et al. Effects of miR-34a on cell growth andchemoresistance in prostate cancer PC3cells. Biochem Biophys Res Commun,2008;377(1):114-119.
    21. Ji Q, Hao X, Meng Y, et al. Restoration of tumor suppressor miR-34inhibits humanp53-mutant gastric cancer tumorspheres. BMC Cancer,2008;8:266.
    22. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma,promotes apoptosis and suppresses tumorigenicity. Cancer Res,2009;69(3):1135-1142.
    23. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451in resistanceof the MCF-7breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther,2008;7(7):2152-2159.
    24. Gal H, Pandi G, Kanner AA, et al. MIR-451and Imatinib mesylate inhibit tumor growthof glioblastoma stem cells. Biochem Biophys Res Commun,2008;376(1):86-90.
    25. Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novelbiomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res,2008;68(24):10307–10314.
    26. Duale N, Lindeman B, Komada M, et al. Molecular portrait of cisplatin induced responsein human testis cancer cell lines based on gene expression profiles. Mol Cancer,2007;6:53.
    27. Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in humancolon cancer cells following exposure to5-fluorouracil in vitro. Pharmacol Res,2007;56(3):248-253.
    28. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene,2007;26(19):2799-2803.
    29. Bandres E, Cubedo E, Agirre X, et al. Identification by realtime PCR of13maturemicroRNAs differentially expressed in colorectal cancer and non-tumoral tissues. MolCancer,2006;5:29-38.
    30. Meng F, Henson R, Wehbe-Janek H. Etal. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3survival signaling in malignant human cholangiocytes. J Biol Chem,2007;282:8256–8264.
    31. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profilesof microRNAs in human pancreatic cancer cells. Mol Cancer Ther2008;7(3):464–73.
    32. Svoboda M, Izakovicova Holla L, Sefr R, et al. Micro-RNAs miR125b and miR137arefrequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer.Int J Oncol,2008;33(3):541-547.
    33. Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in humanperipheral blood microvesicles. PLoS One,2008;3(11): e3694.
    34. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-basedmarkers for cancer detection. Proc Natl Acad Sci USA,2008;105(30):10513-10518.
    35. Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA andproteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol,2008;10(12):1470-1476.
    36. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class ofbiomarkers for diagnosis of cancer and other diseases. Cell Res,2008;18(10):997-1006.
    37. Resnick KE, Alder H, Hagan JP, et al. The detection of differentially expressedmicroRNAs from the serum of ovarian cancer patients using a novel real-time PCRplatform. Gynecol Oncol,2009;112(1):55-59.
    38. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associatedmicroRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008;141(5):672-675.
    39. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumorderived exosomes asdiagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008;110(1):13-21.
    40. Hummel R, Hussey DJ, Haier J. MicroRNAs: Predictors and modifiers of chemo-andradiotherapy in different tumour types. European J Cancer,2010;46:298-311.
    1. Venkitaraman AR. Targeting the molecular defect in BRCA-deficient tumors for cancertherapy. Cancer Cell,2009;16:89-90.
    2. Fong PC, Boss DS., Yap TA., et al. Inhibition of poly(ADP-ribose) polymerase in tumorsfrom BRCA mutation carriers. N Engl J Med,2009;361:123-134.
    3. Belzile JP., Choudhury SA., Cournoyer D, et al. Targeting DNA repair proteins: apromising avenue for cancer gene therapy. Curr Gene Ther.2006;6(1):111-123.
    4. Fleck O, Nielsen O. DNA repair. J. Cell Sci,2004;117(4):515-517.
    5. Evans AR, Limp-Foster, M, Kelley MR. Going Ape over Ref-1. Mutat Res,2000;461(2):83-108.
    6. Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of Ape1/Ref-1more than a passive phenomenon? Antioxid Redox Signal,2005;7(3-4):367-384.
    7. Bapat MF, Kelley MR. Going Ape as an Approach to Cancer Therapeutics. AntioxidRedox Signal,2009;11(3):651-668.
    8. Tom S, Ranalli TA, Podust VN, Bambara RA. Regulatory roles of p21and apurinic/apyrimidinic endonuclease1in base excision repair. J Biol Chem,2001;276(52):48781-48789.
    9. Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E. The type of DNA glycosylasedetermines the base excision repair pathway in mammalian cells. J Biol Chem,1999;274(21):15230-15236.
    10. Fan J, Wilson III DM. Protein–protein interactions and posttranslational modificationsinmammalian base excision repair. Free Radic Biol Med,2005;38(9):1121-1138.
    11. Parsons JL, Dianova II, Dianov GL. Ape1is the major30-phosphoglycolate activity inhuman cell extracts. Nucleic Acids Res,2004;32(12):3531-3536.
    12. Chou KM, Cheng YC. An exonucleolytic activity of human apurinic/apyrimidinicendonuclease on mispaired DNA. Nature,2002;415(6872):655-659.
    13. Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll ZE, Fite A, Zhang H, Abrams J, Sarkar FH,Hillman GG. Down-regulation of apurinic/apyrimidinic endonuclease1/redox factor-1expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo.Cancer Res,2007;67(5):2141-2149.
    14. Yang S, Irani K, Heffron SE, Jurnak F, Meyskens Jr FL. Alterations in the expression oftheapurinic/apyrimidinic endonuclease1/redox factor-1(Ape/Ref-1) in human melanomaand identification of the therapeutic potential of resveratrol as an Ape/Ref-1inhibitor. MolCancer Ther,2005;4(12):1923-1935.
    15. Bhakat KK, Mantha AK, Mitra S. Transcriptional Regulatory Functions of MammalianAP-endonuclease (APE1/Ref-1), an Essential Multifunctional Protein. Antioxid RedoxSignal,2009;11(3):621-638.
    16. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1,is essential for early embryonic development in mice. Proc Natl Acad Sci U S A,1996;93:8919-8923.
    17. Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization ofAPE1/Ref-1:more than a passive phenomenon? Antioxid Redox Signaling,2005;7:367-384.
    18. Fung H, Bennett RA, Demple B. Key role of a downstream specificity protein1site incell cycle-regulated transcription of the AP endonuclease gene APE1/APEX in NIH3T3Cells. J Biol Chem,2001;276:42011-42017.
    19. Kakolyris S, Kaklamanis L, Engels K, Fox SB, Taylor M, Hickson ID, Gatter KC, HarrisAL. AP endonuclease1(HAP1) protein expression in breast cancer correlates with lymphnode status and angiogenesis. Br J Cancer,1998;77:1169-1173.
    20. Puglisi F, Barbone F, Tell G, Aprile G, Pertoldi B, Raiti C, et al. Prognostic role ofApe/Ref-1subcellular expression in stage I–III breast carcinomas. Oncol Rep,2002;9:11-17.
    21. Tell G, Pellizzari L, Pucillo C, Puglisi F, Cesselli D, Kelley MR, et al. TSH controlsRef-1nuclear translocation in thyroid cells. J Mol Endocrinol,2000;24:383-390.
    22. Moore DH, Michael H, Tritt R, Parsons SH, Kelley MR. Alterations in the expression ofthe DNA repair/redox enzyme APE/ref-1in epithelial ovarian cancers. Clin Cancer Res,2000;6:602-609.
    23. Wang D, Luo M, Kelley MR. Human apurinic endonuclease1(APE1) expression andprognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNAdamaging agents using silencing RNA APE1expression inhibition. Mol Cancer Ther,2004;3:679-686.
    24. Bobola MS, Blank A, Berger MS, Stevens BA, Silber JR. Apurinic/apyrimidinicendonuclease activity is elevated in human adult gliomas. Clin Cancer Res,2001;7:3510-3518.
    25. Kakolyris S, Giatromanolaki A, Koukourakis M, Kaklamanis L, Kanavaros P, Hickson ID,et al. Nuclear localization of human AP endonuclease1(HAP1/Ref-1) associates withprognosis in early operable non-small cell lung cancer (NSCLC). J Pathol,1999;189:351-357.
    26. Puglisi F, Aprile G, Minisini AM, Barbone F, Cataldi P, Tell G, et al. Prognosticsignificance of Ape1/ref-1subcellular localization in non-small cell lung carcinomas.Anticancer Res,2001;21:4041-4049.
    27. Wang D, Xiang DB, Yang XQ, Chen LS, Li MX, Zhong ZY, et al. APE1overexpressionis associated with cisplatin resistance in non-small cell lung cancer and targeted inhibitionof APE1enhances the activity of cisplatin in A549cells. Lung Cancer,2009;15:16.
    28. Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G,et al. Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) inhead-and-neck cancer is associated with resistance to chemoradiotherapy and pooroutcome. Int J Radiat Oncol Biol Phys,2001;50:27-36.
    29. Herring CJ, West CM, Wilks DP, Davidson SE, Hunter RD, Berry P, et al. Levels of theDNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1)are associated with the intrinsic radiosensitivity of cervical cancers. Br J Cancer,1998;78:1128-1133.
    30. Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM, et al.Alteredexpression of Ape1/ref-1in germ cell tumors and overexpression in NT2cells confersresistance to bleomycin and radiation. Cancer Res,2001;61:2220-2225.
    31. Sak SC, Harnden P, Johnston CF, Paul AB, Kiltie AE. APE1and XRCC1proteinexpression levels predict cancer-specific survival following radical radiotherapy inbladder cancer. Clin Cancer Res,2005;11:6205-6211.
    32. Di Maso V, Avellini C, Croce LS, Rosso N, Quadrifoglio F, Cesaratto L, et al. Subcellularlocalization of APE1/Ref-1in human hepatocellular carcinoma: possible prognosticsignificance. Mol Med,2007;13:89-96.
    33. Fritz G. Human APE/Ref-1protein. Int J Biochem Cell Biol,2000;32:925-929.
    34. Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, et al.Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res,2005;33:4711-4724.
    35. Guikema JE, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, et al.APE1-and APE2-dependent DNA breaks in immunoglobulin class switch recombination.J Exp Med,2007;204:3017-3026.
    36. Koll TT, Feis SS, Wright MH, Teniola MM, Richardson MM, Robles AI, et al.HSP90inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with baseexcision and ATM-mediated DNA repair. Mol Cancer Ther,2008;7:1985-1992.
    37. Bases RE, Mendez F. Topoisomerase inhibition by lucanthone, an adjuvant in radiationtherapy. Int J Radiat Oncol Biol Phys,1997;37:1133-1137.
    38. Del Rowe JD, Bello J, Mitnick R, Sood B, Filippi C, Moran J. Accelerated regression ofbrain metastases in patients receiving whole brain radiation and the topoisomerase IIinhibitor, lucanthone. Int J Radiat Oncol Biol Phys,1999;43:89-93.
    39. Liu L, Gerson SL. Therapeutic impact of methoxyamine: blocking repair of abasic sites inthe base excision repair pathway. Curr Opin Invest Drugs,2004;5:623-627.
    40. Taverna P, Hwang HS, Schupp JE, Radivoyevitch T, Session NN, Reddy G, etal.Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicityand radiosensitization. Cancer Res,2003;63:838-846.
    41. Anthony SP, Rosen LS, Weiss GJ, Gordon MS, Adams BJ, Gerson SL, et al. A phase Istudy of daily oral TRC102(methoxyamine) to enhance the therapeutic effects ofpemetrexed in patients with advanced refractory cancer. J Clin Oncol (Meeting Abstracts),2009;27:2552.
    42. Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M, et al. Highperformanceaffinity beads for identifying drug receptors. Nat Biotechnol,2000;18:877-881.
    43. Saitou Y, Shiraki K, Yamanaka T, Miyashita K, Inoue T, Yamanaka Y, et al.Augmentation of tumor necrosis factor family-induced apoptosis by E3330in humanhepatocellular carcinoma cell lines via inhibition of NF kappa B. World J Gastroenterol,2005;11:6258-6261.
    44. Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll ZE, Fite A, Zhang H, et al. Downregulationof apurinic/apyrimidinic endonuclease1/redox factor-1expression by soy isoflavonesenhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res,2007;67:2141-2149.
    45. Aziz MH, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: in vitro and invivo studies and the underlying mechanisms (review). Int J Oncol,2003;23:17-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700