金属硼化物体系纳米材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土六硼化物(RB6)由于特殊的结构使其具有一系列其它材料无法比拟的优良特性,比如功函数小、硬度大、熔点高、导电率高、热稳定性好、化学稳定强等。正是由于该材料具有良好的化学稳定性,用它制备的场发射器件性能稳定,使用寿命长,这是其具有广阔应用前景的重要原因之一,因此该系列材料广泛用于民用工业和国防工业。理论和实验表明金属硼化物纳米材料具有丰富的结构形态和优异的物理化学特性,但是稀土金属单质和硼单质都具有高熔点、高沸点的物理性质使得金属硼化物的合成比较困难。同时,如何方便、安全、低廉地制备大量、尺寸均匀、生长整齐、光滑且致密的稀土金属六硼化物和A182化合物的一维纳米材料,以及对它们性能的研究还比较少。
     本论文采用化学气相沉积工艺,在不同催化剂(Ni(NO3)2、Cu(NO3)2或Au)的催化作用下制备了一系列稀土金属六硼化物和二硼化铝的纳米管和纳米线,用X射线粉末衍射、拉曼光谱、场发射扫描电镜、透射电镜、电子能谱等分析技术对所制备的纳米材料进行了表征,并探讨了其生长机制。
     主要研究内容包括:
     (1)通过稀土金属镧(La)粉末和三氯化硼(BC13)气体反应,硝酸镍(Ni(NO3)2)或金(Au)为催化剂,在氢氩混合气氛下,成功地得到了大面积、排列整齐、尺寸均匀、表面光滑的六硼化镧(LaB6)纳米管和纳米线。用此方法制备大量、均匀的LaB6纳米管的工作属于首创。X射线粉末衍射结果表明所制备的样品为简单立方结构的六硼化镧,扫描电镜和透射电镜结果显示所制备的纳米管和纳米线都具有单晶结构,结晶性好,表面光滑而致密。对不同反应温度、反应时间和反应气体流量等因素对LaB6纳米管和纳米线生长的影响进行了研究,并探讨了LaB6纳米管和纳米线的生长机制。
     (2)首次分别用Ni(NO3)2或Au为催化剂,以金属钕(Nd)粉末、三氯化硼气体(BC13)作前驱体,采用CVD方法,在单晶Si片衬底上成功制备了大面积、尺寸均匀的NdB6纳米线。Ni(NO3)2催化法所制备的NdB6纳米线呈圆柱状,其长度超过20μm,直径大致有200nm、126nm、50nm等几个尺寸。高分辨透射和选区电子衍射分析结果显示,Ni(NO3)2催化法所制备的NdB6纳米线具有典型的孪晶结构。而Au催化生长的纳米线呈棱柱状的,其中有四棱柱状也有六棱柱状。在Ni(NO3)2或Au催化法制备NdB6纳米线的顶端都不同程度的观察到了金属颗粒,说明它们的生长过程是典型的VLS生长过程。
     对自催化法(即不用任何催化剂,以金属Nd粉与BC13直接反应)在单晶Si片衬底得到的大面积、排列整齐、尺寸一致、表面光滑的NdB6纳米线的场发射测试结果显示,NdB6纳米线是一种性能优良的场发射材料。该工作属于首创。
     (3)首次以金属镨(Pr)粉末、三氯化硼气体(BC13)作为前驱体,分别以Ni(NO3)2、 Cu(NO3)2或Au作为催化剂,在氢/氩混合气氛中反应,成功地制备了大面积、尺寸均匀的PrB6纳米线和纳米管。扫描电镜表明Ni(NO3)2或Cu(NO3)2作为催化剂所制备的PrB6纳米线长度超过20μm,直径约100nm。而Au作为催化剂制备出大量的PrB6纳米管,长度约1μm,直径约80~100nm,纳米管壁较薄约6.6nm,并且纳米管表面不光滑、不致密。
     (4)以金属铝(A1)粉末和三氯化硼气体(BC13)反应,Ni(NO3)2或Au作为催化剂,采用CVD工艺在氢/氩混合气氛中,成功地制备了大面积且尺寸均匀的A182纳米线。该工作属于首创。X射线粉末衍射所得到的结果表明样品是六角结构的AIB2单相。Ni(NO3)2作为催化剂所制备AlB2纳米线,直径约200nm,长度约几微米,表面光滑;喷金一次所制备的AlB2纳米线在硅基片上纵横交错,长度可达几十微米,直径约50nm,表面光滑,无分支结构。而喷金两次所制备的AlB2纳米线在硅基片上呈现出大量的、尺寸均匀的、生长方向整齐排列的特征。纳米线的直径约500~600nm,长度约几个微米,表面光滑,且每根纳米线顶端都有与纳米线同样尺寸的金催化剂颗粒存在。我们发现,无论是Ni(NO3)2还是Au作催化所制备AlB2纳米线在高压电子束的照射下都有分解变质的现象,并且随着加速电压的增大照射电子的能量增高对A182纳米线晶格结构形成了破坏,由晶态变成非晶态。在实验结果的基础上,结合常规纳米材料合成工艺的生长机制,讨论了AlB2纳米线的生长机制。
Rare-earth metal hexaboredes (RB6) have excellent physical and chemical properties, such as low work function, high hardness, high melting point, high conductivity, high thermic stability, high chemical stability, respectively. It can be used as the field emission cathode materials for high stability and longer life equipment due to their excellent chemical stability. Therefore, the RB6materials have extensive applications in the civil and national defence industry. Theories and experiments results reveal that the metal borides have abundant structural and excellent physical and chemical properties. However, it is more difficult to synthesize the metal borides because of the high melting and boiling point of rare-earth metal and boron. Until now, the research on the inexpensively, safely and conveniently synthesis and properties of RB6nanostructural meterials with a large-scal, well-aligned, and smooth and dense on surface is not widely carried out. To our best knowledge, no results on the synthesis of AlB2one-dimentional nanometerials has been reported yet.
     In this desertion, the RB6nanotubes and nanowires and AIB2nanowires were synthesised by chemical vapor deposition method under the assistance of diffirent catalysts (such as Ni(NO3)2, Cu(NO3)2or Au). The structure, morphology and field-emission properties were characterized using X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and field-emission measurement system. The growth mechanism of these nanotubes and nanowires was discussed.
     (1) Large-scale and uniform lanthanum hexaboredes (LaB6) nanotubes and nanowires have been successfully fabricated for the first time under the hydrogen and argon atmosphere, where lanthanum (La) powders and boron trichloride (BCl3) gas as the reactant and Ni(NO3)2or Au as the catalyst. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) indicate that the nanomaterials with smooth surfaces were single crystal lanthanum hexaboride with cubic structure. The preparation conditions of LaB6nanotubes and nanowires, such as reaction temperature, reaction time and the gas flow rate, were compared. The growth mechanism of LaB6nanotubes and nanowires was also discussed.
     (2)The column-like neodymium hexaboredes (NdB6) nanowires have been successfully fabricated for the first time using the Ni(NO3)2as the catalyst. The XRD patterns confirm that a single phase NdB6can be obtained under our experimental procedure. The result of scanning electron microscopy (SEM) show that the surfaces of nanowires under the assistance of Ni(NO3)2catalysts are smooth and the distribution of the diameters of nanowires are200nm,126nm,50nm, respectively. The results of the high resolution transmission electron microscopy (HRTEM) and selected area electronic diffraction (SAED) images clearly reveal that the neodymium hexaboride adopt the twin crystal. However, if Au was used as catalyst, NdB6nanowires obtained here have the morphologies of quadrangular and hexagonal prism.
     The Raman spectra and the field emission measurement were conducted for the first time with the neodymium hexaboride (NdB6) nanowires which has been fabricated using a catalysis-free method. The field emission of these one-dimensional NdB6nanowires shows that NdB6nanowires has the good performance for field emission.
     (3) A large-scale single-crystalline PrB6nanotubes and nanowires can be obtained using Pr and BCl3as starting materials and Ni(NO3)2, Cu(NO3)2or Au as the catalysts. The results of scanning electron microscopy (SEM) images show that PrB6nanowires obtained using Ni(NO3)2and Cu(NO3)2as the catalysts have the lenght of more20μm and the diameters about100nm. A large number of PrB6nanotubes can be obtained when using Au as the catalyst. The length of PrB6nanotubes obtained here can reach more than one micrometers, and the diameter is in the range of80~100nm..
     (4) Large-scale aluminum diboride (AIB2) nanowires have been successfully fabricated for the first time under the hydrogen and argon atmosphere, where aluminum (Al) powders and boron trichloride (BCl3) gas as the reactant and Ni(NO3)2or Au as the catalyst. The XRD patterns confirm that aluminum diboride obtained under our experimental procedure has hexagonal symmetry. The result of scanning electron microscopy (SEM) images show that the lenght of AlB2nanowires with smooth surface obtained using Ni(NO3)2as the catalyst can reach more than several micrometers and the diameters about200nm. The SEM images show that a large-scale, smooth and well-aligned AlB2nanowires were formed uniformly over the Si substrate when using Au as the catalyst. The AlB2nanowires have the length of several micronmeters with diameters in the range of500-600nm. The gold catalyst particles with same size as the diameters of AlB2nanowires can be observed on the top of each nanowire. HRTEM as well as the SAED resutls reveal that AlB2nanowires obtained in our experiments adopt single crystal structure, but it is unstable after exposing in air or under electron beam intensity. The growth mechanism dominated the AIB2nanowires growing process under this study was also discussed.
引文
[1]刘吉平,郝向阳,纳米科学与技术[M],北京:科学出版社,2002:3-6.
    [2]倪星元,沈军,张志华,纳米材料的理化特性与应用[M],北京:化学工业出版社,2005:2-5
    [3]简基康,化学气相沉积法制备半导体低维材料及其表征[D],北京:中国科学院研究生院博士学位论文,2004
    [4]许并社,纳米材料及应用技术[M],北京:化学工业出版社,2003:14-17
    [5]张立德,解思深,纳米材料和纳米结构—国家重大基础研究项目新进展[M],北京:化学工业出版社,2004:113-115
    [6]许军旗,金属六硼化物和γ-A1812化合物纳米结构的制备与表征[D],广东:华南理工大学博士学位论文,2008
    [7]王世敏,许祖勋,傅晶.纳米材料制备技术[M],北京:化学工业出版社,2002:145-211
    [8]Iijima S., Helical microtubules of graphitic carbon [J], Nature,1991,354:56-58.
    [9]Morales A., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires[J], Science,1998,279:208-210.
    [10]Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of semiconducting oxides[J], Science,2001, 291:1947-1952.
    [11]Han W. Q., Fan S. S., Li Q. Q., Hu Y. D., Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J], Science,1997,277:1287-1291.
    [12]Dai H. J., Wong E. W., Lu Y. Z., Fan S. S., Lieber C. M., Synthesis and characterization of carbide nanorods[J], Nature,1995,375:769-771.
    [13]Alok K., Neeraj K., Single-crystalline superconducting MgB2 nanowires[J], Supercond. Sci. Technol,2009,22:075017-075020.
    [14]Zhou Shaomin, Wang Peng, Li Sheng, Zhang Bin, Gong Hechun, Zhang Xingtang, Superconducting single crystalline MgB2 nanotubes[J], Materials Letters,2009, 63:1680-1682.
    [15]Xu Junqi, Zhao Yanming, Zou Chunyun, Self-catalyst growth of LaB6 nanowires and nanotubes[J], Chemical Physics Letters,2006,423:138-142.
    [16]Zhang Han, Zhang Qi, Tang Jie, Qin Luchang, Single-Crystalline LaB6 nanowires[J], J. Am. Chem. Soc.,2005,127:2862-2863.
    [17]Xu Junqi, Zhao Yanming, Zou Chunyun, Ding Qiwei, Self-catalyst growth of single-crystalline CaB6 nanostructures[J], Journal of Solid State Chemistry,2007, 180:2577-2580.
    [18]Amin S. S., Li Shuyou, Roth John R., Xu Terry T., Single Crystalline Alkaline-Earth Metal Hexaboride One-Dimensional (ID) Nanostructures:Synthesis and Characterization[J], Chem. Mater.2009,21:763-770.
    [19]Camurlua H. E., Magliab Filippo, Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis [J], Journal of the European Ceramic Society,2009,29:1501-1506.
    [20]Baharvandi H.R., Talebzadeh N., Ehsani N., Aghand F., Synthesis of B4C-Nano TiB2 Composite Powder by Sol-Gel Method [J], Journal of Materials Engineering and Performance,2009,18:273-277.
    [21]Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y, Akimitsu J., Superconductivity at 39K in magnesium diboride [J], Nature,2001,410 (6824):63-64.
    [22]Yang Qing, Sha Jian, Ma Xiangyang, Ji Yujie, Yang Deren, Aligned single crystal MgB2 nanowires[J], Supercond. Sci. Technol,2004,17:L31-L33.
    [23]Zheng S.Q., Min G.H, Zou Z.D., Yu H.S., Han J.D., Synthesis of calcium hexaboride powder via the reaction of calcium carbonate with boron carbide and carbon [J], Journal of the American Ceramic Society,2001,84:2725-2727.
    [24]Peschmann K.R., Calow J.T., Knauff K G., Diagnosis of the optical properties and structure of lanthanum hexaboride thin films[J], Journal of Applied Physics, 1973,44:2252-2257.
    [25]Kafadaryan E.A., Petrosyan S.I., Badalyan G. R., Harutyunyan S. R., Kuzanyan A. S., Optical characteristics of (La, Ce)B6 films deposited on silicon substrates by e-beam evaporation process [J]. Thin Solid Films,2002,416:218-223.
    [26]Oettinger P.E., Measured brightness of electron beams photoemitted from multicrystalline lanthanum hexaboride [J], Applied Physics Letters,1990,56:333-334.
    [27]Lafferty J.M. Boride cathodes [J], Journal of Applied Physics,1951,22:299-309.
    [28]Paderno Y, Paderno V., Shitsevalova N., Filippov V., The peculiarities of the structure formation in directionally crystallized eutectics EuB6-MeB2[J], Journal of Alloys and Compounds,2001,317:367-371.
    [29]Wolgast S., C. Kurdak, et al., Discovery of the First Topological Kondo Insulator: Samarium Hexaboride[J], arxiv1211.5104 (submitted on 21 Nov 2012, last revised 27 Nov 2012).
    [30]Reich E. S., Hopes surface for exotic insulator [J], Nature 2012,492:165-169.
    [31]Zhang Han, Zhang Qi, Tang Jie, Qin Luchang, Single-Crystalline CeB6 nanowires [J], J. Am. Chem. Soc.,2005,127:8002-8003.
    [32]Zhang Han, Zhang Qi, Zhao Gongpu, Tang Jie, Zhou Otto, Qin Luchang, Single-Crystalline GdB6 Nanowire Field Emitters [J], J. Am. Chem. Soc.,2005, 127:13120-13121.
    [33]Zhang Maofeng, Wang Xiaoqing, Zhang Xianwen, Wang Pengfei, Xiong Shenglin, Shi Liang, Qian Yitai, Direct low-temperature synthesisof RB6(R=Ce, Pr, Nd) nanocubes and nanoparticles[J], Journal of SolidState Chemistry,2009,182:3098-3104.
    [34]Zou Chunyun, Zhao Yanming, Xu Junqi, Synthesis of single-crystalline CeB6 nanowires [J], Journal of Crystal Growth,2006,291:112-116.
    [35]Ding Qiwei, Zhao Yanming, Xu Junqi, Zou Chunyun, Large scale synthesis of neodymium hexaboride nanowires by self-catalyst [J], Solid State Communications, 2007,141:53-56.
    [36]Xu J.Q., Zhao Y.M., Shi Z.D., Zou C.Y., Ding Q.W., Single-crystalline SmB6 nanowires [J], Journal of Crystal Growth,2008,310:3443-3447.
    [37]Xu Junqi, Chen Xiaolong, Zhao Yanming, Zou Chunyun, Ding Qiwei, Jian Jikang, Self-catalyst growth of EuB6 nanowires and nanotubes [J], Journal of Crystal Growth, 2007,303:466-471.
    [38]Xu Junqi, Chen Xiaolong, Zhao Yanming, Zou Chunyun, Ding Qiwei, Single-crystalline PrB6 nanowires and their field-emission properties[J], Nanotechnology,2007,18:115621-115625.
    [39]Xu Junqi, Zhao Yanming, Zhang Qinyuan, Enhanced electron field emission from single-crystalline LaB6 nanowires with ambient temperature[J], Journal of applied physics,2008,104:124306.
    [40]Zhang Qinyuan, Xu Junqi, Zhao Yanming, Ji Xiaohong, Lau Shuping, Fabrication of Large-Scale Single-Crystalline PrB6 Nanorods and Their Temperature-Dependent Electron Field Emission[J], Adv. Funct. Mater.,2009,19:742-747.
    [41]Xu Junqi, Zhao Yanming, Ji Xiaohong, Zhang Qinyuan, Lau Shupin., Growth of single-crystalline SmB6 nanowires and their temperature-dependent electron field emission[J], J. Phys. D:Appl. Phys.,2009,42:135403-135408.
    [42]Ronnebro E., Majzoub E.H., Calcium Borohydride for Hydrogen Storage:Catalysis and Reversibility [J]. Journal of Physical Chemistry B,2007,111:12045-12047.
    [43]Xu Junqi, Zhao Yanming, Zou Chunyun, Ding Qiwei, Self-catalyst growth of single-crystalline CaB6 nanostructures [J], Journal of Solid State Chemistry,2007, 180:2577-2580.
    [44]Amin Syed S., Li Shuyou, Roth John R., Xu Terry T., Single Crystalline Alkaline-Earth metal Hexaboride One-Dimensional(1D) Nanostructures:Synthesis and characterization[J], Chem. Mater.,2009,21:763-770.
    [45]《化学华工大辞典》编委会化学工业出版社辞书编辑部编,化学化工大辞典[M],北京:化学工业出版社,2003:1756
    [46]梁敬魁,相图与相结构(下册)[M],北京:科学出版社,1993:296-297.
    [47]杨序纲,吴琪琳,拉曼光谱的分析与应用[M],北京:国防出版社,2008:5-15
    [48][日]纳米技术手册编辑委员会编,纳米技术手册,王鸣阳,郭成言,葛璜,刘彬翻译,北京:科学出版社,2005:407-407.
    [49]Bragg W. L., The Diffraction of Short Electromagnetic Waves by a Crystal[J], Cambridge Philosophical Society,1912,17:43-57
    [50]Bragg W. H., The Reflection of X-rays by Crystals [J], Nature,1913,91:477-485
    [51]Bragg W. H., The Specular Reflection of X-Rays [J], Nature,1913,90:410-413
    [52]Bragg W. H., X-Rays and Crystals [J], Nature,1913,90:219-220
    [53]左演声,陈文哲,梁伟,材料现代分析方法[M],北京:北京工业大学出版社,2000:136-185
    [54]廖乾初,蓝芬兰,扫描电镜分析技术与应用[M],北京:机械工业出版社,1990:4-6
    [55]常铁军,祁欣,材料近代分析测试方法[M],哈尔滨:哈尔滨工业大学出版社,1999:139-156
    [56]奥特莱C.W.,扫描电子显微镜(仪器)[M],北京:机械工业出版社,1983:2-10
    [57]Fowler R.H., Nordheim L.W., Electron emission in intense electric fields [J], Proc. Roy. Soc. Lond. A,1928,119:173-175.
    [58]Araki H., Katayama T., Yoshino K., Field emission from aligned carbon nanotubes prepared by thermal chemical vapor deposition of Fe-phthalocyanine [J], Applied Physics Letters,2001,79:2636-2638
    [59]邹春云,CeB6纳米材料与YbB03纳米线的制备与表征(D),广州:华南理工大学硕士论文,2007:29-35
    [60]罗恩泽,徐力,刘卫东,场发射显示屏(FED)的基本原理及结构设计[J],现代显示,1997,10:4-12
    [61]刘学愙,阴极电子学[M],北京:科学出版社,1980:224-292
    [62]薛增泉,吴全德,电子发射与电子能谱[M],北京:北京大学出版社,1993:60-89
    [63]Latham R.V., Bayliss K.H., Cox B.M., Spatially correlated breakdown events initiated by field electron emission in vacuum and high-pressure SF6 [J], Journal of Physics D: Applied Physics,1986,19:219-231
    [64]Xu N.S., Latham R.V., Tzeng Y., Field-dependence of the area-density of "cold" electron emission sites on broad-area CVD diamond films [J], Electronics Letters,1993, 29:1596-1602
    [65]Xu N.S., Latham R.V., Tzeng Y., Similarities in the "cold" electron emission characteristics of diamond coated Mo electrodes and polished bulk graphite surfaces [J], Journal of Physics D:Applied Physics,1993,26:1776-1780
    [66]Xu N.S., Field emission from diamond and related films [J], Ultramicroscopy,1999, 79:59-72
    [67]Gehan A.J., Amaratunga S.R., Silva P., Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes [J], Applied Physics Letters,1996, 68:2529-2531
    [68]Kher S.S., SPENCER J.T., Chemical vapor deposition of metal borides 7, The relatively low temperature formation of crystalline lanthanum hexaboride thin films from boron hydride cluster compounds by chemical vapor deposition [J]. Journal of Physics and Chemistry of Solids,1998,59:1343-1351
    [69]Nakamoto M., Fukuda K., Field electron emission from LaB6 and TiN emitter arrays fabricated by transfer-mold technique [J], Applied Surface Science,2002,202:289-294
    [70]Zhang H., Zhang Q., Tang J., Qin L.C., Single-crystalline LaB6 nanowires [J], Journal of American chemical society,2005,127:2862-2863.
    [71]Zhang H., Tang J., Zhang Q., Zhao G.P., Yang G., Zhang J., Zhou O., Qin L.C., Field emission of electrons from single LaB6 nanowires [J], Advanced Materials,2006, 18:87-91
    [72]Zhang H., Tang J., Zhang Q., Zhou O., Qin L. C., An in situ TEM Study of Field Emission of Electrons from LaB6 Nanowires [J], Microsc Microanal,2007,13:780-781
    [73]Bakkers E.P.A.M., Verheijen M.A., Synthesis of InP Nanotubes, J. Am. Chem. Soc., 2003,125:3440-3445
    [74]Snoeck J. W., Froment G. F., Fowles J., Kinetic Study of the Carbon Filament Formation by MethaneCracking on a Nickel Catalyst, JOURNAL OF CATALYSIS,1997, 169:250-262.
    [75]Jeong J., Choi S.P., Chang C.I., Shin D.C., Park J.S., Lee B.T., Park Y.J., Song H.J., Photoluminescence properties of SnO2 thin films grown by thermal CVD[J], Solid State Communications,2003,127:5959-597.
    [76]姚连增,晶体生长基础[M],北京:中国科学技术大学出版社,1995:50-55。
    [77]Hartman P., Perdok W.G., On the Relation between structure and morphology of crystal. I[J], Acta cryst.,1955,8:49-52.
    [78]Hartman P., Perdok W.G., On the Relation between structure and morphology of crystal. Ⅱ[J], Acta cryst.,1955,8:49-52.
    [79]Hartman P., Perdok W.G., On the Relation between structure and morphology of crystal. III[J], Acta cryst.,1955,8:49-52.
    [80]Xia Y., Yang P., Sun Y., Wu Y, Mayers B., Gates B., Yin Y, Kim F., Yan H., One-dimentional nanostructures:synthesis characterization and applications[J], Advanced Materials,2003,15:353-389.
    [81]Song J., Messer B., Wu Y, Kind H., Yang P., MMo3Se3(M=Li+, Na+, Rb+, Cs+, Me4+) nanowire formation via cation exchange in organic solution[J], J. Am. Chem. Soc., 2001,123:9714-9715.
    [82]Gates B., Yin Y, Xia Y, A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30nm[J], J. Am. Chem. Soc.,2000,122:12582-12583.
    [83]Mayer B., Xia Y, Formation of tellurium nanotubes through concentrantion depletion at the surgaces of seeds[J], Advanced Materials,2002,14:279-282.
    [84]Dai H.J., Wong E.W., Lieber C.M., et al., Synthesis and characterization of carbide nanorods[J], Nature,1995,357:769-772.
    [85]Han W., Fan S., Li Q., Hu Y, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J], Science,1997,277:1287-1289.
    [86]Cheng G.S., Zhang L.D., Zhu Y, Fei G.T., Li L., Mo C.M., Mao Y.Q., Large-scale synthesis of single crystalline gallium nitride nanowires[J], Appl. Phys. Lett.,1999, 75:2455-2457.
    [87]Morales A.M., Lieber C.M., A laser ablation method for the synthesis of crystalline semiconductor nanowires[J], Science,1998,279:208-211.
    [88]Duan X.F., Lieber C.M., General synthesis of compound semiconductor nanowires[J], Advanced Materials,2000,12:298-302.
    [89]Duan X.F., Lieber C.M., General synthesis of compound semiconductor nanowires[J], J. Am. Chem. Soc.,2000,122:188-189
    [90]Yang P., Lieber C.M., Nanorod superconductor composites:a pathway to materials with high critical current densities [J], Science,1996,273:1836-1840.
    [91]Yang P., Lieber C.M., Columnar defect formation in nanorod T12Ba2Ca2Cu3O2 superconducting composites [J], Appl. Phys. Lett.,1997,70:3158-3160.
    [92]Wagner R.S., Ellis W. C., Vapor-liquid-solid mechanism of single crystal growth [J], Applied Physics Letters,1964,4:89-90
    [93]张亚利,郭玉国,孙典亭,纳米线研究进展(1):制备与生长机制[J],材料科学与工程,2001,19(1):131-136
    [94]Zhang Z, Blom D.A., et al, High-yield solvothermal formation of magnetic CoPt alloy nanowires[J], J. Am. Chem. Soc.,2003,125:7528-7530.
    [95]Goldberger J., Her., et al., Single-crystal gallium nitride nanotubes [J], Nature,2003, 422:599-602.
    [96]Dai Z.R., Gole J.L., et al., Tin oxide nanowires, nanoribbons, and nanotubes [J], J. Phys. Chem. B,2002,106:1274-1276.
    [97]Zhang D., Sun L., et al., Low-temperature fabrication of highly crystalline SnO2 nanorods[J], Adv. Mater.,2003,15:1022-1025.
    [98]Murphy C.J., Jana N.R., Controlling the aspect ratio of inorganic nanorods and nanowires[J], Adv. Mater.,2000,14:80-85.
    [99]Duan X., Lieber C.M., Genenal synthesis of compound semiconductor nanowires[J], Adv. Mater.,2000,12:298-302.
    [100]Sone E.D., Zubarev E.R., Semiconductor nanohelices templates templated by supramolecular ribbons [J]. Angew. Chem. Int. Ed.,2002,41:1706-1709.
    [101]Wang Z.L., Characterizing the structure and properties of individual wire-like nanoentities[J], Adv. Mater.,2000,12:1295-1230.
    [102]Chung S.W., Yu J.Y., Heath J.R., Silicon nanowire devices [J], Appl. Phys. Lett.,2000, 76:2068-2071.
    [103]Bockrath M., Cobden D.H., et al., Single-electron transport in ropes of carbon nanotubes[J], Science,1997,275:1922-1925.
    [104]徐光宪,稀土[M],第二版,北京:冶金工业出版社,1995:20-25.
    [105]Zhang H, Zhang Q, Tang J, Qin L C., Single-crystalline CeB6 nanowires [J], J. Am. Chem. Soc.,2005,127:8002-8003.
    [106]Zhang H, Zhang Q, Tang J, Qin L C., Single-crystalline LaB6 nanowires [J], J. Am. Chem. Soc.,2005,127:2862-2864.
    [107]Zhang H, Tang J, Zhang Q, Zhao G P, Yang G, Zhang J, Zhou O, Qin L C., Feild emission of electrons from single LaB6 nanowires[J]. Adv. Mater.,2006,18:87-88.
    [108]Zhang H, Zhang Q, Zhao G P, Tang J, Zhou O, Qin L C., Single-crystalline GdB6 nanowire field emitters [J]. J. Am. Chem. Soc.,2005,127:13120-13122.
    [109]Brewer J.R., Deo N., Wang Y.M., Cheung C.L., Lathanum hexaboride nanoobelisks [J], Chem. Mater.,2007,19:6379-6382.
    [110]Xu Junqi, Zhao Yanming, Zou Chunyun, Self-catalyst growth of LaB6 nanowires and nanotubes[J], Chem. Phys. Lett.,2006,423:138-142.
    [111]Li J.F., Lu G.Z., Xie B.G., Wang Y.Q., Guo Y., Guo Y.L., Nano-preparation promoting effectively luminescent properties of one-dimensional rare earth oxides [J], Journal of Rare Earths,2012,30:1096-1101.
    [112]Zheng S.Q., Min G.H., Zou Z.D., Yu H.S., Han J.D., Synthesis of calcium hexaboride powder via the reaction of calcium carbonate with boron carbide and carbon [J], J. Am. Ceram. Soc.,2001,84:106-110.
    [113]Hacker H., Lin Jr.M.S., Magnetic susceptibility of neodymium hexaboride [J], Solid State Communications,1968,6:379-381.
    [114]McCarthy C. M., Tompson C.W., Magnetic structure of NdB6 [J], Journal of Physics and Chemistry of Solids,1980,41(12):1319-1321
    [115]Anisimov M.A., Bogach A.V., Glushkov V.V., et al., Low temperature magnetotransport in RB6 (R=Pr, Nd) [J], Journal of Physics:Conference Series,2009, 150:042005-042007.
    [116]Anisimov M.A., Bogach A.V., Glushkov V.V., Hall Effect in LaB6 and NdB6 [J], Solid State Phenomena,2009,525:152-153.
    [117]Ding Qiwei, Zhao Yanming, Xu Junqi, et al., Large-scale synthesis of neodymium hexaboride nanowires by self-catalyst [J], Solid State Communications,2006, 141(2):53-56.
    [118]Liu Y., Lu W.J., Qin J.N., et al., A new route for the synthesis of NdB6 powder from NdO-BC system [J], Journal of Alloys and Compounds,2007,431:337-341.
    [119]Wang Gonghua, Brewer Joseph R., Chan Jie Ying, et al., Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition [J], Journal of Physical Chemistry C,2009,113(24):10446-10451.
    [120]Zhao Y.M., Ouyang L.S., Zou C.Y., Xu J.Q., Dong Y.Z., Fan Q.H., Field emission from single-crystalline CeB6 nanowires [J], J. Rare Earth,2010,28:424-426
    [121]Wang K.R., Lin S.J., Tu L.W., Chen M, Chen Q.Y., InN nanotips as excellent field emitters [J], Appl. Phys. Lett.,2008,92:123105-123108.
    [122]Ji X.H., Lau S.P., Yang H.Y., Yu S.F., Aligned InN nanofingers prepared by the ion-beam assisted filtered cathodic vacuum arc technique [J], Nanotechnology,2005, 16:3069-3072.
    [123]Schmidt P.H., Longinotti L.D., Joy D.C., Ferris S.D., Leamy H.J., Fisk Z.J., Design and optimization of directly heated lanthanum hexaboride cathode assemblies for electron-beam instruments [J], Vac. Sci. Technol.,1978,15:1554-1560.
    [124]Zhou X.T., Lai H.L., Peng H.Y., Au F.C.K., Liao L.S., Wang N., Bello I., Lee C.S., LeeS.T., Thin β-SiC nanorods and their field emission properties [J], Chemical Physics Letters,2000,318:58-62
    [125]Liu C., Hu Z., Wu Q., Wang X.Z., Chen Y, Sang H., Zhu J.M., Deng S.Z., Xu N.S., Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones[J], Journal of the American Chemical Society,2000,127:1318-1322
    [126]Otani S., Nakagawa H., Nishi Y, Kieda N., Floating zone growth and high temperature hardness of rare-earth hexaboride crystals:LaB6, CeB6, PrB6, NdB6, and SmB6[J], Journal of Solid State Chemistry,2000,154(1):238-241
    [127]Okada S., Imai Y., Atoda T., Growth and properties of praseodymium hexaboride and neodymium hexaboride single crystals [J], Yogyo Kyokaishi,1982,90:380-90
    [128]Meschel S.V., Kleppa O.J., Standard enthalpies of formation of some borides of Ce, Pr, Nd and Gd by high-temperature reaction calorimetry [J], Journal of Alloys and Compounds,1995,221(1-2):37-41
    [129]Bliznakov G., Peshev P., Preparation of cerium, praseodymium, and neodymium Hexaborides[J], Journal of the Less-Common Metals,1964,7(6):441-446
    [130]Samsonov G.V., Paderno Yu.B., Fomenko V. S., Hexaborides of rare earth Metals [J], Poroshkovaya Metals,1963,3(6):24-31
    [131]Kudintseva G.A., Epelbaum V.A., Tsarev B. M., Synthesis of hexaborides of some rare earth metals and their electron-emission properties [J], Trudy Konf.,1956,1955:112-19
    [132]Decker R.W., Stebbins D.W., Photoelectric work functions of the borides of lanthanum, praseodymium and neodymium [J], Journal of Applied Physics,1955,26:1004-1009
    [133]Davis P.R., Gesley M.A., Schwind G.A., Swanson L.W., Hutta J.J., Comparison of thermionic cathode parameters of low index single crystal faces of lanthanum hexaboride, cerium hexaboride and praseodymium hexaboride [J], Applied Surface Science,1989,37:381-394
    [134]申泮文,王积涛,化合物词典[M],上海:上海辞书出版社,2002:20-22
    [135]Samsonov G.V., Serebiakova T.T., Nezonov Y.A., Borides [M], Moscow:Atomizdat, 1975:50-55
    [136]韩秀峰,李光友,张亚平,A1B2化合物形态的形成机制[J],特种制造及有色金属,2000,6:21-23
    [137]Stiller W., Ingenlath T., Industrial Boron Treatmentof Aluminium Conductor Alloys and Its Influence on Grain Refinement and Electrical Conductivity [J], Aluminium,1984, 60:E577-E580.
    [138]Cooper P.S., Kearns M.A., Removal of transition metal impurities in aluminum melts by boron additives [J], Mater. Sci. Forum,1996,217:141-146
    [139]Deppisch C., Liu G., Shang J.K., Economy J., Effect of cooling rate on the crystallization of AlB2 flakes in Al composites [J], Mater. Sci. Eng A,1997,225, 153-161.
    [140]Villars P., Calvert L.D., Persons's Handbook of Crys-tallographic Data for Intermetallic Phases [M], American Society for Metals, Materials Park, Ohio, second edition, 1997:22-28.
    [141]Funk H., The conditions for the formation of the aluminium borides [J], Zeitschrift fuer Anorganische und Allgemeine Chemie.,1925,142:269-279.
    [142]Steele B.D., Mills J.E., The hydrides of boron [J], J. Chem. Soc.,1930,74-79
    [143]Edward J. Felten, The Preparation of Aluminum Diboride AlB2, J. Am. Chem. Soc.,1956,78(23):5977-5978
    [144]Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J., Superconductivity at 39 K in magnesium diboride [J], Nature 2001,410:63-64.
    [145]Sirtl E., Woerner L.M., Preparation and Properties of Aluminium Diboride Single Crystals [J], Journal of Crystal Growth 1972,16(3):215-218.
    [146]Loa I., Kunc K., Syassen K., Bouvier P., Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2[J], Phys. Rev. B,2002,66:134101-134104.
    [147]Jin S., Shim J., Cho Y., Yi K., Zabara O., M. Fichtner, Reversible hydrogen storage in LiBH4-Al-LiH composite powder [J], Scripta Materialia,2008,58:963-965.
    [148]Kang X.D., Wang P., Ma L.P., Cheng H.M., Reversible hydrogen storage in LiBH4 destabilized by milling with Al[J], Appl. Phys. A,2007,89:963-969.
    [149]Siegel D.J., Wolverton C., Ozolins V., Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and their Application to Destabilized Hydride Mixtures [J], Phys. Rev. B,2007,76:134102-134106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700