水生植物对水中磺胺嘧啶和左炔诺孕酮去除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机药物污染物是一类新兴的微污染物,其中以激素类和抗生素类药物最为典型。这些药物微污染物正对人类健康和水生生态系统安全产生持久的、潜在的威胁。然而常规的污水处理技术无法有效去除这类物质,一些高级氧化处理技术虽然可以有效去除这类物质,但成本高,且容易造成二次污染。植物修复技术具有造价低、处理简单、生态效应好等优点,在有机药物污染治理方面具有很大潜力。目前将水生植物应用于有机药物污染治理,尤其是水体中抗生素和激素类微污染药物处理方面的研究报道都还很鲜见。本课题通过实验研究,对水生植物去除左炔诺孕酮和磺胺嘧啶两种有机药物的去除效率和去除机理进行了探索,为日后水体中有机药物的去除提供参考。
     研究通过定期检测水溶液中左炔诺孕酮(LNG)和磺胺嘧啶(SD)两种药物的含量,比较四种水生植物风车草、凤眼莲、水生美人蕉、菖蒲对两种药物的表观去除率,从中优选出了去除率较好的两种植物风车草和凤眼莲,进一步研究水生植物对两种有机药物的去除机理。机理研究中通过分析两种药物在水溶液、植物根表面、根茎叶各部位浓度、系统内药物物料平衡及环境中各种物理化学指标的变化情况,探讨植物去除、微生物分解、光解等各种作用的权重因子以及植物对药物的去除方式。
     研究发现,风车草和凤眼莲根表面或根组织内LNG的分解、转化等代谢作用是水溶液中LNG去除的主要方式,并且植物数量的增加可以提高溶液中LNG的去除率,缩短去除时间。光照和微生物对左炔诺孕酮的去除作用较小。植物去除作用中,根表面和体内LNG残留量较少,仅占植物LNG去除总量的2.09±0.51% ~21.30±3.05%(风车草)和2.09±0.51% ~21.30±3.05%(凤眼莲)。
     光照条件下,水中SD的主要去除作用是光解,植物对SD的去除率较小,但植物的存在可以提高水中SD的去除率,缩短去除时间。遮光条件下,植物是水溶液中SD的主要去除因素,微生物等其他因素对SD的去除作用较小。风车草和凤眼莲去除SD的主要方式是植物根部从水溶液中吸收SD,并由根通过茎运输到叶,在叶组织内转化为代谢产物被植物利用或挥发到空气中。根表面和体内残留量在植物SD去除总量中所占比例较少,仅为0.42±0.09%~3.23±0.42%(风车草)和0.21±0.07%~4.13±1.40%(凤眼莲)。
Organic pharmaceutical pollutants are new classes of micro-pollutants,in which steroids and antibiotics are most typical. These micro-pollutants are generating persistent and potential threats to human health and security of aquatic ecological system. However, conventional treatments cannot remove these pollutants effectively from water, some advanced oxidation process technologies can effectively remove them, but the cost is too much and these technologies are liable to cause secondary pollution. Phytoremediation has advantages of low cost, simple operation and friendly ecological effects, which has great potential in the pollution prevention of organic pharmaceuticals. Nowadays, there are limited reports on the using of aquatic plants into pollutants prevention of organic pharmaceutical, especially of micro-pollutants as steroids and antibiotics in water. This research discussed about the removal rate and removal mechanisms of levonorgestrel (LNG) and sulfadiazine (SD) in aqueous solutions with aquatic plants by experiments, providing references of organic pharmaceutical removal in water for future.
     By termly detecting concentrations of the two drugs in aqueous solutions, this research had compared the removal rates of levonorgestrel and sulfadiazine separately with four aquatic plants including cyperus alternifolius, eichhornia crassipes, canna glauca and calamus, from which cyperus alternifolius and eichhornia crassipes were picked out due to better removal rates, and removal mechanisms of the two drugs were studied with the selected aquatic plants for further. In the mechanism study, concentrations of LNG and SD in the aqueous solutions, root surfaces, plant bodies, balance of drugs in reactors as well as some physical and chemical indices in the environment were analyzed separately in order to analyze contributions of each removal factors of drugs including plant removal, microbiological degradation, photodecomposition etc., removal ways of the drugs by the plants were analyzed as well.
     It was found that the main removal ways of LNG in aqueous solutions were due to the metabolism including decompose or phytotransformation on the root surfaces or in the roots of cyperus alternifolius and eichhornia crassipes, and the amount increase of the plants can improve the removal rate and reduce exist time of LNG in aqueous solutions. Photolysis and microbiological degradation of LNG was weaker. In the process of plant removal, quantities of LNG on the root surfaces and in the roots were less, only taking 2.09±0.51%~21.30±3.05% of the total LNG removed by cyperus alternifolius, and 2.09±0.51%~21.30±3.05% of the total LNG removed by eichhornia crassipes.
     Under sunlight condition, the main removal ways of SD in aqueous solutions was photolysis, contributions of the plants removal were weaker, but the performance of the plants can improve removal rate and reduce exist time of SD in aqueous solutions. In shading condition, plants were the main SD removal factors in aqueous solutions, removal factors such as photolysis and microbiological degradation were weaker. The main SD removal ways of cyperus alternifolius and eichhornia crassipes were that SD was taken up by the plant roots, and transported to the leaves via stem, in the leaves SD was metabolized and became compositions of leaves or volatilized into air through leaves. Quantities of SD on the root surfaces and in the roots were less, only taking 0.42±0.09%~3.23±0.42% of the total SD removed by cyperus alternifolius, and 0.21±0.07%~4.13±1.40% of the total SD removed by eichhornia crassipes.
引文
[1] P. Bottoni, S. Caroli, A. Barra Caracciolo. Pharmaceuticals as priority water contaminants. Toxicological & Environmental Chemistry, 2010, 92(3): 549-565.
    [2]葛林科,张思玉,谢晴.抗生素在水环境中的光化学行为[J].中国科学:化学, 2010, 40(2):124 -135.
    [3]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生物毒性[J].生态学报, 2006, 26(1):260-270.
    [4] Reddersen. K, T. Heberer, U. Dunnbier. Identification and significance of phenazone drugs and their metabolites in ground and drinking water. Chemosphere, 2002, 49: 539-44.
    [5]刘锋,陶然,应光国等.抗生素的环境归宿与生态效应研究进展[J].生态学报, 2010, 30(16): 4503 -4519.
    [6] Yuegang Zuo, Kai Zhang. Occurrence and photochemical degradation of 17a-ethinylestradiol in Acushnet River Estuary. Chemosphere, 2006, 63:1583-1590.
    [7] Jones, O. A, N. Voulvoulis, J. N. Lester. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 2002, 36: 5013-22.
    [8] Brown K D, Kulis J, Thomson B et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.Science of the Total Environment, 2006, 366( 2 /3) : 772-783.
    [9] Holm, J. V. , Ruegge, et al. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark)[J]. Environ. Sci. Technol, 1995, 29:1415-1420.
    [10] Sara Rodriguez-Mozaz, Maria J. López de Alda, DamiàBarceló. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatography A, 2004, 1045:85-92.
    [11] Zuccato. E. , D. Calamari, M. Natangelo, et al. Presence of therapeutic drugs in the environment. Lancet, 2000, 355: 1789-1790.
    [12] Kolpin, D. W. , E. T. Furlong, M. T. Meyer, et al. Pharmaceuticals, hormones, and other wastewater contaminants in U. S. streams. 2002. 1999–2000: A national reconnaissance. Environmental Science and Technology 36: 1202-11.
    [13] Sang D. Kima, Jaeweon Choa, In S. Kim et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. WaterResearch, 2007, 41: 1013-1021.
    [14] Hirsch. R. , Ternes. T. , Haberer. K. , et al Occurrence of antibiotics in the aquatic environment. Sci. Total Environ, 1999, 225:109-118.
    [15] Angela Yu-Chen Lin, Tsung-Hsien Yu, Cheng-Fang Lin. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 2008, 74: 131-141.
    [16] Bauqros. Jean-Baptiste, Flament-Waton, Marie-Magdeleine, et al. Analytical methods for the determination of selected steroid sex hormones and corticosteriods in wastewater. Analytical and Bioanalytical Chemistry, 2007, 387(6):2143-2151.
    [17]叶计朋,邹世春,张干.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境. 2007, 16 (2):384-388.
    [18]刘小云.重庆市水环境中抗生素污染与微生物抗生素耐药性研究[D].重庆:第三军医大学劳动卫生与环境卫生学系. 2005.
    [19] Li Sun, Wei Yong, Xiaogan Chu et al. Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A. 2009, 1216: 5416-5423.
    [20] Chun Pua, Ya-Fei Wua, Hong Yang. Trace analysis of contraceptive drug levonorgestrel in wastewater samples by a newly developed indirect competitive enzyme-linked immunosorbent assay (ELISA) coupled with solid phase extraction. Analytica Chimica Acta, 2008, 628:73-79.
    [21] Lindsey. M. E. , Meyer. M. , Thurman. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem, 2001, 73:4640-4646.
    [22] R. P. Brown, R. D. Greer, E. M. Mihaic. A critical review of the scientific literature on potential endocrine-mediated effects in fish and wildlife. Ecotoxicology and Environmental Safety, 2001, (49): 17-25.
    [23] R. S. S. WU. Eutrophication, Water Borne Pathogens and Xenobiotic Compounds: Environmental Risks and Challenges. Marine Pollution Bulletin, 1999, 39(1-12): 11-22.
    [24] Fatima Tamtama, Fabien Mercier, Barbara Le Bot. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science of theTotal Environment, 2008, 393:84-95.
    [25] Chun Pu, Ya-Fei Wu, Hong Yang, et al. Trace analysis of contraceptive drug levonorgestrel inwastewater samples by a newly developed indirect competitive enzyme-linked immunosorbent assay (ELISA) coupled with solid phase extraction [J]. Analytica Chemica Acta, 2008, 628(17): 73-79.
    [26] Marinella Farr′e, Marina Kuster, Rikke Brix, et al. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time off light mass spectrometry for part-per-trillion analysis of estrogens in water samples [J]. Journal of Chromatography A, 2007, 1160(10): 166-175.
    [27] Maria. Lopez de Alda, Damia Barcelo. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection–mass spectrometry [J]. Journal of Chromatography A, 2000, 892(15): 391-406.
    [28] D. Fatta, A. Nikolaou, A. Achilleos, et al. Analytical methods for tracing pharmaceutical residues in water and wastewater [J]. Trends in Analytical Chemistry, 2007, 26(6): 515-533.
    [29] Emmanuelle Vulliet, Jean-Baptiste Baugros, Marie-Magdeleine Flament-Waton. Analytical methods for the determination of selected steroid sex hormones and corticosteriods in wastewater [J]. Anal Bioanal Chem, 2007, 387(6): 2143-2151.
    [30] David Matˇej′(?)ˇcek, Vlastimil Kub′aˇ. High performance liquid chromatography/ion-trap mass spectrometry for separation and simultaneous determination of ethynylestradiol, gestodene, levonorgestrel, cyproterone acetate and desogestrel [J]. Analytica Chimica Acta, 2007, 588(2): 304-315.
    [31] Dawn Reinhold, Saritha Vishwanathan, Jung Jae Park, et al. Assessment of plant-driven removal of emerging organic pollutants by duckweed [J]. Chemosphere, 2010, 80:687-692.
    [32]刘建武,林逢凯,王郁.水生植物净化萘污水能力研究[J].上海环境科学, 2002, 21(7):412-415.
    [33] Justinam. Fisher, Jamesg. Reese, Perryj. Pellechia. Role of Fe(III), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment [J]. Environ. Sci. Technol, 2006, 40, 2200-2205.
    [34]熊叶丹,万树青.水体中环境激素的种类与危害[J].广州化工, 2010, 38(1):167-190.
    [35]庆海,阳娟,武菊英等. 3种挺水植物对水体中毒死蜱去除的过程和效率分析[J].农业环境科学学报, 2010, 29(4):769-772.
    [36]刘锋,陶然,应光国.抗生素的环境归宿与生态效应研究进展[J].生态学报, 2010, 30(16): 4503- 4519.
    [37]王晓祎,张哲海,胡伟等.利用报告基因试验检测饮用水源的内分泌干扰活性[J].生态毒理学报, 2009, 4(5): 32(4):10-14.
    [38]徐维海,张干,邹世春.典型抗生素类药物在城市污水处理厂中的含量水平及行为特征[J]环境科学, 2007, 28(8): 1779-1783.
    [39] O. A. H. Jones, J. N. Lester, N. Voulvoulis. Pharmaceuticals: a threat to drinking water? Trends Biotechnol, 2005, 23(4) :163-167.
    [40] Paterson, S. , Mackay, D. , Bacci, E. Correlation of the Equilibrium and Kinetics of Leaf Air Exchange of Hydrophobic Organic Chemicals Environ. Sci. Technol, 1991, 25, 866-871.
    [41] M. F. Rahmana, E. K. Yanful, S. Y. Jasim . Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their emoval from drinking water: Challenges in the context of the developing world. Desalination, 2009, 248 :578-585.
    [42]程爱华,王磊,王旭东.纳滤膜去除水中微量酚类雌激素的试验研究.中国给水排水, 2007, 23(19):73-76.
    [43] Nghiem L D, Schafer A, Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes [J]. Environmental Scienceand Technology, 2005, 39(19): 7698-7705.
    [44] Hoigne J, B ader H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions [J]. Water Research, 1976, 5:377-386.
    [45]程沧沧,付洁媛,岳茜. TiO2薄膜光催化降解邻苯二甲酸乙酯的研究[J].环境科学与技术, 2005, 28(4):39-42.
    [46] Franziskal L, Jef, David K.Degradalion of macrolide antibiotics by ozone:A mechanistic case study with clarithromycin [J]. Chemosphere, 2006, 65:l7-23.
    [47] Wojciech B, Jolanta S, Wladyslaw. Toxicity biodegradability of sulfonamides and products of their photocataIytic degradation in aqueous [J]. Chemosphere, 2006, 65:1295-1299.
    [48] Yang G P, Zhao X K, SUN X J. Oxidative degradation of diethyl phthalate by photo- chemically-enhanced Fenton reaction [J]. Journal of Hazardous Materials, 2005, 126 :112~118.
    [49] Oliver B, Gilles M, Mich, L E B. Degradation of dibutyl phthalate by homogeneous photo catalysis with Fe (Ⅲ) in aqueous solution [J]. Appl. Catal. B: Environmental, 2001, 33(1): 239-248.
    [50]解清杰,马涛,陆晓华,等.六氯苯污染沉积物的电Fenton方法处理的初步研究[J].华中科技大学学报(自然科学版), 2005, (3): 126-128.
    [51] Asha A. Juwarkar, Sanjeev K. Singh, Ackmez Mudhoo. A comprehensive overview of elements in bioremediation [J]. Rev Environ Sci Biotechnol, 2010, 9:215-288.
    [52] Chang, P. B. L, T. M. Young. Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment. Water Research, 2000, 34(8):2233-2240.
    [53]刘音,张升堂.被污染水体的植物修复技术研究进展[J].安徽农业科学, 2009, 37(15): 7147-7149.
    [54]董建新.植物修复—新兴的环境污染治理技术[J].生物学教学, 2007, 32(5): 6-7.
    [55] Zodrow J J. Recent applications of phytoremediation technologies [J]. Remediatiom, 1999, 9:29-36.
    [56]周云龙.植物生物学[C].北京:高等教育出版社. 1999, 22.
    [57]田淑嫒,王景峰,朗铁柱,等.水生维管束植物处理污水及其综合利用[J].城市环境与城市生态. 2000, 13(6): 54-56.
    [58]吴建强,黄沈发,丁玲.水生植物水体修复机理及其影响因素[J].水资源保护, 2007, 23(4):18-22.
    [59] Donnelly P K, JS Fletcher. PCB metabolism by ectomycorrhizal fungi. 1995, 54:507-513.
    [60]蓝俊康.植物修复技术在污染治理中的应用现状[J].地质灾害与环境保护, 2004, 15(1):46-51.
    [61]张冬冬,肖长来,梁秀娟.植物修复技术在水环境污染控制中的应用[J].水资源保护, 2010, 26(1): 63-65.
    [62]旷远文,温达志,钟传文.根际分泌物及其在植物修复中的作用[J].植物生态学报. 2003, 27(5): 709-717.
    [63]李顺义,张从良,王岩.磺胺类药物水溶解度的测定与关联[J].计算机与应用化学. 2009, 26(10): 1349-1352.
    [64]孙铁珩,周启星,李培军. Pollution Ecology 2001.
    [65] Simonich ST, Hites RA. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Phytoremediation-Technology Evaluation. 1994, 05.
    [66] Schnoor JL, Licht LA, Mccutcheon SC. Phytoremediation of organic and nutrient contaminants. Phytoremediation-Technology Evaluation. 1995, 07.
    [67] Dong KY, Lin CY, Wang Z. Study on the relationship between the structure of chlorobenzene andits toxicity of crops [J]. Soil and Environmental Science, 2000, 02.
    [68] Chiou CT, Sheng GY, Manes M. A partition-limited model for the plant uptake of organic contaminants from soil and water. 2001, 07.
    [69] Camille Larue , Nathalie Korboulewsky , Runying Wang. Depollution potential of three macrophytes: Exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations [J]. Bioresource Technology, 2010, 101:7951-7957.
    [70]李海涛,叶非.杀虫剂和除草剂的植物修复研究进展[J].植物保护, 2010, 36(1): 28-32.
    [71]陈建军,何月秋,祖艳群,等.除草剂阿特拉津的生态风险与植物修复研究进展[J].农业环境科学学报, 2010, 29(增刊): 289-293.
    [72]张伟,张忠明,王进军.有机农药污染的植物修复研究进展[J].农药, 2007, 46(4): 17-226.
    [73] Briigs G. G, R. H. Bromilow Bromilow, A. A. Evans, et al. Relationships between lipophilicity and root uptake and translation of non-ionised chemicals by barley. Pestc. Science, 1982, 13: 490-504.
    [74] Rachel Olette, Michel Couderchet, Sylvie Biagianti et al. Toxicity and removal of pesticides by selected aquatic plants. Chemosphere, 2008, 70 (8): 1414-1421
    [75] Rachel Dosnon-Olette, Michel Couderchet, Philippe Eullaffroy. Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 2009, 72: 2096-2101.
    [76] M. T. Moore, C. M. Cooper, S. Smith, et al. Mitigation oftwo pyrethroidinsecticidesin a Mississippi Delta constructed wetland. Environmental Pollution, 2009, 157: 250-256.
    [77]夏会龙,吴良欢,陶勤南.凤眼莲加速水溶液中马拉硫磷降解[J].中国环境科学. 2001, 21(6):553-555.
    [78]夏会龙,吴良欢,陶勤南.凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J].环境科学学报, 2002, 22(3):329-332.
    [79]夏会龙,吴良欢,陶勤南.凤眼莲植物修复几种农药的效应[J].浙江大学学报, 2002, 28 (2): 165-168.
    [80] Forni. C, Cascone. A, Cozzolino. S et al. drugs uptake and degradation by aquatic plants as a bioremediation technique. Minerva Biotechnology. 2001, 13:151-152
    [81] Gujarathi, Ninad P. , Han, Binbing, Linden, James C. Phytoremediation of oxytetracycline from wastewater[C]. American Institute of Chemical Engineers, 2005, 55-57.
    [82]崔馨,乔显亮,韩成伟,等.生菜对土霉素的吸收及其植物毒性[J].农业环境科学学报, 2008, 27(3): 1038-1042.
    [83] Tadashi Toyama, Ning Yu, Hirohide Kumada, et al. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere. Journal of Bioscience and Bioengineering, 2006, 101 (4): 346-353.
    [84]吴建强,黄沈发,丁玲.水生植物水体修复机理及其影响因素[J].水资源保护. 2007, 23(4):18-22.
    [85]樊苑牧,俞雪钧,顾晓俊等.高效液相色谱法测定含脂羊毛中灭蝇胺和环虫腈[J].分析化学, 2010, 38(1): 113-116.
    [86] Pierre Labadie, He′le`ne Budzinski. Development of an analytical procedure fordetermination of selected estrogens and progestagens in water samples [J]. Anal Bioanal Chem, 2005, 381(6): 1199-1205.
    [87]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M]:高等教育出版社, 20-21.
    [88]蔡巍,杜洪光,张恩宏.高效液相色谱法测定左炔诺孕酮的油水分配系数[J].分析仪器. 2007, 1:30-32
    [89] Erker Fick, Richard H. Lindberg, Mats Tysklind. Predicted critical environmental concentrations for 500 pharmaceuticals. Regulatory Toxicology and Pharmacology, 2010, 58: 516-523.
    [90] Chris Collins, Mike Fryre, Albania Grosso. Plant uptake of non-Ionic organic chemicals. Environ. Sci. Technol, 2006, 40:45-52.
    [91]陈秋方.水稻根系对非电离性农药的吸收、转移、分配与农药亲脂性的关系[J].核农学报, 1989, 3(1): 1-8.
    [92]王战辉,丁双阳,张素霞等.分子模拟技术研究17种磺胺类药物与抗体亲和力构效关系[J].化学学报, 2008, 66(23): 2613-2619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700