高层建筑土—结构相互作用地震反应分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土-结构相互作用是一个具有重大理论意义和工程应用价值的课题。在过去四十年的研究中,在理论和实践方面已取得重大进展,但仍存在许多有待进一步研究的重要问题,发展一种有效和实用的土-结构相互作用分析方法以及了解土-结构相互作用对结构地震反应的影响就是其中的两个问题。本文在国内外土-结构相互作用研究发展现状的基础上,以钢筋混凝土高层建筑为研究对象,进行了高层建筑土-结构相互作用地震反应分析研究,为重要个体高层建筑和一般高层建筑的土-结构相互作用地震反应分析提供了多种实用的分析手段,为认识土-结构相互作用对高层建筑地震反应的影响和抗震设计方法提供了依据。
     本文将土与结构作为一个整体,采用能很好模拟上部结构和下部地基基础受力特性的平面土-结构相互作用模型,提出了一种实用的高层建筑土-结构相互作用地震反应整体分析方法。该方法的上部结构采用平面框架-剪力墙(筒体)协同工作模型;地基土体以在计算平面内高度为H、宽度为B、在出平面方向厚度为t的土体来模拟;土体在静力分析时采用Duncan-Chang模型,动力分析时采用等效线性化模型;基础根据其形式及刚度,分别以梁单元、刚块单元或受弯板单元来模拟。为了在一般单体机上实现所提出的方法,对有限元软件MSC.Marc进行了二次开发,添加了多层土的静力Duncan-Chang本构关系模型和动力等效线性化本构关系模型,并通过两个算例验证了其可靠性,使MSC.Marc软件成为该方法的理想分析工具。此方法可用于重要单体高层建筑详细的土-结构相互作用分析。
     选择了不同高度、不同结构类型和不同场地条件的位于厚和深厚地基土层上的10栋典型钢筋混凝土高层建筑,采用所提出的整体分析方法,对比分析了基岩波、地面波和地震动等效输入波,以及考虑与不考虑土-结构相互作用体系的自振特性和地震反应,详细研究了土-结构相互作用对位于厚和深厚地基土层上高层建筑地震反应的影响。通过对地震反应影响的综合分析,在地震动输入、自振特性、相互作用影响因数、体系地震反应等方面得到了一些具有实用价值的结论和关系式,在此基础上,给出了一种以结构与土层第一周期系数αT为指标的高层建筑土-结构相互作用地震反应分析简化评估方法。该方法无需进行复杂又费时的高层建筑土-结构相互作用分析,仅利用简单省时的结构和土层反应分析结果,就可估计出高层建筑土-结构相互作用体系的反应,可用于高层建筑考虑土-结构相互作用地震反应的初步估计。
     以采用所提出的整体分析方法计算得到的10栋典型高层建筑的计算结果为标准,上部结构仍采用整体分析方法给出的平面框架-剪力墙(筒体)协同工作模型,参考《动力机器基础设计规范》(GB50040-96),给出了地基基础的两层简化模型,通过与10栋典型高层建筑标准结果的对比,进行了地基质量、土体模型自由度、抗剪刚度和阻尼比的逐步改进。将地基土体质量由原模型的基础以下基岩以上的土体质量改为整体分析法给出的土体质量;将地基土体由原模型的两个自由度改为多个自由度,并给出了各层土体抗剪刚度的确定方法;建议土层的剪切模量G取0.5倍的Gmax、阻尼比取15%,提出了修正的层层简化模型,给出了一种高层建筑土-结构相互作用简化分析方法。通过该方法和整体分析方法的计算结果比较发现,较原两层简化模型的方法,土-结构体系的自振特性和结构顶点加速度峰值有明显改善,结构顶点加速度反应谱更为合理,尤其是长周期段峰值所对应的周期均与整体分析方法结果更为接近。由此表明,该方法可作为一种合理实用的高层建筑土-结构相互作用简化分析方法,用于一般高层建筑土-结构相互作用的分析和重要高层建筑土-结构相互作用的初步分析。另外,该方法给出的地基基础简化分析模型,也可推广应用于其它类型建筑物、结构工程的地基基础和土-结构相互作用分析中。
Soil-structure interaction (SSI) is an important subject with great theoretical significance and application value of engineering. Though the significant progresses on the respects of theory and application for past forty years have been made, there are still important problems to be solved. Developing an effective and practical analysis method considering SSI,and knowing the effects on seismic response considering SSI of structures are two of these problems. In this paper, on the basis of the current development of SSI research at home and abroad, the reinforced concrete high-rise buildings as a research object, the study on seismic response analysis considering SSI of high-rise buildings is conducted. Some practical analysis measures are provided for seismic SSI response analysis of important individual high-rise buildings or general high-rise buildings considering SSI. The basis is provided for understanding the effects on seismic response of high-rise buildings considering SSI and seismic design method.
     In this paper, soils and structure as an integrated system using plan SSI model, which can simulate the mechanical characteristics of the upper structure and the lower foundation well, a practical method for seismic response analysis considering SSI of high-rise buildings is proposed. In this integral analysis method, the plan frame-shear wall (tube) cooperation model is used in the upper structure. A soil mass with height H and width B in-plane, and thickness t out-plane is used to simulate the foundation soils. Duncan-Chang model of soils is used in static analysis; equivalent linearization model of soils is used in dynamic analysis. According to the shape and stiffness of basements, the flexible, rigid and pile foundation are simulated by beam element, rigid block or plate element respectively. In order to realize this method in personal computer, the redevelopment of the finite element analysis software MSC.Marc is done, which Duncan-Chang model for static analysis and equivalent linearization model for dynamic analysis of multi-layer soils are added, and two examples are calculated to verify the reliability of the redevelopment. Thus software MSC.Marc becomes an ideal analysis tool for this integral analysis method. This method can be used for the seismic response analysis considering SSI of important individual high-rise buildings in details.
     Ten typical reinforced concrete high-rise buildings with different heights, IVdifferent structural types and different site conditions are selected, which are located in thick and deep foundations soils. Using the integral analysis method of seismic response analysis considering SSI, the bedrock wave, ground motion wave and equivalent seismic input wave are compared and analyzed, and the natural vibration characteristics and seismic response of soil-structure system considering SSI are compared and analyzed with those of structure system not considering SSI. The seismic SSI effects on the response of high-rise buildings located in thick and deep foundation soils are analyzed and studied in details. Through the comprehensive analysis of effects on the response considering SSI, some practical conclusions and relationships are obtained on some respects of ground motion input, natural vibration characteristic, SSI effect factor, and seismic response. On the base of these conclusions and relationships, a simplified assessment method of seismic response analysis considering SSI of high-rise buildings is obtained, regarding the first period coefficient of structure and soils -αT as an index. In this method, it is not necessary to conduct the complex and time-consuming SSI analysis of high-rise buildings. Using the results of simple and time-saving structure or soil response analysis, the response of SSI system can be assessed. This method can be used for the primary assessment of seismic response analysis considering SSI of high-rise buildings.
     Taking the calculation results of ten typical high-rise buildings using the integral analysis method as a standard. The plan frame-shear wall (tube) cooperation model is still used to simulate the upper structure in the integral analysis method. Refering to the“Code for design of dynamic machine foundation (GB50040-96)”, the two-layer simplified model of foundation is proposed. By comparing with the standard results of ten typical high-rise buildings, the two-layer model is gradually revised on respects of foundation mass, degree of freedom of foundation model, shear stiffness and damping ratio of soils. The mass of foundation is improved from the mass between basement and bedrock to the foundation mass of the integral analysis method, the freedom of foundation is improved from two-degree to multi-degree, the shear stiffness of each layer is given also, the shear module G of soils is suggested to take as 0.5 times Gmax and the damping ratio is taken as 15%. A corrected multi-layer model of foundation is proposed, and a simplified analysis method of high-rise buildings considering SSI is proposed. It can be seen by comparing the results of the multi-layer method and the integral analysis method that, the natural vibration period and the maximum acceleration peak value of roof are improved more obviously than those of the old two-layer simplified method, and the acceleration response spectra of roof are improved more reasonably, especially the periods corresponding to peak values in long period range the periods are similar to those of the integral analysis method. So it can be seen that this simplified method can be used for the seismic response analysis considering SSI of general high-rise buildings, or the primary seismic response analysis considering SSI of important high-rise buildings. In addition, the simplified model of foundation in this simplified method can be also extended to use on the foundation and soil-structure interaction of other types of buildings and structural engineering.
引文
[1]中华人民共和国国家标准,建筑结构抗震设计规范(GBJ50011-2001)[S],北京中国建筑工业出版社, 2001
    [2]梁丰,结构-地基动力相互作用体系振动台试验与研究[D],同济大学硕士论文, 2004
    [3]王开顺等,土与结构相互作用地震反应研究及实用计算[J],建筑结构学报, 1986, 7(2):64~76
    [4]窦立军,杨柏坡,土一结构动力相互作用几个实际应用问题[J],世界地震工程, 1999, 15(4):62~68
    [5]陈国兴,土体-结构体系地震性能研究[J],哈尔滨建筑工程学院学报, 1994, 27(5):11~18
    [6]廖振鹏,杨柏坡等,暂态弹性波分析人工边界的研究[J],地震工程与工程振动, 1982, 2 (1):1~11
    [7]廖振鹏,杨柏坡,频域透射边界[J],工程振动与振动工程, 1986, 6 (4):1~9
    [8]杨柏坡,廖振鹏,结构-土相互作用有限元解法及改造通用程序的初步结果[J],地震工程与工程振动, 1986, 19 (2):10~20
    [9]廖振鹏著,工程波动理论导引[M],科学出版社, 1996
    [10]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J],土木工程学报, 1998, 31(3): 55~64
    [11]陈国兴,王志华等,考虑土与结构相互作用效应的结构减震控制大型振动台模型试验研究[J],地震工程与工程振动, 2001, (4):117~128
    [12]楼梦麟,王文剑等,土-桩-结构相互作用体系的振动台模型试验[J],同济大学学报, 2001, 29(7):763~769
    [13]吕西林,陈跃庆,结构-地基相互作用体系的动力相似关系研究[J],地震工程与工程振动, 2001, 21(3):85~93
    [14]陈跃庆,吕西林等,结构-地基相互作用振动台试验中土体边界条件的模拟方法[J],结构工程师, 2000, (3):25~31
    [15]吕西林,陈跃庆等,结构-地基动力相互作用体系的振动台模型试验研究[J],地震工程与工程振动, 2000, 20(4):20~29
    [16]陈跃庆,吕西林等,分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J],地震工程与工程振动, 2001, 21(3):104~11
    [18]中华人民共和国国家标准,动力机器基础设计规范(GB50040-96)[S],国家技术监督局,中华人民共和国建设部联合发布, 1996
    [17]王丹民,强震作用下土-结构体系非线性反应分析[D],国家地震局工程力学研究所硕士论文,哈尔滨, 1992
    [19]包世华,方鄂华,高层建筑结构设[M].清华大学出版社, 1990,北京
    [20]过镇海,钢筋混凝土原理[M].清华大学出版社, 1999,北京
    [21]龙驭球,包世华,结构力学教程[M].高等教育出版社, 1988,北京
    [22]丁海平,刘启方,金星等,昆明盆地地震效应研究报告[R],中国地震局工程力学研究所报告, 2007.10
    [23]张克绪,谢君斐,土动力学[M],地震出版社, 1989。
    [24]石磊,高层建筑土-结构相互作用地震反应分析方法[D],中国地震局工程力学研究所硕士论文, 2005,哈尔滨
    [25]陈火红,尹伟奇等, MSC.Marc二次开发指南[M],科学出版社, 2004,北京
    [26]张克绪,李明宰等,基于非曼辛准则的土动弹塑性模型[J],地震工程与工程震动, 1997, 17(2):74~80
    [27]李海晓,复合地基和上部结构相互作用的地震动力反应分析[D],浙江大学博士论文, 2001年7月
    [28]中华人民共和国行业标准,建筑桩基技术规范(JGJ94-94)[S],中华人民共和国建设部发布, 1994
    [29]中华人民共和国行业标准,港口工程桩基规范(JTJ254-98)局部修订(桩的水平承载力设计)[S],中华人民共和国交通部发布, 2000
    [30]中华人民共和国国家标准,核电厂抗震设计规范(GB50267-97)[S],国家技术监督局,中华人民共和国建设部联合发布, 1997
    [31]张令心,框架-剪力墙结构地震可靠性分析[D],国家地震局工程力学研究所硕士论文, 1992
    [32]肖晓春,林皋等,桩-土-结构动力相互作用的分析模型与方法[J].世界地震工程, 2002, 18(4):123~130
    [33]陈火红,于军山等, MSC.Marc/Mentat 2003[M],科学出版社, 2004,北京
    [34]陈火红, Marc有限元实例分析教程[M],机械工业出版社, 2002,北京
    [35]胡聿贤,地震工程学[M],地震出版社, 1988,北京
    [36]郭长城,建筑结构振动计算[M],中国建筑工业出版社, 1982,北京
    [37]扶长生,俞载道,地基土与上部结构之间接触面动力特性的初步探讨[J],同济大学学报, 1981, 9(2):26~38
    [38] J. Lysmer(1978),土动学的分析方法(第二篇地震工程和土力学会议上动态报告)[R],地震工程和土动力问题译文集,地震出版社, 1985,谢君斐等译。
    [39]张令心,刘洁平,石磊,高层建筑土-结构相互作用地震反应分析方法[A],第十一届高层建筑抗震技术交流会[C], 2007.11.8-11.10,中国,昆明
    [40]张令心等,云南省“十五”重点项目子专题报告“土-结构相互作用对结构地震反应影响研究”[R],中国地震局工程力学研究所研究报告, 2006年06月
    [41]蒋友谅,计算结构力学[M],北京理工大学出版社,北京
    [42]李桂青,抗震结构计算理论和方法[M],地震出版社, 1985,北京
    [43]中华人民共和国国家标准,建筑地基基础设计规范(GB50007-2002)[S],中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局联合发布, 2002
    [44] [美]F.E.小理查特, R.D.伍兹, J.R.小霍尔编著,徐攸在,徐国彬等译,土与基础的振动[M],中国建筑工业出版社, 1976,北京
    [45]蒋彭年编著,土的本构关系[M],科学出版社, 1982,北京
    [46] [日]大崎顺彦著,谢礼力,周雍年等译,振动理论[M],地震出版社, 1990,北京
    [48] [美]陈惠发, A.F.萨里普著,余天庆,王勋文等译,混凝土和土的本构方程[M],中国建筑工业出版社, 2004,北京
    [49] [美]I.M. Smith, D.V. Griffiths著,王崧,周坚等译,有限元方法编程(第三版)[M],电子工业出版社, 2003,北京
    [50]廖振鹏著,工程波动理论导引[M],科学出版社, 1996,北京
    [51]陈仲颐,周景星等著,土力学[M],清华大学出版社, 1994,北京
    [52]朱百里,沈珠江编著,计算土力学[M],上海科学技术出版社, 1990,上海
    [53] [日]大崎顺彦著,田琪译,地震动的谱分析入门(第二版)[M],科学出版社, 1996,北京
    [54]李广信主著,高等土力学[M],清华大学出版社, 2004,北京
    [55]史述昭,常连芳等编,结构力学(第二版)[M],水利电力出版社, 1987,北京
    [56]赵九江,张少实等主编,材料力学[M],哈尔滨工业大学出版社, 1992,哈尔滨
    [57]尚守平主编,周福霖副主编,结构抗震设计[M],高等教育出版社, 2003,北京
    [58] R.W.克拉夫, J.彭津著,王光远等译,结构动力学[M],科学出版社, 1983,北京
    [59]蒋宗礼主编, FORTRAN77结构化程序设计[M],哈尔滨工业大学出版社, 1994,哈尔滨
    [60]栾茂田,林皋,地基动力阻抗的双自由度集总参数模型[J],大连理工大学学报, 1996, 36(4):477~481
    [61]门玉明,黄义,土-结构动力相互作用问题的研究现状及展望[J],力学与实践, 2000, 20(4):1~7
    [62]蒯行成,沈蒲生,层状介质中群桩竖向和摇摆动力阻抗的简化计算方法[J],土木工程学报, 1999, 32(5):62~70
    [63]蒯行成,沈蒲生,层状介质中群桩水平动力阻抗的简化计算方法[J],振动工程学报, 1998, 11(3):258~264
    [64]包世华,方鄂华,高层建筑结构设计(第二版)[M],清华大学出版社, 1990,北京
    [65]王树兵,土-结构动力相互作用分析简介[J],江苏建筑,增刊, 2005, Vol.102:15~16
    [66]王凤霞,荆玉龙,浅谈土与结构动力相互作用[J],低温建筑技术, 2001, Vol.4:27~29
    [67]周剑兰,结构地震反应及结构抗震问题探讨[J],广东交通职业技术学院学报, 2005, 4(2):55~56
    [68]张俊胜,土-结构动力相互作用的研究方法和发展趋势[J],国外建材科技, 2005, 26(1):52~54
    [69]范立础,韦晓,桩-土-结构动力相互作用试验研究现状[R],国家自然科学基金“九五”重大项目,大型复杂结构的关键科学问题及设计理论研究论文集,上海,同济大学出版社, 171~177
    [70]濮家骝,土的本构关系及其验证与应用[J],岩土工程学报, 1986, 8(1):47~82
    [71]刘祖德,土石坝变形计算的若干问题[J],岩土工程学报, 1983, 5(1):1~13
    [72]陈国兴,土的动模量和阻尼比的经验估计[J],地震工程与工程振动, 1995, 15(1):73~84
    [73]李辉,赖明,白绍良,土-结动力相互作用研究综述(I)——研究的历史、现状与展望[J],重庆建筑大学学报, 1999, 21(4):112~116
    [74]李辉,赖明,白绍良,土-结动力相互作用研究综述(II)——简化分析模型[J],重庆建筑大学学报, 1999, 21(5):112~116
    [75]李辉,赖明,白绍良,土-结动力相互作用研究综述(III)——考虑SSDI效应的结构抗震设计[J],重庆建筑大学学报, 2000, 22(1):119~123
    [76]栾茂田,土动力非线性分析中的变参数Ramberg-Osgood本构模型[J],地震工程与工程振动, 1992, 12(2):69~77
    [77]方志,陆浩亮,王龙,土-结构动力相互作用研究综述[J],世界地震工程, 2006, 22(1):57~63
    [78]宰金珉,庄海洋,对土-结构动力相互作用研究若干问题的思考[J],徐州工程学院学报, 2005, 20(1):1~6
    [79]李海晓,复合地基和上部结构相互作用的地震动力反应分析[D],浙江大学博士学位论文, 2001
    [80]孔德志,朱俊高,邓肯-张模型几种改进方法的比较[J],岩土力学, 2004, 25(6):971~974
    [81]王立忠,赵志远,李玲玲,考虑土体结构性的修正邓肯-张模型[J],水利学报, 2004, (1):83~90
    [82]肖化文,邓肯-张E-B模型参数对高面板坝应力变形的影响[J],长江科学院院报, 2004, 21(6):41~44
    [83]尹蓉蓉,朱合华,邓肯-张模型参数敏感性分析[J],华东船舶工业学院学报(自然科学版), 2003, 17(1):20~23
    [84]刘洁平、张令心、石磊,基于MSC.Marc二次开发的土体静力和地震非线性分析方法,地震工程与工程振动, 2008, 28(3):178~183
    [85]陈斌,吉林,张旭晖,邓肯模型参数敏感性分析[J],华北水利水电学院学报, 2002, 23(4):10~13
    [86]何昌荣,杨桂芳,邓肯-张模型参数变化对计算结果的影响[J],岩土工程学报, 2002, 24(2):170~174
    [87]陈国兴,王志华,宰金珉,土与结构相互作用体系振动台模型试验数值模拟研究[J],防灾减灾工程学报, 2003, 23(3):21~28
    [88]刘洁平、张令心、石磊,基于MSC.Marc二次开发的土体静力和地震非线性分析方法[J],地震工程与工程振动, 2008, 28(3):178~183
    [89]候兴民,复合地基和上部结构相互作用的地震动力反应分析[D],中国地震局工程力学研究所博士学位论文, 2001
    [90]陆培俊,高层建筑结构-桩-土共同工作空间分析[J],岩土工程学报, 1993, 15(6):59~70
    [91]王振东,赵国藩等编著,钢筋混凝土及砌体结构上册[M],中国建筑工业出版社, 1991
    [92]王振东,赵国藩等编著,钢筋混凝土及砌体结构下册[M],中国建筑工业出版社, 1991
    [93]天津大学,西安冶金建筑学院等合编,地基与基础[M],中国建筑工业出版社, 1978
    [94]华东水利学院,弹性力学问题的有限单元法[M],水利电力出版社, 1974
    [94]钱培风著,结构抗震分析[M],地震出版社, 1983
    [95]陈国兴,谢君斐等,考虑地基土液化影响的桩基高层建筑体系地震反应分析[J],地震工程与工程振动, 1995, 15(4):93~103
    [96]李小军,廖振鹏,土应力应变关系的粘-弹-塑性模型[J],地震工程与工程振动, 1989, 9(3):65~72
    [96]王志良,韩清宇,粘弹塑性土层地震反应的波动分析法[J],地震工程与工程振动, 1981, 1(1):117~137
    [97]李培振,吕西林,考虑土-结构相互作用的高层建筑抗震分析[J],地震工程与工程振动, 2004, 24(3):130~138
    [98]林皋,土-结构动力相互作用[J],世界地震工程, 1991, 7(1):4~21
    [99]窦立军,杨柏坡等,土-结构动力相互作用几个实际应用问题[J],世界地震工程, 1999, 15(4):62~67
    [100]李辉,李英民,赖明,土-结动力相互作用的简化模型[A],第五届全国地震工程会议论文集[C], 1999, 463~468
    [101] A.T. Derecho and A.A. Huchkelbridge, Soil-Structure Interaction– A Brief Overview, Earthquake-Resistant Structures, SP127-7, 239~259
    [102] Jakim PETROVSKI, et al, Influence of Soil-Structure Interaction on Dynamic Response of High-Rise Building in Mexico City Due to September 19[A], 1985 Earthquake, Proc. 9th WCEE[C], August 2-9, 1988, Tokyo-Kyoto, JAPAN (Vol.VIII)
    [103] Hui LI, Liping LIU, A Study of Simplified Analysis Method of the Horizontal Seismic Action on Structures Considering SSDI Effects[A], Proc. 12WCEE[C], 2000, paper No.1892
    [104] Lysmer J., Kulemeyer R. L., Finite Dynamic Model for Infinite Media [J], J. Eng. Mech. Div., ASCE, Vo1.95, 1969, 759~877
    [105] White W., Valliappan S., lee I. K., Unified Boundary for Finite Dynamic Models [J], J. Eng. Mech. Div., ASCE, Vol.1D3, 1977, 949~964
    [106] Smith W.D., A Nonreflecting Plane Boundary for Wave Propagation Problems [J] J. Computational Physics, Vo1.15, 1974, 492~503
    [107] Lysmer J., G. Wass, Shear Waves in Plane Infinite Structures [J], J. Eng. Mech. Div., ASCE, Vol.98, 1972, 85~105
    [108] Clayton R., Engquise B., Absorbing Bounding Conditions for the Numerical Simulation of Waves, Math Computation [J], Vo1.31, 1977, 629~651
    [109] J. E. Valera, H.B. Seed, C. F. Tsai, J. Lysmer, Seismic Soil-Structure Interaction Effects at Humboldt Bay Power Plant [J], J. Geotech. Engrg., ASCE, Vol.10, No.10, 1977.
    [110] Chopra A.K., Darbre G. R., Dynamic-Stiffness Matrix of Soil by the Boundary ElementMethod: Embedded Foundation [J], Earthq. Eng. Struc. Dyn. Vol.12, 1984, 401~416
    [111] J. P. Stewart, et al, Seismic Soil-Structure Interaction in Buildings, I: Analytical Methods [J], Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(1):26~37
    [112] J. P. Stewart, et al, Seismic Soil-Structure Interaction in Buildings, II: Empirical Findings, Journal of Geotechnical and Geoenvironmental Engineering [J], ASCE, 1999, 125(1):38~48
    [113] Carlo G. D., et al, Influence of Soil-Structure Interaction on the Seismic Response of Bridge Piers[A], 12WCEE[C], 2000, paper No.0438
    [114] A. S.Veletsos, Y. T. Wei, Lateral and Rocking Vibrations of Footings [J], J. Soil Mech. And Found. , Vol.97, No. 9, 1971.
    [115] A. S. Veletsos, B. Verbic, Vibration of Viscoelastic Foundations [J], J. Earthquake Engrg. Structure Dyn. , 1973, Vol.2, No.1, 87~102
    [116] A. S. Veletsos, V. V. Nair, Seismic Interaction of Structure on Hysteretic Foundations [J], J. Struct. Engrg. , Vol.101, No.1, 1975.
    [117] Jacobo. Bielak, Dynamic Behavior of Structure with Embedded Foundations [J], J. Earthquake Engrg. Struc. Dyn. , Vol.3, No.3, 1975.
    [118] R. J. Apsel, J. E. Luco, Impedance Functions for Foundations Embedded in a Layered Medium: An Integral Approach [J], J. Earthquake Engrg. Struct. Dyn. , Vol.15, No.2, 1987.
    [119] R. Dobry, G. Gazetas, Dynamic Response of Arbitrarily Shaped Foundations, J. Geotech. Engrg. , Vol.112, No.2, 1986.
    [120] M. Iguchi, J. E. Luco, Vibration of Flexible Plate on Viscoelastic Medium [J], J. Engrg. Mech. , Vol.108, No.6, 1982.
    [121] G. S. Liou, P. H. Huang, Effect of Flexibility on Impedance Functions for Circular Foundations [J], J. Engrg. Mech. Vol.120, No.7, 1994.
    [122] H. R. Riggs, G. Waas, Influence of Foundation Flexibility on Soil-Structure Interaction [J], J. Earthquake Engrg. Struct. Dyn. , Vol.13, No.5 1985.
    [123] Wolf J.P., Consistent Lumped Parameter Models for Unbounded Soil: Physical Representation [J], Earthq. Eng. Struc. Dyn., 1991, vol.20, 11~32
    [124] Wu Wen-Hwa, A Fixed-Base Model with Classical Normal Modes for Soil Structure Interaction Systems[A], 12WCEE[C], 2000, paper No.1402
    [125] MSC.Software.2003. MSC.Marc 2003 (VolumeD): User Subroutines and Special Routines
    [126] James M. Duncan and Chin-Yung Chang, Nonlinear Analysis of Stress and Strain in Soils [J], Journal of the Soil Mechanics and Foundations Division, ASCE, SM5, Sep. 1970, 1629~1653
    [127] B.O. Hardin and V.P. Drnevich, Shear Modulus and Damping in Soils Design Equations and Curves [J], Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No. SM7, 1972, 667~692
    [128] B.O. Hardin and V.P. Drnevich, Shear Modulus and Damping in Soils [J], Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No. SM6, 1972, 603~624
    [129] J. E. Valera, H.B. Seed, C. F. Tsai, J. Lysmer, Seismic Soil-structure Interaction Effects at Humboldt Bay Power Plant [J], Journal of the Geotechnical Engineering Division, Vol.103, No.10, 1977
    [130] Building Seismic Safety Council (BSSC), (1977), NEHRP Recommended Provisions for Seismic Regulations for New Buildings, Part1, Provisions and Part2, Commentary, Rep. No.FEMA302 and 303, Federal Emergency Management Agency, Washington, D.C.
    [131] John P. Wolf, Dario R. Somaini, Approximate Dynamic Model of Embedded Foundation in Time Domain [J], Earthquake Engineering and Structural Dynamics, Vol.14, 1986, 683~703
    [132] Juan E. Luco, Russell A. Westmann, Dynamic Response of Circular Footings [J], Journal of the ENGINEERING MECHANICS DIVISION, ASCE, EM5, 1971, 1381~1395
    [133] Eduardo Kausel, Jose M. Roesset, Dynamic Analysis of Footings on Layered Media [J], Journal of the ENGINEERING MECHANICS DIVISION, ASCE, EM5, 1975, 679~693
    [134] Eduardo Kausel, Jose M. Roesset, Dynamic Stiffness of Circular Foundations [J], Journal of the ENGINEERING MECHANICS DIVISION, ASCE, EM6, 1975, 771~785
    [135] Anestis S. Veletsos, Jethro W. Meek, Dynamic Behaviour of Building-Foundation Systems [J], J. Earthquake Engrg. Structure Dyn. , 1974, Vol.3, 121~138
    [136] Jacobo Bielak, Modal Analysis for Building-Soil Interaction [J], J. Earthquake Engrg. Struc. Dyn. , EM5, 1975, 771~786.
    [137] Juan E. Luco, Impedation Functions for A Rigid Foundation on A Layered Medium [J], Nuclear Engineering and Design, 1974, Vol.31, 204~217
    [138] Faiz I. Makdisi, H. Bolton Seed, Simplified Procedure for Evaluation Embankment Response [J], Journal of the Geotechnical Engineering Division, 1979, GT12, 1427~1434
    [139] Robert Pyke, Nonlinear Soil Models for Irregular Cyclic Loadings [J], Journal of the Geotechnical Engineering Division, 1979, GT6, 715~726
    [140] R. H. Scanlan, Seismic Wave Effects on Soil-Structure Interaction [J], Earthquake Engineering and Structural Dynamics, 1976, Vol.4, 379~388
    [141] Jakim Petrovski, Ljapao Jordanovski, et al, Influence of Soil-Structure Interaction on Dynamic Response of High-Rise Buildings in Mexico City Due to September 19, 1985 Earthquake, Proceedings of Ninth World Conference on Earthquake Engineering, August 2~9 1988, Tokyo-Kyoto, JAPAN, Vol. VIII, 309~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700