汽轮机通流部分的数值分析及热经济性诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽轮机通流部分的损失严重影响着汽轮机的经济性,研究汽轮机通流部分损失产生的机理和诊断应达值的确定,实现汽轮机通流部分的热经济性诊断,对于提高汽轮机的效率,促进电厂的节能减排,具有非常重要的意义。
     首先,针对目前汽轮机转子转速对汽封内流场影响尚无定论的现状,对汽轮机隔板汽封的泄漏机理及隔板汽封间隙内蒸汽的流动特性作深入的研究,重点研究转速对汽封内蒸汽流场的影响程度。结果表明,汽轮机转子的转动效应对汽封内部流动及漏汽量的影响要远远小于汽封结构参数的影响。
     其次,利用数值模拟方法研究叶顶间隙变化对泄漏量和泄漏涡运行轨迹的影响、叶顶泄漏流在吸力面出口与主流的掺混情况、以及叶顶泄漏涡强度沿转子轴向的变化规律,并探讨了大涡模拟方法在这方面的应用。结果表明,叶顶泄漏流造成了主流通道内流体的非定常流动。泄漏流对主流所造成的影响经历了从弱变强再从强变弱的周期性变化过程。通道内的二次涡则经历了靠近吸力面到远离吸力面再到靠近吸力面的过程;二次涡的影响范围经历了从弱变强再从强到弱的周期性过程。随着叶顶间隙的增大,泄漏涡的强度和影响范围也在增大。大涡模拟可以很好的捕捉泄漏涡的形成、脱落和尾涡的相互作用,对研究泄漏涡和各涡系之间的非定常相互干涉有很好的帮助。
     同时,对排汽缸和带有内置式低压加热器及汽动给水泵小汽机排汽的凝汽器喉部内的流动进行耦合数值分析,考虑湿蒸汽热力行为及不同进汽条件,更加真实准确的反映排汽通道内流场的分布情况。结果表明,随着进汽湿度的增加,排汽通道内流动的能量损失系数逐渐降低;随着旋流强度增加,排汽通道内流动的能量损失系数降低;随着进汽角增大,排汽通道能量损失系数也下降。
     最后,对汽轮机通流部分热经济性诊断的指标及其应达值的确定方法进行研究。结果表明,汽轮机采用回热循环或再热循环后,汽轮机的相对内效率和理想循环热效率之间存在较强的耦合性,汽轮机的相对内效率不能准确反映通流部分的运行经济状态。建议采用级组的相对内效率来反映通流部分的运行经济状态,并给出了级组的相对内效率应达值的确定方法。尤其针对处于湿蒸汽区的最末级组的相对内效率应达值很难确定的问题,提出采用BP神经网络方法进行解决,为实现汽轮机通流部分的热经济性诊断奠定了基础。
Economy of steam turbine is severely affected by the flow passage losses. It is very important to study the mechanism of flow passage losses and normal value of diagnose in order to evaluate the operating condition of steam turbine flow passage. And this research will be helpful to improve the relative internal efficiency of steam turbine and promote the energy conservation and pollution reduction.
     First, aimed at no final conclusion of the rotor speed of steam turbine influenced on steam flow characteristics of seal at present, mechanism and flow characteristics of clearance leakage of diaphragm gland are deeply researched. The focus is the effect of the rotor speed on flow field of seal. The results show that the effects of rotation on the internal flow and leakage are much smaller than structural parameters of seal.
     Second, the change rule of the leakage flow, the trajectory of leakage vortex, the mixing degree of tip leakage and main flow at outlet of suction surface and the vortex strength along axial direction with the blade tip clearance are studied by numerical simulation method. And, a comparative study is made by using large eddy simulation method. The results show that the unsteady of main stream is caused by the tip leakage flow. The effects of tip leakage flow on main stream appear some regularity, from weak to strong, and then from strong to weak. The secondary vortex of flow passage changes near the suction surface to away from the suction surface, then the other. The incidence of leakage vortex is recurring process that from weak to strong, and then from strong to weak. The leakage vortex is strengthened with the increase of the tip clearance, and the range affected by leakage vortex increases. The large eddy simulation method can better capture the formation, shedding of the leakage vortex and the interaction with the wake vortex. So the large eddy simulation method is good to study the unsteady interference between the leakage vortex and all kinds of vortexes.
     At the same time, the flow field of the exhaust hood and condenser throat which has inner heaters and exhaust of turbine driven feed pump is studied by coupling numerical simulation method based on the thermodynamic behavior of wet steam and the different inflow condition, in order to study the real flow condition of wet steam in the exhaust channel. The results show that the energy loss coefficient of exhaust channel decreases with increasing the inlet wetness, the intensity of swirl flow and the inflow angle.
     Finally, the index for thermal economic diagnosis of steam turbine flow passage and its normal value are studied. The results show that the relative internal efficiency is coupled to ideal cycle thermal efficiency, when the regeneration system or reheated temperature system is used in steam turbine. The relative internal efficiency of steam turbine cannot accurately reflect the economic performance of the flow passage in operation. It is recommended that the flow passage condition of steam turbine be estimated by relative internal efficiency of stage groups. And, a method to determine the norm of relative internal efficiency of stage groups is proposed. It is difficult to determine the norm relative internal efficiency of the last stage group lying in wet steam region. A method based on BP neural network to determine the normal value is proposed. The studying results fall foundations for thermal economic diagnosis of steam turbine flow passage.
引文
[1]褚伟.布莱登汽封在300MW汽轮机上的应用研究[D].重庆大学工程硕士学位论文,2006:4
    [2]张卓澄.大型电站凝汽器[M].北京:机械工业出版社,1993:246-248
    [3]Swanekamp, Robert. Advances in Combined-Cycle Steam Turbines[J]. Power Engineering,2007,111 (4):36-42,3
    [4]Chupp R. E., Hendricks R. C., lattime S. B.. Sealing in Turbomachinery [J]. Journal of Propulsionand Power,2006,22(2):313-346
    [5]江生科.数值计算方法在汽封研究中的应用探讨[J].东方电气评论,2007,21(3):24-28
    [6]李军,李国君,丰镇平.汽轮机光轴迷宫式隔板汽封内部流场的数值模拟[J].动力工程,2005,25(3):321-324
    [7]Stoff H.. Incompressible flow in labyrinth seal[J]. Journal of Fluid Mechanics, 1980, (100):817-829
    [8]Dhode D. L. and Guidry M. J.. A New Approach for Stabilizing Labyrinth Seal Leakage[J]. Tribology Transactions,1993,36 (2):219-224
    [9]Morrison G. L..3-D Laser Anemometer Measurements in a Labyrinth Seal [J]. Engineering of Gas Turbines and Power,1991,113:119-125
    [10]Piotr L., Andrzej G., Sergey Y., et al. Investigations of Interaction of the Main flow with Root and Tip Leakage Flows in an Axial Turbine Stage by Means of a Source/Sink Approach for a 3D Navier-Stokes Solver[J]. Journal of Thermal Science,2000,10 (3):198-204
    [11]丁学俊,杨彦磊,黄来,等.直通式迷宫密封内可压缩流场的CFD数值模拟[J].流体机械,2008,(6):25-29
    [12]张为荣,王强.汽封流场及泄漏特性的数值模拟分析[J].汽轮机技术,2008,50(2):98-99
    [13]韩中合,康乐嘉.汽轮机直齿与斜齿汽封内部流场的数值计算与结构优化[J].动力工程,2007,27(4):473-476
    [14]YE Jian-huai, LIU Zhan-sheng, ZHANG Guang-hui. Nonlinear Dynamic Characteristics Model of Labyrinth Seal Based on Muszynska Model [J]. Journal of Harbin Institute of Technology,2008,15 (3):351-355
    [15]李金波,何立东.蜂窝密封流场旋涡能量耗散的数值研究[J].中国电机工程学报,2007,27(32):67-71
    [16]杨锐,杨建道,彭泽瑛.汽轮机中压缸迷宫式汽封完整级气动性能的分析[J].动力工程,2009,29(8):743-746
    [17]Versita, Warsaw. A Method of Diagnosing Labyrinth Seals in Fluid-Flow Machines[J]. Polish Maritime Research,2008,15(3):38-41
    [18]Morrison G. L. and Rhode D. L.. Measured Effect of Step Axial Location on Labyrinth Seal Leakage[J]. Journal of Propulsion and Power,1992,18(6): 1129-1130
    [19]王锁芳,吕海峰.转静态封严篦齿流场的数值分析和封严特性的试验[J].航空动力学报,2005,20(3):445-449
    [20]胡建军,徐进良,高化伟.超微燃气透平非接触式密封的三维CFD数值分析[J].动力工程,2009,29(2):123-127
    [21]李军,晏鑫,陈中凯,等.高速旋转的汽轮机隔板密封内流体流动的模拟[J].动力工程,2006,26(3):033-233
    [22]祁明旭,丰镇平.透平动叶顶部间隙流的表现形式及其对透平性能的影响[J].西安交通大学学报,2005,39(3):243-245
    [23]Sjolander S. A. and Amrud K. K.. Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades[J]. ASME J Turbomachinery,1987, 109(1):237-244
    [24]郭瑞,杨建刚.汽轮机进汽方式对调节级叶顶间隙蒸汽激振力影响的研究[J].中国电机工程学报,2006,26(1):8-11
    [25]Dongiyun Y., MengW., Parviz M., et al. Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-clearance Flow [J]. Journal of Fluid Mechanics,2007,586:177-204
    [26]杨策,马朝臣,王廷生,等.透平机械叶尖间隙流场研究的进展[J].力学进展,2001,31(1):70-83
    [27]Dongiyun Y., MengW., Parviz M., et al. Effects of Tip-gap on the Tip-leakage Flow in a Turbine Machinery Cascade[J]. Physics of fluids, 2006,18:102-105
    [28]Denton J. D.. Loss Mechanisms in Turbomaehines[J]. ASME Journal of Turbomachinery,1993,115:621-656
    [29]Jun L., Xin Y., Qiang L., et al. The Effect of the Shrouded Rotor Blade Tip Leakage Flow on the Aerodynamic Performance of a One and Half Turbine Stage[J]. Challenges of Power Engineering and Environment,2007,5:175-280
    [30]Gier J. and Stubert B.. Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine[J]. ASME Journal of Turbomachinery,2005,127: 649-658
    [31]Han S., Han B., Jin P., et al. Numerical Prediction of the Flow Field near the Tip of a Rotating Turbine Blade[J]. Journal of Engineering Physics and Thermophysics,2001,74 (4):859-868
    [32]TallmanJ. and Lakshminarayana B.. Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, with Emphasis on Flow Physics:Part Ⅱ — Effect of Outer Casing Relative Motion[J]. ASME Journal of Turbomachinery,2001, 123:324-333
    [33]Srinivasan V. and Goldstein R. J.. Effect of Endwall Motion on Blade Tip Heat Transfer[J]. ASME Journal of Turbomachinery,2003,125:267-273
    [34]Levent K., Debashis D., Cengiz C.. Tip Leakage Flow Simulation in Axial Turbine Rotor Passages [J]. Index Science Enterprises Ltd,2003, (3):1-10
    [35]Sjolander S. A. and Amrud K. K.. Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades[J]. ASME Journal of Turbomachinery, 1987(109):237-244
    [36]Yamamoto A.. Interaction Mechanisms between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade[J]. ASME Journal of Turbomachinery,1988(110):329-338
    [37]Yamamoto A.. Endwall Flow Loss Mechanisms in a Linear Turbines Cascade with Blade Tip Clearance [J]. ASME Journal of Turbomachinery,1989 (111): 264-275
    [38]Bindon J. P.. The Measurement and Formation of Tip Clearance Loss[J]. ASME Journal of Turbomachinery,1989(111):257-263
    [39]Schlienger J., Kalfas A. I., Abhari R. S.. Vortex-wake-blade Interaction in a Shrouded AxialTurbine[J]. ASME Journal of Turbomachinery,2004, 127(4):699-707
    [40]Mao Mingming, Song Yanping, Wang Zhongqi. Numerical Investigation of the Unsteady Flow in a Transonic Compressor with Curved Rotors[J]. Chinese Journal of Aeronautics,2008,21 (2):97-104
    [41]Jun Li, Hao Sun, Jinshan Wang, et al. Numerical Investigations on the Steady and Unsteady Leakage Flow and Heat Transfer Characteristics of Rotor Blade Squealer Tip. Journal of Thermal Science,2011,20 (4):304-311
    [42]Behr T., Kalfas A. I., Abhar R. S.. Unsteady Flow Physics and Performance of a One - and - 1/2 - Stage Unshrouded Axial Turbine [J]. ASME Journal of Turbomachinery,2007,129:348-359
    [43]Payne S. J., Ainsworth R. W., Miller R. J., et al. Unsteady Loss in a High Pressure Turbine Stage:Interaction Effects[J]. International Journal of Heat and Fluid Flow,2005,26(5):695-708
    [44]Meinhard T. S., Burak O., Davic E. A.. On the Physics of Flow Separation along a Low Pressure Turbine Blade under Unsteady Flow Conditions[J]. ASME Journal of Fluids Engineering,2005,127(3):503-513
    [45]Xiao Xinwen. Investigation of Tip Clearance Flow Physics in Axial Flow Turbine Rotors[D]. Pennsylvania:Pennsylvania State University,2001:65-72
    [46]Yanfeng Zhang, Xingen Lu, Wuli Chu. Numerical Investigation of the Unsteady Tip Leakage Flow and Rotating Stall Inception in a Transonic Compressor[J]. Journal of Thermal Science,2010,19(4):310-317
    [47]黄洪雁,杨庆海,韩万金,等. 大间隙涡轮叶栅流场结构的研究[J].航空动力学报,2002,17(4):392-398
    [48]吕强,李军,李国君,等.动叶围带顶部泄漏流动对透平级气动性能影响的数值研究[J].工程热物理学报,2007,28(增刊1):85-88
    [49]石宝龙,岂兴明,矫津毅,等.二次流与叶顶间隙损失的数值研究[J].航空动力学报,2009,24(5):1096-1100
    [50]杨佃亮,丰镇平.凹槽对动叶顶部流动和换热的影响[J].工程热物理学报,2007,28(6):936-938
    [51]杨佃亮,丰镇平.非定常叶顶间隙泄漏流动和换热的数值研究[J].工程热物理学报,2008,29(8):1307-1310
    [52]李军,吕强,丰镇平,等.汽轮机动叶顶部间隙泄漏流动特性的数值模拟[J].动力工程,2007,27(3):315-317
    [53]李伟,乔渭阳,许开富,等.涡轮叶尖迷宫式密封对泄漏流场影响的数值模拟[J].推进技术,2009,30(1):90-94
    [54]Li Wei, Qiao Weiyang, Xu Kaifu, et al. Numerical Simulation of Active Control on Tip Leakage Flow in Axial Turbine[J]. Chinese Journal of Aeronautics,2009,22(2):129-137
    [55]Li Wei, Qiao Weiyang, Sun Dawei. Tip Clearance Flows in Turbine Cascades[J]. Chinese Journal of Aeronautics,2008,21(2):193-199
    [56]Miroslav Stastny, Ladislav Tajc, Petr Kolar, et al. Effects of Inlet Swirl on the Flow in a Steam Turbine Exhaust Hood[J]. Journal of Thermal Science,2000, 9(4):327-333,326
    [57]Liu J. J., Cui Y. Q., Jiang H. D.. Investigation of Flow in a Steam Turbine Exhaust Hood With/Without Turbine Exit Conditions Simulated[J]. Journal of Engineering for Gas Turbines and Power,2003, 125(1):292-301
    [58]沈国平,王伟,范雪飞,等.空冷300MW低压排汽缸吹风试验损失分析[J].发电设备,2003,7(3):284-287
    [59]Ladislav T., Lukas B., Jaroslav S.. Experimental Investigation of Low-Pressure Steam Turbine Exhaust Hood[J]. Cieplne Maszyny Przeplywowe Turbomachinery,2002,122:1-8
    [60]赵宝珠.300MW汽轮机排汽通道出口速度分布对凝汽器传热端差的影响[J].汽轮机技术,2004,46(1):40-42
    [61]张磊磊,崔国民,王方方,等.小型凝汽器喉部试验装置的可行性研究[J].机电设备,2005,26(6):45-47
    [62]万逵芳.凝汽器入口蒸汽流场的模拟试验研究[D].华北电力大学,2004:14-21
    [63]Tindell R. H., Alston T. M., Sarro C. A., et al. Computational Fluid Dynamics Analysis of a Steam Power Plant Low Pressure Turbine Downward Exhaust Hood[J]. Journal of Engineering for Gas Turbines and Power,1996, 118(1):214-224
    [64]Andrzej G., Jerzy S., JanuszB., et al. Methodology of CFD Computations Applied for Analysing Flows through Steam Turbine Exhaust Hoods[J]. Transactions of the Institute of Fluid-flow Machinery,2003,113: 157-168
    [65]徐旭,康顺,蒋洪德.低压蒸汽透平排汽缸内能量损失的数值研究[J].北京航空航天大学学报,2002,28(6):652-655
    [66]刘建军,蒋洪德.汽轮机低压排汽系统气动性能分析[J].工程热物理学报,2002,23(4):425-428
    [67]Liu J. J. and Hynes T. P.. The Investigation of Turbine and Exhaust Interactions in Asymmetric Flows-Blade-Row Models Applie[J]. Transactions of the ASME Journal of Turbomachinery,2003,125(1):121-127
    [68]Guh A. and Young J. B.. Time - Marching Prediction of Unsteady Condensation Phenomena due to Supercritical Heat Addition [J]. IMechE C423/057,1991:167-177
    [69]Guha A. and Young J. B.. The Effect of Flow Unsteadiness on the Homogeneous Nucleation of Water Droplets in Steam Turbines[J]. Physical Sciences and Engineering,1994,349(1691):445-472
    [70]White A. J. and Young J. B.. Time Marching Method for the Prediction of 2-Dimensional, Unsteady Flows of Condensing Steam[J]. Journal of Propul Power,1993,9(4).-579-587
    [71]Gerber A. G. and Kermani M. J. A Pressure Based Eulerian/eulerian Multi-phase Model for Non-equilibrium Condensation in Transonic Steam Flow[J]. International Journal of Heat and Mass Transfer,2004,47(10): 2217-2231
    [72]Adam A. and Schnerr G. H.. Instability and Bifurcation of Non-Equilibrium Two-Phase Flows[J]. Journal of Fluid Mechanics,1997,348:1-28
    [73]Yang Y. and Shen S. Q.. Numerical Simulation on Non-equilibrium Spontaneous Condensation in Supersonic Steam Flow [J]. International Communications in Heat and Mass Transfer,2009,36(9):902-907
    [74]Vladimir E. Z., Alexander I. D., Oleg A. V.. New Method for Numerical Simulation of a Nonstationary Potential Flow of Incompressible Fluid with a F ree Surface[J]. European Journal of Mechanics B/Fluids,2002,21:283-291
    [75]Matsuo K., Kawagoe S., Sonoda K., et al. Oscillations of Laval Nozzle-Flow with Condensation. Part 2-on the Mechanism of Oscillations and Their Amplitudes[J]. JSME International Journal Series B,1985,28(235):88-93
    [76]White A. J.. A Comparison of Modelling Methods for Polydispersed Wet-steam Flow[J]. International Journal for Numerical Methods in Engineering,2003,57:819-834
    [77]White A. J. and Hounslow M. J.. Modelling Droplet Size in Polydispersed Steam Flows[J]. International Journal of Heat and Mass Transfer,2000,43 (11):1873-1884
    [78]Simpson D. A. and White A. J.. Viscous and Unsteady Flow Calculations of Condensing Steam in Nozzles[J]. International Journal of Heat and Fluid Flow,2005,26 (1):71-79
    [79]杨科,李宇峰,康顺.30万千瓦空冷汽轮机组低压排汽缸数值模拟[J].热 力透平,2005,35(2):69-72
    [80]崔国民,张磊磊,王方方.凝汽器喉部结构优化的理论及模化研究[J].工程热物理学报,2007,28(1):131-133
    [81]曹丽华,郭婷婷,李勇.300MW汽轮机凝汽器喉部出口流场的三维数值模拟[J].中国电机工程学报,2006,26(11):56-59
    [82]曹丽华,李勇,张仲彬,等.加装导流装置的凝汽器喉部流场的三维数值模拟[J].动力工程,2008,28(1):108-111
    [83]周兰欣,李富云,张伟民,等.低加在凝汽器喉部布置形式的三维数值研究[J].华东电力,2007,35(6):63-66
    [84]Stastny M., Tajc L., Kolar P., et al. Effects of Inlet Swirl on the Flow in a Steam Turbine Exhaust Hood[J]. Journal of Thermal Science,2000,9(4): 327-333
    [85]杜占波,王科军.汽轮机低压排汽缸和末两级流场的联合数值模拟[J].汽轮机技术,2007,23(4):12-16
    [86]付经伦,周嗣京,刘建军.轴流透平与排汽系统间流场相互作用研究[J].工程热物理学报,2008,29(4):567-572
    [87]Solodov V. G. and Gnesin V. I.. Three-dimensional Simulation of Nonstationary Flow Phenomena in"Last Stag-exhaust Hood" Compartment[J]. Journal of Thermal Science,1997,6(4):231-236
    [88]Jing-lun F., Jian-jun L., Si-jing Z.. Experimental and Numerical Investigation of Interaction between Turbine Stage and Exhaust Hood[J]. Journal of Power and Energy,2007,221 (7):991-999
    [89]Thiemann T., Lazzer A. D., Deckers M.. Application of Advanced CFD-Methods to the Design of Highly Efficient Steam Turbines[J]. Thermal Turbine,2003,32 (2,3):171-177
    [90]Jose G., Joaquin F., EduardoB.. Numerical Simulation of the Dynamic Effects due to Impeller Volute Interaction in a Centrifugal Pump[J]. Journal of Fluids Engineering,2002,124 (2):76-81
    [91]Ris V. V., Simoyu L. L., Galaev S. A., et al. Numerical Simulation of Flow in a Steam-turbine Exhaust Hood:Comparison Results of Calculations and Data from a Full-scale Experiment[J]. Thermal Engineering,2009,56(4): 277-283
    [92]Jing-lun F., Jian-jun L., Si-jing Z.. Unsteady Interactions Between Axial Turbine and Nonaxisymmetric Exhaust Hood Under Different Operational Conditions[J]. Journal of Turbomachinery,2011,134(4):1002-1013
    [93]Hansen E., Godwin R., Wood D., et al. Early Detection of Feed Water-heater leaks[J]. ASME Journal of Engineering for Gas Turbines and Power,1996,118 (1):198-203
    [94]Roger L. K., James L., Hollingsworth. A Prototype Expert System for Failure Cause Analysis in Closed Feedwater Heaters[J]. IEEE Transactions on Energy conversion,1991,6 (3):356-360
    [95]Sanz-Bobi M. A., Perez-Arriaga I. J., Serrano-Carbay J. L., et al. Control and Diagnosis of Water Chemistry in the Water-steam and Water Make-up in a Fossil Fuelled Power Plant[J]. International Journal of Electric Power & Energy Systems,1994,16 (4):251-258
    [96]Park K. S.. Condition-Based Predictive Maintenance by Multiple Logistic[J]. IEEE Transactions on Reliablity,1993,42(4):556-560
    [97]Chan J. K. and Shaw L.. Modeling Repairable Systems with Failure Rates that Depend on Age & Maintenance. IEEE Transactions on Reliablity,1993, 42 (4):566-570
    [98]林万超.火电厂热系统定量分析[M].西安:西安交通大学出版社,1991:1-9
    [99]李勇,曹丽华,林文彬,等.效热降法的改进计算方法[J].中国电机工程学报,2004,24(12):244-247
    [100]李勇,张斯文,李慧.基于改进等效热降法的汽轮机热力系统热经济性诊断方法研究[J].汽轮机技术,2009,51(5):333-337
    [101]王莉琳,叶永松,汪家军.火电机组运行小指标考核方法探讨[J].热力发电,2004,(6):39-41,44
    [102]王爱军,张小桃,邱道尹,等.火电机组热经济性在线监测系统[J].汽轮机技术,2005,47(3):209-210,214
    [103]杨波,李政.火电机组热力系统主导因素变工况建模方法研究[J].中国电机工程学报,2005,25(24):96-102
    [104]剪天聪.汽轮机原理[M]. 北京:水利电力出版社,1992:173-184
    [105]曹祖庆.汽轮机变工况特性[M].北京:水利电力出版社,1991:236-248
    [106]王晓刚,胡洪华,庞顺,等.超临界汽轮机组变工况下运行参数目标值的计算分析[J].热力发电,2006,(5):16-18
    [107]曹丽华,李勇.汽轮机超临界级变工况热力计算方法的改进[J].汽轮机技术,2001,43(6):341-343
    [108]程通锐,李永玲,邵峰,等.汽轮机末级变工况顺序计算方法的研究 [J].汽轮机技术,2008,50(6):425-427
    [109]牛培峰,张君.小波分析技术在汽轮机故障诊断中的应用[J].动力工程,2007,27(1):76-80
    [110]陈平,谢志江,欧阳奇.多层传递函数的量子神经网络在汽轮机故障诊断中的应用[J].动力工程,2007,27(4):569-572
    [111]Ray Beebe. Condition Monitoring of Steam Turbines by Performance Analysis[J]. Journal of Quality in Maintenance Engineering,2003,9 (2) 102-112
    [112]Karlsson C., Arriagada J., Genrup M.. Detection and Interactive Isolation of Faults in Steam Turbines to Support Maintenance Decisions[J]. Simulation Modeling Practice and Theory,2008,16(10):1689-1703
    [113]李勇,曹丽华,杨善让. 凝汽式汽轮机相对内效率在线监测的一种近似计算方法[J].中国电机工程学报,2002,22(2):64-67
    [114]李勇,陈梅倩.汽轮机运行性能诊断技术及应用[M].科学出版社,1999:92-101
    [115]杨勇平,杨昆.汽轮机通流部分故障诊断的热力判据研究[J].热能动力工程,1999,14(5):347-349
    [116]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008:57-58
    [117]于勇FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008:236-237
    [118]冯仁海,倪定.汽轮机叶顶汽封间隙超标对机组经济性的影响[J].华电技术,2010,32(2):34-36,39
    [119]杨彦磊.迷宫密封流场及汽流诱发振动研究[D].武汉:华中科技大学,2006:21-22
    [120]童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].北京:国防工业出版社,1993:238-239
    [121]王定标,雷风林,向飒.汽轮机末级变工况三维数值模拟与叶型改进设计[J].郑州大学学报(工学版),2010,31(5):1-4
    [122]Storer J. A. and Cumpsty N. A.. Tip Leakage Flow in Axial Compressors[J]. Journal of Turbomachinery,1991,113(2):252-259
    [123]Ning W. and He L.. Some Modelling Issues on Trailing Edge-edge vortex Shedding[J]. Journal of AIAA,2001,39(5):787-793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700