处理后污水—原生污水热泵的淋激式换热器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在目前常用的浸没式换热器和壳管式换热器不能较好的满足使用要求的情况下,提出在污水源热泵中使用淋激式换热器。由于污水水质的特殊性,应对污水源热泵中与污水接触的换热器结构型式等问题进行深入研究。并将带该淋激式换热器的污水源热泵系统应用于哈尔滨某制药厂中,回收处理后污水中的热能加热原生污水,以满足该制药厂污水生物处理对水温的要求,保证低温环境下污水生物处理的正常进行,这是寒冷地区寒冷月份污水处理厂及其它污水处理场合的实际需要。
     本文针对淋激式换热器和带该换热器的处理后污水-原生污水热泵系统,主要的研究内容和研究成果如下:
     (1)建立水平管降膜流动和换热的数学模型,并对模型方程进行变量转换和无量纲化,将由于液膜厚度变化导致的不规则求解域转换为规则的矩形求解域,给出该数学模型的数值解法,编制计算机程序,进而对淋激式换热器的降膜流动特性,传热特性以及稳定特性进行研究。
     (2)考虑管间流动形态对液膜厚度的影响,分析三种情况下的液膜厚度分布差异,以及管间距影响。分析在污水源热泵的使用工作范围内,最有可能的是膜状布液降膜流动。膜状布液降膜是管两端液膜厚,中间薄,且液膜厚度变化受管间距影响较小。进行无量纲液膜厚度的拟合关系研究,与其他文献中有关膜厚实验拟合式对比,并通过天津大学的水平管降膜实验验证。
     (3)研究了污水液膜内速度分布,温度分布,及Nu的变化情况,并对可能影响液膜速度分布、温度分布和换热的因素及影响规律进行分析。喷淋密度和粘度是影响液膜速度的关键因素,保证一定喷淋密度的条件下,基本工况下大于0.148kg/(m.s),淋激式换热器在处理高粘度液体时,仍可以达到0.3m/s以上的平均速度,而且达到这样的理想流速无需外加动力,比壳管式换热器节省动力消耗。管径对平均速度影响不大,但管径的减小使液膜容易产生波动,液膜稳定性降低。液膜内温度分布,越靠近壁面处的液膜温度沿圆周变化越明显,越远离壁面,液膜温度趋于一致。引入无量纲降膜换热系数Nu,进行拟合关系研究,并与其他文献中实验拟合式对比。对液膜的稳定性,包括波动特性和破裂特性等进行分析。在相同接触角下,流量越大,越不易破裂;在相同热流密度下,接触角越大,越容易破裂。换热管材对液膜稳定性也有影响,钛优于不锈钢,不锈钢优于紫铜。并提出目前预防破裂的可行措施。
     (4)建立淋激式换热器分布参数模型及整个系统模型,预测该处理后污水-原生污水热泵在该制药厂工况下的运行情况,对三级淋激式换热器的换热情况作详细模拟分析,并考察污垢热阻对污水源热泵系统性能的影响趋势和影响程度。在污垢热阻较小时,三级壳管式蒸发器的传热系数大于三级淋激式冷凝器,但随着污垢热阻的增大,壳管式换热器传热系数的降低比淋激式换热器快,减小的幅度比淋激式大。因此淋激式换热器比壳管式换热器更适合于结垢严重的原生污水换热使用。
     (5)提出淋激式换热器强化传热方法,用异型管(椭圆管)来代替圆管。对椭圆管上液膜的速度分布、温度分布,以及无量纲液膜厚度和无量纲降膜换热系数Nu等进行研究。研究发现随着形状因子a/b增大,平均液膜厚度减小,Nu增大,但膜厚减小,Nu增大的趋势逐渐减小,在基本工况下,a/b大于1.8以后,Nu随a/b的变化已不明显。a/b=2的椭圆管的高降膜换热系数区占半周长的65%,而圆管的高降膜换热系数区只占半周长的48%。开发管型,就是使相同圆周的管子上,具有较高传热膜系数的区域所占比例较大。建议选用形状因子a/b大于1小于1.8的椭圆管,能起到较显著的强化传热的作用。
     本课题研究是“十一五”国家科技支撑计划项目六“水源地源热泵高效应用关键技术研究与示范”(2006BAJ01A06)的一部分。本文工作对深入认识淋激式换热器降膜流动换热,以及在污水源热泵中切实使用淋激式换热器提供理论指导,并对推广巧用污水源热泵,在诸如药厂、啤酒厂、医院、游泳馆等特殊场合因地制宜地就地回收污水热能,并就地使用提供有益参考和借鉴。
Fouling occurs when sewage goes through the conventional submerged-tube heat exchanger and the shell and tube heat exchanger. This in turn, can lead to a decrease in the overall heat transfer coefficient and efficiency of heat exchanger. Due to the deficiencies, a spray heat exchanger was developed for Sewage Source Heat Pump System (SSHPS). The optimal structure of heat exchanger was discussed in consideration of the abundant effects caused by the impurities and the fouling of the sewage. Then, the SSHPS with the spray heat exchanger was used in a pharmaceutical manufacturer in Harbin. The heat of the treated sewage was taken to increase the temperature of the raw sewage for the biological treatment in low-temperature environment. It was considered as an effective and practical technique for the sewage treatment in cold region and in winter.
     In this paper, the spray heat exchanger and the treated sewage - raw sewage heat pump system with the spray heat exchanger were discussed. Firstly, a numerical model to predict the gravity-driven flow of liquid films in horizontal tube and the thermal characters were developed in the surface-fitted coordinate systems. The methods of the variable transform and the dimensionless function were used. The irregular solving domain, resulted from the changes of the liquid film thickness, was transformed to the regular rectangle solving domain by the methods. The two-dimension model of the exchanger was solved numerically through MATLAB codes. Moreover, the characters of the flow and heat transfer of the falling film were discussed.
     Secondly, the impact of the flow patterns and the tube’s placement and spacing on the liquid film thickness distribution were studied. The film-distribution was the main state in the liquid film flow. The thicknesses of the liquid film reached the maximum on the top and bottom of the tube and reached the minimum on the middle region of tube surface. Furthermore, the results shows that the horizontal spacing maked less impact on the thickness of the liquid film. The improved predictor on dimensionless thickness of the liquid film was derived. The results by correlating on data value showed in close agreement with the experimental data of the experiment on the falling film of the horizontal tube obtained by Tianjin University and another reported experimental data.
     Thirdly, the flow velocity and temperature distribution and the Nusselt number variation of the liquid film were obtained. Moreover, the parameters impacted on the flow velocity, the temperature and the heat transfer were discussed. The spray density and viscosity were the key factors associated with the flow velocity of the liquid film. With a constant spray density of 0.148kg/(m.s), the mean velocity of the liquid film can reach the optimal value of 0.3m/s as the spray heat exchanger used the high-viscosity fluid without the external power pumping. It was an important technique for reducing the energy consumption and cost on pumping in contrast to the shell and tube heat exchanger. The diameter of the tube had less impact on the mean velocity of the liquid film. However, the reduction of the diameter of the tube resulted in decrease of the flow stability and the fluctuation of the liquid film. The temperature of the liquid film varied violently with the circular angle near the surface of the tube, and the temperature tended to be accordance near the free surface of the liquid film. The dimensionless Nusselt Number and the improved correlating equation were used to predict the heat transfer of the liquid film. Moreover, the stability, the fluctuation and the fracture character of the liquid film on the tube were discussed. At the same contact angle, the larger the flux of the sewage was, the harder the liquid film was fractured. At the same heat transfer, the bigger contract angle was, the easier the liquid film was fractured. The material of the tube also related to the stability of the liquid film: The tube made of the titanium was superior in stability to the stainless steel and the red copper. This in turn, the methods to improve the stability for the liquid film on the tube were derived.
     Fourthly, the distributed parameter model for spray heat exchanger and heat pump system were developed to predict the performance of the SSHPS of the pharmaceutical manufacturer in Harbin. The thermal performance of the three-level spray heat exchanger was predicted and studied. Moreover, the impact of the thermal resistance of fouling occurred on the thermal performance of SSHPS was discussed. As less fouling occurred, the overall heat transfer coefficient of three-level shell and tube heat exchanger was even larger than the three-level spray heat exchanger. However, Effects of fouling were more abundant in the shell and tube heat exchanger, than in the spray heat exchanger. The increment of thermal resistance caused much more decrease of the overall heat transfer coefficient of the shell and tube heat exchanger than the spray heat exchanger. So did the speed of the reduction. When compared versus each other, the spray heat exchanger was generally more efficient than the shell and tube heat exchanger etc using heat from the sewage, especially the raw sewage with the impurities.
     Fifthly, the circular tube was replaced with the elliptical tube to improving the heat transfer coefficient in the spray heat exchangers. The flow velocity distribution, the temperature distribution, the dimensionless thickness of the liquid film and the dimensionless Nusselt Number based correlating equation for the elliptical tube were obtained. The results showed that the increment of shape factor of a/b resulted in the decrease of mean thickness of the liquid film and the increment of the Nusselt Number. The decrease of the thickness of the liquid film caused the increment of the Nusselt Number trended to slow down smoothly. At the condition of a/b>1.8, there were less variation of the Nusselt Number with the value of a/b. The area with high film heat transfer coefficient in the elliptical tube was 65% of the half-perimeter of the elliptical tube at a/b=2. However, the area with high film heat transfer coefficient in the circular tube was only 48% of the half-perimeter of the circular tube. With the same perimeter, the more area with high film heat transfer coefficient in a tube leaded to the better thermal performance for the improvement of heat transfer. Therefore, it was recommended for improving the heat transfer of the exchanger that the optimal shape factor was from 1 to 1.8 and the form of the tube was ellipse.
     Our research was one of the sub-projects of Study on the key technique and demonstration of high-efficiency water source heat pump system, supported by National Eleventh-Five Year Technological Supporting Projects from China Ministry of Science and Technology (MOST) and coded as 2006BAJ01A06. The technique is also useful for analyzing and improving the heat transfer of falling film on the spray heat exchanger, for optimizing the performance of the SSHPS and for using the heat of the sewage in beer factory, hospital, natatorium etc.
引文
1龙惟定.试论中国的能源结构与空调冷热源的选择取向.暖通空调. 2000,30(5):27-32
    2 Naoki Hayakawa, Yoshitsugu Wakazono, Takeyoshi Kato. Minimizing Energy Consumption in Industries by Cascade Use of Waste Energy. IEEE Transactions on Energy Conversion. 1999,14(3):795-801
    3 T.Yoshii. Technology for Utilizing Unused Low Temperature Difference Energy. Journal of Japan Institute of Energy. 2001,(8):696-706
    4 Thore Berntsson. Heat Sources-Technology, Tconomy and Environment. International Journal of Refrigeration. 2002,(25):428-438
    5尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社. 2005:28-30
    6吴成强,杨敏,张昱.低温生物膜和活性污泥的生物活性比较.应用与环境生物学报. 2004,10(5):647-650
    7 L.Aye, W.W.S.Chareters. Electrical and Engine Driven Heat Pumps for Effective Utilization of Renewable Energy Resources. Applied Thermal Engineering. 2003,(23):1295-1300
    8 P.A.Kew. The Industrial Application of Heat Pump. Heat Pump Fundamentals. 1983,(4):67-73
    9 J.R.Lines. Heat Exchangers in Municipal Wastewater Treatment Plants. Water/Engineering and Management. 1991,(9):28-29
    10 T.Asano, M.Maeda. Wastewater Reclamation and Reuse in Japan: Overview and Implementation Examples. Water Science and Technology. 1996,34(11):219-226
    11 T.Yoshii. Technology for Utilizing Unused Low Temperature Difference Energy. Journal of Japan Institute of Energy. 2001,(8):696-706
    12 Arashi, Norio, Inaba, Atsushi. Evaluation of Energy Use in District Heating and Cooling Plant Using Sewage and One Using Air as Heat Source. Journal of Japan Institute of Energy. 2000,79(5):446-454
    13 N.A.Funamizu, M.Iida, Y.Sakakura, T.Takakuwa. Reuse of Heat Energy in Wastewater: Implementation Examples in Japan. Water Science andTechnology. 2001,43(10):277-285
    14 M.Ogoshi, Y.Suzuki, T.Asano. Water Reuse in Japan. Water Science and Technology. 2001,43(10):17-23
    15 Lief Westin. Heat Pump Based on Sewage for District Heating. New Energy Conference Technology. 1981,(3):45-49
    16 Persson, Tina, Jander, Lars. Stockholm_ The City of Large Heat Pump. ASEA Journal. 1986,59(2):4-7
    17 H.O.Lindstrom. Experiences with a 3.3 Mw Heat Pump Using Sewage Water as Heat Source. Journal of Heat Recovery Systems. 1985,5(1):33-38
    18谭乃秦.城市污水处理厂污水低温热能利用.节能技术. 2002,(2):15-20
    19 N.C.Baek, U.C.Shin, J.H.Yoon. A Study on the Design and Analysis of a Heat Pump Heating System Using Wastewater as a Heat Source. Solar Energy. 2005,(78):427-440
    20 O.C.Lam, W.W.Chan. Life Cycle Energy Cost Analysis of Heat Pump Application for Hotel Swimming Pools. Energy Conservation and Management. 2001,(42):1299-1306
    21 G.Tang, Z.Zhuang. Analysis of the Energy-saving Plan of the Heaters in an Oil Refinery. Chemical Machinery. 2003:352-354
    22 Kstina Holmgren. Role of adistriet-heating net work as a user of waste heat supply from various sources the ease of Goteborg. APPlied Energy. 2006,(83):1352-1354
    23 S.Walker. Energy from Waste in the Sewage Treatment Process. IEE Conference. 1996,(3):73-75
    24 Narita, Katsuhiko. Energy Recycling System for Urban Waste Heat. Energy and Buildings. 1991,(11):553-560
    25 J.C.Lam, W.W.Chan. Energy Performance of Air-to-water and Water-to-water Heat Pump in Hotel Applications. Energy Conservation and Management. 2003,44(1):525-531
    26 M.Depaepe, E.Theuns, S.Lenaers, J.VanLoon. Heat Recovery System for Dishwashers. Applied Thermal Engineering. 2003,(23):743-756
    27 Zhaolin Gu, Jian Qiu, Yun Li, Guoguang Cai. Heat Pump System Utilizing Produced Water in Oil Fields. Applied Thermal Engineering. 2003,(23):1959-1970
    28建设部综合财务司. 2004年城市建设公报. 2004
    29白静.水源热泵系统在中原地区的应用探讨.科技信息. 2007,(25):15-18
    30伍培,付祥钊.重庆地区污水源热泵系统的可行性分析与方案设想.给水排水,2007,(5):174-180
    31黄国琦,李琳,徐春.城市污水热泵系统在北京地区的应用分析.流体机械. 2005,(33):132-136
    32 P.A.Kew. The Industrial Application of Heat Pump. Heat Pump Fundamentals. 1983,(4):67-73
    33 Lines, R.James. Heat Exchangers in Municipal Wastewater Treatment Plants. Water Engineering and Management. 1991,(9):28-29
    34靳明聪.换热器.重庆:重庆大学出版社. 1990:7-29
    35 S.Y.Yoo. Evaporator for Heat Pump. Korea Patent. KR2003092717-A
    36 C.A.Allen, E.S.Grimmett. Liquid Fluidized Bed Heat Exchanger Design Parameters. Department of Energy. 1978,(4):1570-1572
    37 D.G.Klaren. Development of a Vertical Flash Evaporator. PhD. Thesis of Delfi University of Technology. 1975:110-131
    38 A.W.Veenman. A Review of New Development in Desalization by Distillation Process. Desalization. 1978,(27):21-39
    39 D.G.Klaren, R.E.Vailie. The Non-fouling Fluidized Bed Heat Exchanger National Heat Transfer Conference HTD. Heat Transfer Equipment Fundamentals Design Application and Operation Problems. 1989,(108):273-279
    40 Hidetoshi. Mechanism of Calcium Sulfate Scale Deposition on Heat Transfer Surfaces and Mechanical Removal of Scale by Particle Abrasion Method.日本海水学会志. 1994,48(2):96
    41张少峰,李修伦,刘明言.换热设备多相流防除垢新技术的研究进展.化工机械. 2003,30(2):116-119
    42 J.St.Kollbach, R.Rautenbach. The Fluidized Bed Technique in the Evaporation of Wastewater with Severe Fouling Scaling Potential_Latest Developments. Application Limitations Desalination. 1991,81(13):285-298
    43 Gary Mumford. Sewage Heat Pump Pilot Project. Salt Lake City Council Staff Report. 2006
    44黄国琦.城市污水源热泵的开发和应用.流体机械. 2005,(6):76-78
    45张少峰,刘燕.换热设备防除垢技术.化学工业出版社. 2003:265-278
    46钱红卫,张琳,龚莉.换热器自转清洗纽带自动阻垢技术的试验研究.石油机械. 2005,33(7):4-9
    47杨善让,徐志明.换热设备的污垢与对策(第二版).北京:科学出版社. 2004:204-245
    48 Narita, Katsuhiko. Energy Recycling System for Urban Waste Heat. Energy and Buildings. 1991,(11):553-560
    49于永辉.城市污水集中供热(冷)装置.中华人民共和国国家知识产权专利. ZL200410155197.2.
    50孙德兴,吴荣华,肖玉生.设置有滚筒格栅的自清装置.中华人民共和国国家知识产权专利. ZL20042001919.2.
    51詹柏林,朱有兰,陈颖等.金属换热器防腐技术研究进展.材料导报. 2006,20(12):79-82
    52白莉.以城市污水为热(冷)源的供热与空调系统实验研究.建筑科学. 2007,23(10):78-82
    53方先金,张韵.高碑店污水处理厂回用方案研究.机械给排水. 2003,(1):15-18
    54周俊波,王奎升,宋在卿.腐蚀科学与防腐技术.不锈钢换热器失效分析. 2003,15(2):51-53
    55李晓明.回收污水热能时水质对换热设备腐蚀和结垢影响的研究.哈尔滨工业大学博士学位论文. 2005:100-145
    56周文忠.污水源热泵空调系统在污水处理厂的应用.暖通空调. 2005,35(l):85-86
    57 Department of Water Environment Protection. Environmental Protection Agency. 1995
    58朱五星,舒锦琼.城市污水处理厂能量优化策略研究.给水排水. 2005,12(31):30-33
    59 E.J. Middlebrooks. Energy Requirement for Small Wastewater Treatment System. Journal WPCF. 1981,53(2):1172-1175
    60 S.Dianne. Case Studies in Residual Use and Energy Conservation at Wastewater Treatment Plants Final Report. National Renewable Energy Laboratory. 1995,(6):15-19
    61 Haganrm, Robertseb. Energy Requirements for Wastewater Treatment. Waterand Sewage Works. 1976,(11):52-57
    62 I.Karlsson. Environmental and Energy Efficiency of Different Sewage Ttreatment processes. Water Science Technology. 1996,34(3):203-211
    63 S.Walker. Energy from Waste in the Sewage Treatment Process. IEEE Conference. 1996,(3):73-75
    64 Kuroyama Kazuhiro, Kudo Hirofumi, Yoshida Sueo. Recovery of Energy Generated in Sewage Treatment Installation Involves Contacting Smoke Cleaning Water with Waste gas and Using Smoke Cleaning Water after Contacting as Heat Source of Heat Pump. Japanese Patent. JP2004093018-A
    65王富康,王曙光,李小平.工业废水和城市污水处理技术经济手册.北京:清华大学出版社. 1992:372-381
    66李亚选,张晓玲,姜安玺.低温菌去除污染物的研究现状.广州环境科学. 2006,21(2):14-18
    67吴成强,杨金翠,杨敏.运行温度对活性污泥特性的影响.中国给水排水. 2003,19(9):5-7
    68吉芳英,袁春华,许晓毅.低温条件下生物除磷系统的强化启动和运行.重庆环境科学. 2003,25(10):4-8
    69姜安玺,何丽荣,韩晓云.几种固定化耐冷菌载体的比较研究.哈尔滨工业大学学报. 2003,35(4):412-415
    70张自杰,戴爱临.国内城市污水低温生物处理试验(下).环境工程. 1984,(2):19-22
    71张自杰,戴爱临.国内城市污水低温生物处理试验(上).环境工程. 1983,(1):11-16
    72尹军,王雪峰,王建辉等.低温对污水生物处理过程的影响及改进措施.吉林建筑工程学院学报. 2007,24(2):29-33
    73 L.G.Whyte, S.J.Slanman. Physiological Adaptations Involved in Alkane as Similation at a Low Temperature by Rhodococcus sp. Strain Q15. Applied Environ Microbiol. 2003,65(7):2961-2968
    74 G.M.Wolfaardt, J.R.Lavrence, J.V.Headley, R.D.Robarts, D.E.caldwell. Microbiol Exopolymers Provide a Mechanism for Bioaccumulation of Contaminants. Microb.Ecol. 2004,27(2):279-291
    75 H.Abdollahi, D.B. Nedwell. Seasonal Temperature as a Factor Influencing Bacterial Sulfate Reduction in a Saltmarsh Sediment. Microb. Ecol.2004,(5):73-79
    76戴爱临.大庆乘风庄污水处理厂工程设计与运行.油气油田地面工程. 1994,(4):15-19
    77化学工程手册编辑委员会.化学工程手册.北京:化学工业出版社. 1989:118-121
    78 I.Arshavski, Y.Nekhamkin, S.Ulek. Conjugate Heat Transfer During Falling Film Evaporation. International Communications in Heat and Mass Transfer. 1995,22(2):271-284
    79程又龙,陈则韶.溴化锂风冷垂直降膜吸收过程数值模拟.制冷学报. 2001,(4):11-15
    80代彦军,李增耀,张鹤飞.叉流高效降膜蒸发器传热传质规律研究.太阳能学报. 2000,21(4):451-456
    81代彦军,张鹤飞,俞金娣.错流降膜液体干燥剂除湿/再生传热传质数学模型及分析.化工学报. 2001,52(6):510-515
    82师晋生,施明恒.恒热流竖壁层流降膜换热特性研究.化学工程. 1999,27(1):25-28
    83 A.T.Conlisk. Analytical Solutions for Falling Film Absorption of Ternary Mixtures, Part 1: Theory. Chemical Engineering Science. 1996,51(7):1157-1168
    84 M.H.Chun, S.J.Park. Ettects of Turbulence Model and Interfacial Shear on Heat Transfer in Turbulent Falling Liquid Films. International Communication in Heat and Mass Transfer. 1995,22(l):1-22
    85 Z.I.Stefanove, K.A.Hoo. Distributed Parameter Model of Black Lliquor Falling-film Evaporators_ Modeling of a Multiple-effect Evaporator Plant. Ind. Eng. Chem. Res. 2004,(43):8117-8132
    86藤田恭伸,简井正幸.水平管下落液膜热传递.日本机械协会论文集. 1994,60(578):10
    87 L.S.Fletcher, V.Sernas, and W.H.Parken. Evaporation Heat Transfer Coefficients for Thin Sea Water Films on Horizontal Tubes. Industrial Engineering Chemistry. 1995,(14):411-416
    88 R.J.Conti. Experimental Investigation of Horizontal-tube Ammonia Film Evaporators with Small Temperature Differentials. Proc.5th Ocean Thermal Energy Conversion Conference. Miami Beach. 1978,(6):161-180
    89 W.H.Parken, L.S.Fletcher, V.Sernas, J.C.Han. Heat Transfer through Falling Film Evaporation and Boiling on Horizontal Tubes. Trans.ASME J.Heat Transfer. 1990,(112):744-750
    90 V.Sernas. Heat Transfer Correlation for Subcooled Water Films on Horizontal Tubes. Trans. ASME J.Heat Transfer. 1979,(101):176-180
    91 W.H.Parken. Heat Transfer to Thin Water Films on Horizontal Tubes. Rutgers University. Ph.D.Dissertation. 1975:60-62
    92 G.J.Gimbutis. Heat Transfer in Film Heat Exchangers. Proceedings of the 14th International Congress of Refrigeration. Moscow. 1975,(2):1-7
    93 J.Mitrovic. Influence of Tube Spacing and Flow Rate on Heat Transfer from a Horizontal Tube to a Falling Liquid Film. Proc.8th International Heat Transfer Conference. San Francisco. 1986,(4):1949-1956
    94 J.T.Rogers, S.S.Goindi. Experimental Laminar Falling Film Heat Transfer Coefficients on a Large Diameter Horizontal Tube. Can.J.Chem.Eng. 1989,(67):560-568
    95 R.Armbruster, J.Mitrovic. Heat Transfer in Falling-film on a Horizontal Tube. Proc.1995 National Heat Transfer Conference, ASMEHTD. 1995,(314):13-24
    96 J.T.Rogers, S.S.Goindi, M.Lamari. Turbulent Falling Film Flow and Heat Transfer on Horizontal Tubes. Proc.1995 National Heat Transfer Conference, ASMEHTD. 1995,(314):3-12
    97 Y.Fujita, M.Tsutsui. Evaporation Heat Ttransfer of Falling Films on Horizontal Tube---Part1: Analytical Study. Heat Transfer Japanese Research. 1995,24(1):1-16
    98 L.Xu, M.R.Ge, S.C.Wang. Heat Transfer Film Coefficients of Falling Film Horizontal tube Evaporators. Desalination. 2004,(166):223-230
    99 K.R.Chun, R.A.eban. Heat Transfer to Evaporating films. Jour. Heat Transfer. 1971,(96):391-396
    100 S.S.Kutateladze, I.I.Gogonin. Heat Transfer in Film Condensation of Slowly Moving Vapour. Int. J. Heat Mass Transfer. 1979,(22):1593-1599
    101 R.I.Hirshburg, L.W.Florschuetz. Laminar Wavy-Film Flow: Part II,Condensation and Evaporation. Transactions of the ASME.J.Heat Transfer. 1982,(104):459-464
    102 T.Fujita, T.Ueda. Heat Transfer to Falling Liquid Film and Film BreakdownPart I: Subcooling Films. Int.J.Heat Mass Transfer. 1988,(21):97-108
    103 I.A.Mudawwar, M.A.EIMasri. Momentum and Heat Transfer across Freely-falling Turbulent Liquid Films. Int. J. Heat Transfer. 1986,12(5):771-790
    104 J.A.Shmerler, I.Mudawwar. Local Heat Transfer Coefficient in Wavy Free-Falling Turbulent Liquid Films undergoing Uniform Sensible Heating. Int.J. Heat Mass Transfer. 1988,33(1):67-77
    105 H.Sabir, K.O.Suen, G.A.Vinnicombe. Investigation of Effects of Wave Motion on the Performance of a Falling Film Absorber. Int. J. Heat Mass Transfer. 1996,38(12):2463-2472
    106 B.G.Ganchev, V.M.Koglov, V.V.Lozovetskiy. A Study of Heat Transfer to a Falling Fluid Film at a Vertical Surface. Heat Transfer-Soviet Research. 1972,(4):102-110
    107 W.Wilke. Warmeübergang an Rieselfilme. VDI Forschungsh. Düsseldorf.1962:490
    108蒋章焰,马同泽,赵嘉琪等.垂直管外降落液膜的流动和传热特性.工程热物理学报. 1988,9(1):70-74
    109 G.J.Gimbutis, S.S.Gimbutyté, S.S.Dinknas. Heat Transfer in a Falling Liquid Film with Large Curvature. Heat Transfer Research. 1993,25(2):216-219
    110 J.A.Shmerler, I.Mudawwar. Local Evaporative Heat Transfer Coefficient in Turbulent Free-Falling Liquid Films. Int.J.Heat Mass Transfer. 1988,31(1):731-742
    111 M.Harkonen, A.Aula, A.Aittomaki. Heat Transfer and Hydro-dynamics of Falling Films. Acta Polytechnica Scandinavica Mechanical Engineering Series,HELSINKI. 1994:115
    112 T.Ueda, T.Tanaka. Studies of Liquid Film Flow in Two-phase Annular and Annular-mist Flow Regimes Part I: Downflow in a Vertical Tube. Bull JSME. 1974,(17):603-613
    113 J.T.Rogers, S.E.Goidis. Experimental Laminar Falling Film Heat Transfer Coefficients on a Large Diameter Horizontal Tube. The Canadian Journal of Chemical Engineering. 1989,(67):560-568
    114 X.Hu, A.M.Jacobi. The Intertube Falling Film, Part2: Mode Effects on Sensible Heat Transfer to a Falling Liquid Film. APPlied Energy. 2004,(23):154-156
    115 W.P.Yan, X.M.Ye, Y.Zhang. Temporal Stability of Two-dimensional Waves on Evaporating or Condensing Liquid Films. Proceedings of IHTC 12th International Heat Transfer Conference. Grenoble,France. 2002,(8):18-23
    116 Y.Fujita, M.Tsutsui. Experimental Investigation of Falling Film Evaporation on Horizontal Tubes. Heat Transfer Japanese Research. 1998,27(8):609-618
    117 X.Hu, A.M.Jacobi. The Intertube Falling Film:Part1 Flow Characteristics,Mode Transitions, and Hysteresis. Trans. ASME. J.Heat Transfer. 1996,(118):616-625
    118 A.Solan, A.Afati. Heat Transfer in Laminar Flow of a Lliquid Film on a Horizontal Cylinder. Proc.5th Heat Transfer Conference,Tokyo. 1992,(2):90-93
    119 J.T.Rogers. Laminar Falling Film Flow and Heat Transfer Characteristics on Horizontal Tubes. Can.J.Chemical Engineering. 1981,(59):213-222
    120 P.L.Kapitza. Wave Flow of Thin Layers of a Viscous Fluid layers. Zh.Eksp.Teor.Fiz. 1998,18(1):3-28
    121 W.Nusselt. The Condition of Steam on Cooling Surfaced. Chem. Engineering Funds. 1982,1(2):6-19
    122 M.S.Bohn, S.H.Davis. Thermocapillary Breakdown of Falling Lliquid Films at High Reynolds Numbers. Int. J. Heat Mass Transfer. 1993,36(7):1875-1881
    123 B.X.Wang, J.T.Zhang, X.F.Peng. Experimental Study on the Dryout Heat Flux of Falling Liquid Film. Int. J. Heat Mass Transfer. 2000,43(11):1897-1903
    124 R.Gregorig. Haudkondensation an Funegewellton Oberflachen Bei Bemcksichtigung DerOberflachen Spannungen. Z Angew Math Phys. 1994,(5):36-49
    125 N.Mei, A.T.Conlist. The Flow and Heat Mass Transfer on a Twisted and Fluted Tube. Seth Annual Conference of APS. 1999,(11):7
    126梁泽德,万希观.重力驱动下的粘性流体在水平管外壁面形成液膜的分布规律研究.青岛农业大学学报(自然科学版). 2007,24(2):132-135
    127林荣忱.污水处理厂泵站与曝气系统的节能途径.中国给水排水. 1999,15(1):21-23
    128 B.Yundt, R.Rinesmith,. Horizontal Stray-Film Evaporator. ChemicalEngineering Progress. 1981:69-73
    129王致清.粘性流体动力学.哈尔滨:哈尔滨工业大学出版社. 1990:195
    130 S.Sideman, H.Homa, D.M.Maron. Transport Charaeteristies of Flowing over Horizontal Smooth Tubes. Int. J. Heat Mass Transfer. 1978,21(2):285-298
    131 R.H.Wassenaar. Simulation of Film Flow on a Horizontal Tube Feeded by Falling Droplets. 18th Int. Symp. on Heat and Mass Transfer in Cryogenies and Refrigeration. 1986:277-284
    132 B.J.Wekken, R.H.Wassenaar. Simultaneous Heat and Mass Ttransfer Accompanying Absorption in Laminar Flow over a Cooled Wall. Int. J. Refrig. 1988,(11):271-276.
    133 T.Kashiwagi, Y.Kurosaki, I.Nikai. A Study of Steam Absorption into the Aqueous Solution of LiBr Using Holographic Interferometry. Proc of 15th Int Congress of Refrig. Vol.B:Pergam on Press Ltd. 1983:184-189
    134 G.Grossman Simultaneous Heat and Mass Transfer in Film Absorption under Laminar Flow. Int J Heat Mass Transfer. 1983,26(3):357-371
    135 X.Hu, A.M.Jacobi.The Intertube Falling Film, Part2- Mode, Effects on Sensible Heat Transfer to a Falling Lquid Film. Heat Transfer of ASME, 1996,(118):626-632
    136 J.F.Roques, V.Dupont, J.R.Thome. Falling Film Transitions on Plain and Enhanced Tubes. Heat Transfer. 2002,(124):491-499
    137 Gherhardt Ribatski, Anthony Jacobi. Falling-film Evaporation on Horizontal Tubes a Ccritical Review. International Journal of Refrigeration. 2005,(28):635-653
    138 V.N.Slesarenko. A Study of Seawater Distillation Process in a Horimntal Film Plant. Proc 6th. Int. Symp. Fresh Water Iron the Sea, Las Palmas. 1978,(2):125-330
    139许莉.水平管降膜海水淡化多效蒸发传热的研究.天津大学博士学位论文. 1999:60-72
    140秦叔经,叶文邦.换热器.北京:化学工业出版社. 2002:132-135
    141张锁龙,张新年.结构对圆形水平排管喷膜蒸发传热性能影响的研究.江苏石油学院学报. 2001,13(1):28-31
    142 W.Rohsenow. Handbook of Heat Transfer Fundamentals. New York: McGraw-Hill. 1985:12-78
    143刘振华,朱群志.水平传热管外过冷水垂膜对流换热特性.上海交通大学学报. 1998,32(7):70-73
    144В.А.Щербин,И.Г.Аверьянов.Исследованиетелдоотдачикводеиводномурастворубромистоголитияоторошаемойгоризонтальнойтрубы.ХоподилънаяТехника. 1966:7
    145张祉佑.制冷原理与设备.机械工业出版社. 1987:185-187
    146蒋章焰,宋金田,孔旭静.垂直加热管外自由降膜流的破裂特性.工程热物理学报. 1995,16(2):199-203
    147蒋章焰,马同泽,赵嘉喜.过冷降膜的换热特性和破裂条件.化工学报. 1990,(6):663-669
    148 D.E.Hartley, W.Murgatroyd. Criteria for the Break-up of Thin Liquid Layers Flowing Isothermally over Solid Surfaces. Int. J. Heat Mass Transfer W. 1984,7(7):1003-1015
    149 D.G.Penn, M.A.L.De-Bertodano. Dry Patch Stability of Shear Driven Liquid Film. Proceeding of NHTC 34th National Heat Transfer Conference. 2000,(8):617-625
    150蒋章焰,宋金田,孔旭静等.垂直加热管外自由降膜流的破断特性.工程热物理学报. 1995,16(2):199-204
    151侯望奇,沈吟秋,郭宜枯.材料对水平管降膜蒸发的影响.湘潭大学自然科学学报. 1989,11(9):89-94
    152 A.B.Ponter, G.A.Dorris, W.Beaton. The Measurement of Contact Angles Under Conditions of Heat Transfer When a Liquid Film Breaks on Vertical Surface. Int J Heat Mass Transfer. 1987,10(11):1633-1636
    153亚当森.表面的物理化学.北京:科学出版社. 1986:351-355
    154宋艳.污水源热泵中多级淋激式换热器的设计及系统模拟.哈尔滨工业大学硕士学位论文. 2004:23-24
    155朱冬生,沈家龙,蒋翔.蒸发式换热器盘管表面纳米亲水涂层.中华人民共和国国家知识产权专利. ZL20046031.2
    156 D.Yun, J.J.Lorentz, E.N.Ganic. Vapor/Liquid Interaction and Entrainment in Falling Film Evaporators. Heat Transfer. 1980,(102):20-25
    157 R.Q.Li, R.Harris. On the Dominant Unstable Wavelength During Film Boiling on a Horizontal Cylinder of Small Diameter. Heat Transfer. 1993,(115):498-501
    158姚杨,马最良,姜益强等.寒冷地区处理后污水-原生污水热泵系统.中华人民共和国国家知识产权专利. ZL200510010384.6
    159姚杨,宋艳.污水源热泵系统中多级淋激式换热器的设计与分析.暖通空调. 2007,37(3):63-67
    160葛云亭.冷凝器动态数学参数模型的建立与理论计算.制冷学报. 1995,10(3):17-26
    161幡野佐一.换热器.北京:化学工业出版社. 1987:79-88
    162丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社. 2001:31-35
    163丁国良,张春路,詹涛.制冷压缩机热力性能的模糊建模方法.上海交通大学学报. 2000,34(9):1298-1230
    164伏龙.用于系统仿真的螺杆压缩机模型.压缩机技术. 2002,(1):10-12
    165张乐平,张早校,郁永章.电子膨胀阀流量特性及选型的分析.流体机械.2000,28(12):51-53
    166翁文兵,王瑾竹,蒋能照.电子膨胀阀的质量流量特性的实验研究.流体机械. 1998,26(10):58-61
    167陆亚俊,马最良,姚杨.空调工程中的制冷技术.哈尔滨工程大学出版社.1997:97
    168陶建幸,孙庆宽,杨亚东.空调器制冷系统仿真技术实用化研究.流体机械. 2001,29(6):45-48
    169丁国良,张春路.制冷空调装置智能仿真.北京:科学出版社. 2002:93-102
    170张春路,丁国良.制冷系统稳态仿真算法研究.上海交通大学学报.2002,36(11):1667-1670
    171徐志明,张仲彬,郭闻州等.微粒和析晶混合污垢模型.工程热物理学报. 2006, 27(6):81-84
    172 N.Epstein. Fouling in Heat Exchangers. Heat Transfer 1978-Proc 6th IHTC. 1979,(6):235-253
    173 Bott T R . Fouling Notebook . Birmingham : Institute of Chemical Engineers. 1990:85-90
    174 Wang kaijun,G.Zeeman,G.Lettinga.Alteration in Sewage Characteristics upon Aging. Wat. Sci. Tech. 1995,31(7):191-200
    175何永江.几种杀菌剂在微生物控制方面的应用.工业水处理.2004,24(2):60-63
    176 Ala Hasan, Kai Siren. Performance Investigation of Plain Circular and Oval Tube Evaporatively Cooled Heat Exchangers. Applied Thermal Engineering. 2004,24(5):777-790
    177 D.Moalem, S.Sideman. Theoretical Analysis of a Horizontal Condenser-evaporator Elliptical Tube. Journal of HeatTransfer. 1975,97(3):352-359
    178盛展武,孙以苓.喷淋式波面换热器.中华人民共和国国家知识产权专利. ZL198921787.8
    179姚杨,马最良,姜益强等.带淋激椭圆腔板式换热器的污水源热泵系统.中华人民共和国国家知识产权专利. ZL2007100725379
    180 Pei-Wen Li, Wen-Quan Tao. Analytical and Numerical Solution to the Film Condensation Heat Transfer out Single Horizontal Elliptical Tube. 3rd International Symposium on Multiphase Flow and Heat Transfer, Chen Xue-Jun, Xi'an Jiaotong University Press. 1994:233-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700