改性换热表面污垢形成及凝结传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热普遍存在于生活及各种工业领域中,特别是各种热交换器中,这其中如何提高换热效率一直是人们孜孜不倦追求的目标。除了与换热器的设计方式有关外,污垢及膜状凝结也都不同程度地影响着换热效率。污垢的形成恶化了换热设备的性能,降低了设备的运行效率,增大了能源消耗以及设备维护成本,从而严重地影响了设备的正常运行,造成了巨大的经济损失;而膜状凝结也广泛存在于各种汽水换热器中,对有效传热有着不同程度的影响。这两个问题是传热研究领域中没有得到很好解决的问题。
     在研究中对于污垢的形成,首先从研究污垢的种类与组成入手,对山东省各地的污垢展开大量调查研究,确定了污垢的主要组成是碳酸钙类污垢的基础研究点。进一步的分析中发现,每个地区的碳酸钙类污垢都是由方解石和文石两大类组成的,不但不同地区的两类碳酸钙组成比例不一样,而且同一块污垢沿厚度方向的组成比例也是不一样的。对典型污垢附着界面的研究表明,污垢与换热面相连接的部分存在一过渡层,过渡层的形成难易及晶体结构决定了污垢附着的难易。一般而言,具有类似晶体结构及晶格参数的过渡层可以加快相似结构污垢的附着,相近的晶格之间更易于相互匹配,该过渡层表现为换热面被氧化或者腐蚀的产物。
     在污垢的防护方面,根据以上的研究结果,本研究提出了以控制过渡界面形成来延长污垢诱导期形成的思路。具有良好耐蚀性的Ni-P镀层由于具有独特的性能,例如耐蚀性、耐磨性、顺磁性、良好的硬度以及自催化性能而备受关注。在本研究中,则主要研究了化学镀Ni-P镀层的另一潜在的应用,即抗垢性能与改善传热性能。首先针对以前Ni-P镀层成分近似但微观结构不同的报道,通过研究化学镀工艺对镀层组织性能的影响,解明了化学镀工艺参数在控制镀层成分及微观结构方面的影响规律。镀层的化学成分仅与主盐以及还原剂的浓度有关,而与络合剂浓度无关:保持主盐及还原剂浓度不变,改变络合剂浓度直接影响了镀层的微观形貌与镀速,并对镀层的晶体结构产生了影响。随着络合剂数量的增加,镀层中纳米相的含量增加,在微观硬度上表现为硬度的增加。进一步地调整化学镀Ni-P镀层中P的含量,获得了具有不同微观结构的镀层。重点研究了这类镀层中不同微观结构对镀层物性及抗垢性、传热性能影响的规律。主要研究结果总结如下:
     (1)通过调整工艺参数,采用化学镀的方法可以获得结构形态分别为非晶、混合晶及纳米晶的镀层,其磷含量分别为12.7wt%、10.6wt%以及6.9wt%,对应的纳米晶含量分别为5%、17%以及92%。镀层的硬度随纳米相的增加而增大,对于几乎全部为纳米晶的镀层,最高硬度达到了大约800Hv,这是以前很多Ni-P镀层研究中必须使用热处理才能达到的硬度值,说明了纳米相的强化作用。进一步的热分析表明,纳米晶由于具有更高的稳定性,它的存在可以提高镀层的热稳定性,使晶化温度移向较高的温度。进一步的表面接触角测试表明,这些镀层均不润湿水,具有较低的表面自由能,且不同结构形态镀层表面的表面自由能与镀层结构形态之间没有线性的对应关系。
     (2)在对镀层进行热处理的过程中,在200℃保温一小时进行热处理后,镀层没有明显的相变,仅有结构驰豫的变化,在硬度及摩擦系数上,与镀态下的镀层变化不大。而400℃保温一小时热处理后,镀层结构形态发生了明显的变化,硬度得到一定程度的提高,所有试样都有明显的Ni_3P析出。在磨损机理上,镀态以及200℃保温一小时热处理时,镀层表现为纯粘着磨损。而400℃热处理时,镀层则以粘着磨损为主,同时出现了部分磨粒磨损,表现出更好的耐磨性。Ni-P镀层的强化机理为析出强化和固溶强化,这取决于镀层中P的含量以及热处理温度的不同。
     (3)抗垢性能试验表明,与未经表面处理的碳钢、不锈钢以及铜换热表面相比,它们单位面积污垢沉积速度远高于经过镀层表面改性后污垢的沉积速度。而对于改性后的镀层换热表面而言,随着镀层中纳米相含量的增加,抗垢性能有减弱的趋势,非晶镀层表现出最佳的抗垢性能。对于镀层的耐蚀性能,电化学腐蚀实验表明,三种不同纳米相含量镀层的耐蚀性均优于普通碳素钢,随着镀层中纳米相含量的增加,耐蚀性能降低,非晶镀层的耐蚀性能最好。
     结构形态对耐蚀性能的影响趋势与对抗垢性能的影响趋势是一致的。抗垢性能与耐蚀性能有内在的联系,易于被腐蚀的表面也容易通过“过渡层”的形成而易于污垢的附着。镀层中非晶相的形成比纳米相的形成更有利于改善抗垢性能以及耐蚀性能。在此研究基础上回归出的“起始阶段”污垢诱导期的积聚模型对于预测换热表面生垢的诱导期具有指导作用。
     (4)镀层表面改性对促进高效传热方面的影响。通过搭建凝结传热试验台,调整蒸汽压力与冷却水流量匹配关系得到了稳定的珠状凝结。结果表明,这些低能表面的镀层具有明显促进珠状凝结的效果,在凝结过程中表现为珠膜共存状态,镀层对换热性能的改善与镀层中非晶相的含量相关,随着非晶相含量的增加,换热效率得到增强,这归咎于表面能的减小。与没有镀层的碳钢管相比,平均换热系数提高了(0.4-0.97)倍。
Heat transfer phenomenon is widely existed in the industrial fields, especially in all kinds of heat exchangers. People have made great efforts to improve the heat transfer efficiency by way of changing the heat exchager design. However, fouling and film condensation also affect the heat transfer efficiency. The formation of fouling on the heat transfer surfaces deteriorates the heat exchanger performance, causes enormous economic losses by decreasing operating efficiency, increases the energy consumption and maintenance costs. The film condensation appears commonly in lots of heat exchangers and weakens the heat transfer efficiency because of its higher heat resistance. Today, fouling formation and film condensation are still the problems in heat exchanger research field that are not solved sufficiently.
     In this paper, the fouling types and compositions of Shandong provience were investigated firstly and ascertained the calcium carbonate fouling as basic research objects. Furthermore, it was found that the calcium carbonate fouling including calcite and aragonitein for all the testing samples. The fouling composition contents were affected not only by the different areas but also by the thickness of the fouling layer of same sample. The research on fouling adhesion interface for typical fouling layer indicated that there was a "transitional interface" which liked a "bridge" to connect the matrix and fouling. The fouling adhesion was related to the formation and microstructure of the "transitional interface". In generally, the fouling adhesion will be easy if the "transitional interface" and fouling are alike in crystal structure and lattice parameter. The lattice of the "transitional interface" layer may easily match with the similar lattice of fouling. The transitional interface is the corrosive or oxidative product, and its crystalline structure is different from the matrix.
     According to the results above, this study put forword prolonging the fouling induction period by inhibiting the formation of "transitional interface". The Ni-P deposit has attracted much attention due to its unique properties, such as corrosion resistance, wear resistance, paramagnetic characteristic, hardness and electro catalytic activity of hydrogen evolution. Another potential application of Ni-P deposit about anti-fouling and enhancing heat transfer property used in heat exchanger were studied in this paper. It is reported that the Ni-P deposits have different microstructure in despite of the similar composition in the previous literatures. By studying the electroless plating processing, the effect of electroless plating processing parameters on the deposit composition and microstructure was clarified. The experimental results indicated that the composition of Ni-P deposits was decided mainly by main salt (nickel sulphate) and reducing agent (sodium hypophosphite), the amount of complexing agents did not have important influence on phosphorus content. However, the amount of complexing agents could affect the surface morphology, plating rate and microstructure of electroless Ni-P deposits. With the increasing of the amount of complexing agents, nanocrystalline phase content became increased, thus increased the microhardness of the deposit. The electroless Ni-P deposits with the various microstructures could be obtained by further altering the phosphorous contents of the deposits. The more attention was payed to the effect of different microstructure on the physical property, anti-fouling property and heat transfer property of these Ni-P deposits. The main research conclusions in this paper were as follows.
     (1) Three different kinds of microstructure, such as nano-crystalline, amorphous and co-existence of both, could be obtained by adjusting the process. The content of phosphorus of these samples was 12.7wt.%, 10.6wt.% and 6.9wt.%, respectively. The corresponding nanocrystalline contents were 5mass%, 17mass% and 92mass%, respectively. The microhardness of the deposit became increased with the increase of nanocrystalline phase. For the sample which contains most nanocrystalline phase, the value of hardness was about 800Hv, which was the value that most Ni-P deposits were heat treated. This indicated the strengthen action of the nanocrystalline phase. The differential thermal analysis results also indicated that the formation of nanocrystalline phase could improve the thermal stability of deposit and crystallization temperature shifted higher value. Further results about interfacial tensiometer analysis indicated that these deposit were hydrophobic with lower surface energy, and no linear corresponding relation between the surface energy and the microstructure.
     (2) As for the effect of heat treatment on property of the Ni-P deposit, the heat treatment at 200°C for one hour did not change obviously the deposit microstructure except for the structure relaxation, and the hardness and friction coefficient did not have significant variations than that of the as-deposited sample. After being heat treatment at 400°C for one hour, the hardness and wear resistance of the deposit were improved due to the precipitation of Ni_3P. The SEM observation indictaed that the wear mechanism was typical adhesive wear for the samples of as-deposited and being heat treated at 200°C. However, the wear mechanism was changed to the abrasive wear plus little adhesive wear when the Ni-P deposits were heat treated at 400°C for a hour. The deposits showed better wear resistance property after being heat treated at 400°C for one hour. The strengthening mechanism for Ni-P deposit was precipitation strengthening and solid solution strengthening, which was depended on phosphorus content and heat treatment process.
     (3) The results of anti-fouling experiments showed that Ni-P deposits could greatly inhibit the adhesion of crystallization fouling in comparison with uncoated copper, stainless steel and carbon steel surfaces. The further experiments indicated that the anti-fouling properties had a decreasing tendency with increase of the amount of nanocrystalline phase in the Ni-P deposit. When the structure of the whole matrix of Ni-P deposit was almost amorphous phase, the Ni-P deposit exhibited the best anti-fouling properties. Electrochemical corrosion experiment resulted that all the Ni-P deposits had better corrosion resistance property than that of uncoated carbon steel and the corrosion resistance property showed the decreasing tendency with increase of the amount of nanocrystalline phase in the Ni-P deposit. The amorphous deposits had the best corrosion resistance.
     The trend about the effect of microstructure on the anti-fouling property was consistent with that of corrosion resistance. Anti-fouling and corrosion resistance were intrinsically linked, that was, the easy eroded surface was also easily adhered by fouling through forming the "transitional interface" which connected the fouling and surface of deposit. The formation of amorphous phase in deposit was beneficial to the improvement of anti-fouling and corrosion resistance properties in comparison with that of nanocrystalline phase. The fouling accumulation model of induction period was regressed.
     (4) The effect of Ni-P deposit on promoting condensation heat transfer was investigated by the condensation heat transfer testing. By regulating the steam pressure and flow velocity of cooling water, the steady dropwise condensation could be obtained. The experimental results revealed that dropwise condensation was formed on the Ni-P deposits which have lower surface free energy. It was found that the dropwise and film coexisting condensation on the Ni-P surface, but only film condensation was observed on the carbon steel surafce. Experimental results also revealed that the improvement of deposit on heat transfer was related to the amount of amorphous phase. That is, the heat transfer efficiency was improved with the increase of amorphous phase because of the decrease of surface free energy value. The overall heat transfer coefficient of Ni-P deposit was increased by 40-97% than that of uncoated surface.
引文
1 Taborek J,Aoki T,Ritter R B,etal.Fouling:The Major Unresolved Problem in Heat Transfer.Chemical Engineering Progress,1972,68(2):59-68
    2 M(u|¨)ller-Steinhagen H,Zhao Q.Investigation of Low Fouling Surface Alloys Made by Ion Implantation Technology.Chemical Engineering Science,1997,52(19):3321-3332
    3 程林,杨培毅,陆煜.换热器运行导论.科学出版社.1995
    4 M(u|¨)ller-Steinhagen H.,Malayeri M.R.,Watkinson A.P..Fouling of Heat Exchangers--New Approaches to Solve an Old Problem.Heat Transfer Engineering,2005,26(1):1-4
    5 Steinhagen R H,Steinhagen H M,Maani K.Problem and Costs Due to Heat Exchanger Fouling in New Zealand Industries.Heat Transfer Engineering,1993,14(1):19-30
    6 Taborek J,Aoki T,Ritter R B et al.Fouling:The Major Unresolved Problem in Heat Transfer.Chemical Engineering Progress,1972,68(2):59-68
    7 Taborek J,et al.Predictive Methods for Fouling Behavior.Chemical Engineering Progress,1972,68(7):69-78
    8 Garrett-Price B A,Smith S A,Watts R L,et al.Fouling of Heat Exchangers,Characteristics,Cost,Prevention,Control and Removal.Neyes Publications,1985
    9 Cho S M.Uncertainty Analysis of Heat Exchanger Thermal-Hydraulic Designs.Heat Transfer Engineering,1987,8(2):63-74
    10 M(u|¨)ller-Steinhagen H,Zhao Q,Reiss M.Reduction of Scale Formation on Nucleatic Boiling by Ion-Implanted Heating Surfaces.Chemic Ingenieur Technik,1997,69(10):1418-1422
    11 Bornhorst A.,M(u|¨)ller-Steinhagen H,Zhao Q.Reduction of Scale Formation by Ion-Implantation and Magnetron Sputtering on Heat Transfer Surfaces.Heat Transfer Engineering.1999,20(2):6-14
    12 1995-2006年国内生产总值.中国网.http://www.lianghui.org.cn
    13 杨善让,孙灵芳,徐志明.换热设备污垢研究的现状和展望.化工进展.2004,23(10):1091-1098
    14 Epstein N.Fouling in Heat Exchanger.Heat Transfer 1978-Proc 6th IHTC,1979,6:23-253
    15 Mwaba M.G.,Rindt C.C.M.,Van Steenhoven A.A..Experimental Investigation of CaSO_4Crystallization on a Flat Plate.Heat Transfer Engineering.2006,27(3):42-54
    16 杨善让, 徐志明, 孙灵芳. 换热设备污垢与对策. 科学出版社 2004
    17 Quan Z. H., Chen Y. C, Ma C. F., et al. Experimental Study on Anti-Fouling Performance in a Heat Exchanger with Low Voltage Electrolysis Treatment. Heat Transfer Engineering. 2009, 30(3): 181-188
    18 杨庆峰, 丁洁, 沈自求. Scaling and Removal of Calcium Carbonate on Electroless Plating Surface. Chinese Journal of Chemical Engineering. 2001, 9(2): 150-155
    19 程林. 弹性管束换热器原理与应用. 科学出版社. 2001
    20 Li W., Webb R. L. Fouling Characteristics of Internal Helical-Rib Roughness Tubes Using Low-Velocity Cooling Tower Water. International Journal of Heat and Mass Transfer. 2002, 45(8):1685-1691
    21 Webb R. L., Li W. Fouling in Enhanced Tubes Using Cooling Tower Water Part I: Long-Term Fouling Data. International Journal of Heat and Mass Transfer. 2000,43(19):3567-3578
    22 Li W., Webb R. L. Fouling in Enhanced Tubes Using Cooling Tower Water Part II: Combined Paniculate and Precipitation. International Journal of Heat and Mass Transfer. 2000, 43(19):3579-3588
    23 Zhao Q., Liu Y., Muller-Steinhagen H., Liu G. Graded Ni-P-PTFE Coating and Their Potential Applications. Surface and Coating Technology. 2002,155 (2-3) 279-284
    24 Zhao Q., Liu Y., Wang S. Surface modification of Water Treatment Equipment for Reducing CaSO4 Scale Formation. Desalination. 2005,180 (1-3):133-138
    25 Zhao Q., Liu Y. Investigation of Graded Ni-Cu-P-PTFE Composite Coatings with Antiscaling Properties. Applied Surface Science. 2004,229(1-4):56-62
    26 Pachal C B, Kuru W C, Liao C F, et al. Threshold Conditions for Crude Oil Fouling. Proc of International Conference on Understanding Heating Exchanger Fouling and Its Mitigation. 1997, 265-272
    27 Kim W. T., Bai C, Young I. A Study of CaCO_3 Fouling with a Microscopic Imaging Technique. International Journal of Heat and Mass Transfer. 2002,45(3): 597-607
    28 Bott T. R. The Fouling of Heat Exchangers. Elsevier science. New York. 1995
    29 Chan S. H., K. F. Ghassemi. Analytical Modeling of Calcium Carbonate Deposition for Laminar Falling Films and Turbulent Flow in Annuli: Part 2 Multispecies Model. Journal of Heat Transfer. 1991,113(3):741-746
    30 Bohnet M. Fouling of Heat Transfer Surfaces, chemical Engineering Technology. 1987, 10(1):113-125
    31 Jonsson G. R., Lalot S., Olafur Palsson P., et al. Use of Extended Kalman Filtering in Detecting Fouling in Heat Exchangers.International Journal of Heat and Mass Transfer.2007,50(3):2463-2655
    32 杨庆峰,顾安忠,丁洁,沈自求.换热面上碳酸钙的结垢行为及垢形.化工学报.2002,53(9):924-930
    33 Lee S.H.,Young I.C.Velocity Effect on Electronic-antifouling Technology to Mitigate Mineral Fouling in Enhanced-Tube Heat Exchanger.International Journal of Heat and Mass Transfer.2002,45:4163-4174
    34 Santos O.,Nylander T.,Rosmaninho R.Modified Stainless Steel Surfaces Targeted to Reduce Fouling-Surface Characterization.Journal of Food Engineering.2004,64(1):63-79
    35 lee J.,Kim T.J.,Kim M.H.Experimental Study on the Heat and Mass of Teflon-Coated Tubes for the Latent Heat Recovery.Heat Transfer Engineering.2005,26(2):28-37
    36 Rosmaninhoa R.,Santos O.,Nylander T.,et al.Modified Stainless Steel Surfaces Targeted to Reduce Fouling-Evaluation of Fouling by Milk Components.Journal of Food Engineering.2007,80(4):1176-1187
    37 Rosmaninho R.,Luis F.M.Calcium Phosphate Deposition from Simulated Milk Ultrafiltrate Ondifferent Stainless Steel-based Surfaces.International Dairy Journal.2006,16(1):81-87
    38 杨传芳.碳酸钙于换热表面上结疤的研究.大连理工大学博士论文.1992
    39 Rankin B.H.,Adamson W.L.Scale Formation as Related to Evaporator Surface Conditions.Desalitigation.1973,13(1):63-87
    40 Baier R.E.Substrata Influences on the Adhesion of Micro-organisms and Their Rusuitant New Surface Properties.In:Bitton G,Marshall K S,eds.Adsorption of Micro-Organisms to Surface.Wiley-Interscience Publishers.1980
    41 Kjaer E.B.Bioactive Materials for Antifouling Coatings.Progress in Organic Coatings.1992,20(3-4):339-352
    42 Zhao Q.,Wang X.Heat Transfer Surfaces Coated with Fluorinated Diamond-Like Carbon Fillms to Minize Scale Formation.Surface and Coating Technology.2005,192(1):77-80
    43 Muller-Steinhagen H,Zhao Q.Anti-Fouling by Metal Surface Modification.UK Patent.GB96/0268I,1999
    44 Muller-Steinhagen H,Zhao Q.Investigation of Low Fouling Surface Alloys Made by Ion Implantation Technology.Chemical Engineering Science.1997,52(19):3321-3332
    45 Bomhorst A,Zhao Q,Muller-Steinhagen H.Reduction of Scale Formation by Ion Implantation and Magnetron Sputtering on Heat Transfer Surface.Heat Transfer Engineering.1999,20(2):6-14
    46 Muller-Steinhagen H., Zhao Q. Helali-Zadeh A., et al. The Effect of Surface Properties on CaSO_4 Scale Formation during Convective Heat Transfer and Subcooled Flow Boiling. Canadian Journal of Chemical Engineering. 2000,78(1): 12-20
    47 Liu W., Fryer P. Zhang J., Z., Zhao Q., Liu Y. Identification of Cohesive and Adhesive Effects in the Cleaning of Food Fouling Deposits. Innovative Food Science and Emerging Technologies. 2006,7(4):263-269
    48 SudarshanT.S. 表面改性技术. 清华大学出版社. 1992
    49 Winowlin Jappes J. Ramamoorthy T., Kesavan Nair P. A study on the Influence of Process Parameters on Efficiency and Crystallinity of Electroless Ni-P Deposits. Journal of Materials Processing Technology. 2005,169(2):308-313
    50 Gao Y., Zheng Z. Zhu J., M., Luo C. P.. Corrosion Resistence of Electrolessly Deposited Ni-P and Ni'W-P Alloys with Various Structures. Material Science and Engineering A. 2004, 381(1-2):98-103
    51 Ashassi-Sorkhabi H., Rafizadeh S. H.. Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P Alloy Deposits. Surface and Coating Technology. 2004, 176(3):318-326
    52 Graham A. H. The Structure and Mechanical Properties of Electroless Nickel. Journal of the Electrochemical Society. 1965,112(4):401-412
    53 Kazuyuki S., Ueno N. Composition and Crystallinity of Electroless Nickel. Plating. 1984, 131 (1):111-116
    54 Baskaran, I., Sankara Narayanan, T. S. N., Stephen, A. Effect of Accelerators and Stabilizers on the Formation and Characteristics of Electroless Ni-P Deposits. Materials Chemistry and Physics. 2006,99(1): 117-126
    55 Graham B., Leone S. , Stuart R. Batten. Polynuclear Nickel (II) and Copper (II) Complexs of Hexaazamacrocycles Incorporating Pairs of Diethylenetriamine Subunits Separated by Aromatic Spacers. Inorganica Chimica Acta. 2005,358(13):3983-3994
    56 Cheng Y. H., Zou Y., Cheng L., Liu W. Effect of Complexing Agents on Properties of Electroless Ni-P Deposits. Material Science and Technology. 2008,24(4):457-460.
    57 Balaraju, J. N., Narayanan S. T., Seshadri S. K. Structure and Phase Transformation Behaviour of Electroless Ni-P Composite Coatings. Materials Research Bulletin. 2006,41(4):847-860
    58 Hou K. H., Jeng M. C., Ger M. D. The Heat Treatment Effects on the Structure and Wear Behavior of Pulse Electroforming Ni-P Alloy Coatings. Journal of Alloys and Compounds. 2007, 437(1-2):289-297
    59 Gawne D.T.,Ma U.Wear Mechanism in Electroless Nickel Coatings.Wear.1987,120(2):125-149
    60 Jeong D.H.,Erb U.,Aust K.T.,Palumbo G.The Relationship between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings.Scripta Materialia.2003,48(8):1067-1072
    61 Lu G.J.,Zangari G.Corrosion Resistance of Ternary Ni-P Based Alloys in Sulfuric Acid Solutions.Electrochimica Acta.2002,47(18):2969-2979
    62 Jeong,D.H.,Gonzalez F.,Palumbo G.,et al.The Effect of Grain Size on the Wear Properties of Electrodeposited Nanocrystalline Nickel Coatings.Scripta Materialia.2001,44(3):493-499
    63 Elansezhian R.,Ramamoorthy B.,Kesavan Nair P.Effect of Surfactants on the Mechamical Properties of Electroless(Ni-P) Coating.Surface and Coatings Technology.2008,203(5-7):709-712
    64 高诚辉.非晶态合金镀及其镀层性能.科学出版社.2004
    65 Zhao Q.,Liu Y.Investigation of Graded Ni-Cu-P-PTFE Composite Coatings With Anitiscaling Properties.Applied Surface Science.2004,229(1-4):56-62
    66 Zhao Q.,Liu Y.Modification of Stainless Steel Surfaces by Electroless Ni-P and Small Amount of PTFE to Minimize Bacterial Adhesion.Journal of Food Engineering,2006,72(3):266-272
    67 Yang Q.F.,Ding J.,Shen Z.Q.Scaling and Removal of Calcium Carbonate on Electroless Plating Surface.Chinese Journal of Chemical Engineering.2001,9(2):150-155
    68 Zhao Q.,Liu Y.,Wang C.,et al.Effect of Surface Free Energy on the Adhesion of Biofouling and Crystalline Fouling.Chemical Engineering Science.2005,60(17):4858-4865
    69 Zhang B.W.,Xie H.W.Effect of Alloying Elements on the Amorphous Formation and Corrosion Resistance of Electroless Ni-P Based Alloys.Materials Science and Engineering A.2000,281(1-2):286-291
    70 Ma X.H.,Rose J.W.,Xu D.Q.,et ai.Advances in Dropwise Condensation Heat Transfer:Chinese Research.Chemical Engineering Journal.2000,78(2-3):87-93
    71 Koch G.,Zhang D.C.,Leipertz A..Study on Plasma Enhanced CVD Coated Material to Promote Dropwise Condensation of Steam.International Heat and Mass Transfer.1998,41(13):1899-1906
    72 杜长海,马学虎,徐敦颀.超薄PTFE表面上滴状凝结的传热研究.化学工业与工程.2000,17(4):192-197
    73 张东昌,张东昌,林载祁,林纪芳等.实现滴状凝结新途径的研究.化工学报.1987,(3):257-279
    74 周兴东,马学虎,张宇等.含有不凝气体的蒸汽滴状凝结传热实验研究.工程热物理学报.2004,25(6):1001-1003
    75 王宏,廖强,朱恂.梯度表面能材料上液滴运动机理.化工学报.2007,58(9):2313-2320
    76 王乃华,李淑英,骆仲泱等.镍基渗层管表面实现珠状凝结的研究.动力工程.2002,22(3):1804-1807
    77 Vemuri S.,Kim K.J.An Experimental and Theoretical Study on the Concept of Dropwise Condensation.International Heat and Mass Transfer.2006,49(3-4):649-657
    78 Kananeh A.B.,Rausch M.H.,Froba A.P.,et al.Experimental Study of Dropwise Condensation on Plasma-ion Implanted Stainless Steel Tubes.International Heat and Mass Transfer.2006,49(25-26):5018-5026
    79 Yamli C.,Merte Jr H..A Theory of Dropwise Condensation at Large Subcooling including the Effect of the Sweeping.Heat and Mass Transfer.2002,38(3):191-202
    80 Liu T.Q.,Wang X.H.Fouling Induction Period of CaCO_3 on Heated Surface.Chinese Journal of Chemical Engineering.1999,7(3):230-236
    81 全贞花,陈永昌,马重芳等.碳酸钙于换热表面结垢影响因素的模拟分析.工程热物理学报.2008,29(11):1944-1946
    82 中南工业大学.晶体X射线衍射学基础.冶金工业出版社.1990
    83 李树棠.晶体X射线衍射学基础.冶金工业出版社.1990
    84 胡文彬,刘磊,伍亚婷.难镀基材的化学镀镍技术.化学工业出版社.2003
    85 姜晓霞,沈伟,化学镀理论及实践.国防工业出版社.2000
    86 关凯书,梁安波,吕宝军等.磷含量对镍磷化学镀层结构及表面形貌的影响.机械工程材料.2000,24(2),20-21
    87 Cheng Y.H.,Zou Y.,Cheng L.,et al.Effect of the Complexing Agents on the Properties of the Electroless Ni-P Deposits.Material Science and Technology.2008,24(4):457-460
    88 曹茂盛,蒋成禹,田永君.纳米材料导论.哈尔滨工业大学出版社.2001
    89 刘粤惠.X射线衍射分析原理与应用,化学工业出版社.2003
    90 Eshtiagh-Hosseini H.,Housaindokht M.R.,Chahkandi M.Effects of Parameters of Sol-gel Process on the Phase Evolution of Sol-gel-derived Hydroxyapatite.Materials Chemistry and Physics.2007,106(2-3):310-316
    91 Ashassi-Sorkhabi H,Rafizadeh S.H.Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P Alloy Deposits.Surface and Coatings Technology.2004,176(3):318-326
    92 Ashassi-Sorkhabi H.,Rafizadeh S.H..Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P Alloy Deposits.Surface and Coatings Technology.2004,176(3):318-326
    93 赵振国.接触角及其在表面化学研究中的应用.化学研究与应用.2000,12(4):370-374
    94 Zhao Q,Liu Y,Wang S.Surface Modification of Water Treatment Equipment for Reducing CaSO_4 Scale Formation.Desalination.2005,180(1-3):133-138
    95 Rudawska A.,Jacniacka E.Analysis for Determining Surface Free Energy Uncertainty by the Owen-Wendt Method.International Journal of Adhesion & Adhesives.2009,29(4):451-457
    96 谷国团,张治军,吴志申等.超疏水性透明涂层的研究进展.功能材料.2004,35(增刊):2569-2572
    97 Connell C.O.,Sherlock R.,Ball M.D.,et al.Investigation of the Hydrophobic Recovery of Various Polymeric Biomaterials after 172nm UV Treatment Using Contact Angle,Surface Free Energy and XPS Measurements.Applied Surface Science.2009,255(8):4405-4413
    98 Ceme L.,Simoncic B.,Zeljko M.The Influence of Repellent Coatings on Surface Free Energy of Glass Plate and Cotton Fabric.Applied Surface Science.2008,254(20):6467-6477
    99 刘天庆,李香琴,于瑞红等.表面材料性质对生物垢形成过程的影响.大连理工大学学报.2002,42(2):173-180
    100 Apachitei I.,Duszczyk J.,Katgerman L.,et al.Electroless Ni-P Composite Coatings:the Effect of Heat Treatment on the Mmicrohardness of Substrate and Coating.Scripta Materialia.1998,38(9):1347-1353
    101 Straffelini G.,Colombo D.,Molinari A.Surface Durability of Electroless Ni-P Composite Deposits.Wear.1999,236(1-2):179-188
    102 Sahoo P.Wear Behaviour of Electroless Ni-P Coatings and Optimization of Process Parameters Using Taguchi Method.Materials and Design.2009,30(4):1341-1349
    103 Winowlin Jappes J.T.,Ramamoorthy B.,Kesavan Nair P..Novel Approaches on the Study of Wear Performance of Electroless Ni-P/Diamond Composite Deposites.Journal of Materials Processing Technology.2009,209(2):104-1010
    104 Hiratsuka K.,Abe Y.,Kawashima S.Effect of in-situ Electroless Plating on Friction and Wear of Metals.Wear.2003,255(7-12):910-916
    105 Staia M.H.,Castillo E.J.,Puchi E.S.,Lewis B.,Hintermann H.E.Wear Performance and Mechanism of Electroless Ni-P Coating.Surface and Coatings Technology.1996,86-87(part 2):598-602
    106 Balaraju J.N.,Sankaranarayanan T.S.N.,Seshadd S.K..Electroless Ni-P Composite Coatings.Journal of Applied Electrochemistry.2003,33(9):807-816
    107 Panagopoulos C.N.,Papachristos V.D.,Christoffersen L.W.Lubricated Sliding Wear Behaviour of Ni-P-W Multilayered Alloy Coatings Produced by Pulse Plating.Thin Solid Films.2000,366(1-2):155-163
    108 Jiang J.R.,Stott F.H.,Stack M.M.A Generic Model for Dry Sliding Wear of Metals at Elevated Temperatures.Wear.2004,256(9-10):973-985
    109 Straffelini G.,Colombo Do,Molinari A.Surface Durability of Electroless Ni-P Composite Deposites.Wear.1999,236(1-2):179-188
    110 Hou K.H.,Jeng M.C.,Ger M.D.The Heat Treatment Effects on the Structure and Wear Behavior of Pulse Electroforming Ni-P Alloy Coatings.Journal of Alloys and Compounds.2007,437(1-2):289-297
    111 李宁.化学镀实用技术.化学工业出版社.2004
    112 Zhao Q.,Liu Y.Comparisons of Corrosion Rates of Ni-P based Composite Coatings in HCl and NaCl Solutions.Corrosion Science.2005,47(11):2807-2815
    113 Gao M.,Sun F.Z.,Shi Y.T.,et al.Experimental Research and Theoretical Analysis of Anti-fouling Characteristics on the Surface of Ni-based Implanted tube.International Communications in Heat and Mass Transfer.2006,33(9):1115-1121
    114 Liu T.Q.,Li X.Q.,Wang H.L.,et al.Formation Process of Mixed Fouling of Microbe and CaCO_3 in Water System.Chemical Engineering Journal.2002,88(1-3):249-254
    115 刘天庆,王兴海.碳酸钙在铜基加热表面上结垢诱导期的研究,大连理工大学学报.1999,39(03):400-404
    116 Muller-Steinhagen H.M.Heat Exchanger Fouling-Mitiging Technology.Munich:Publico Publications.2000
    117 杨世铭,陶文铨.传热学.高等教育出版社.1998
    118 任晓光,李铁凤,赵起等.池式沸腾条件下CaS04污垢生成的实验研究.化学工程.2006,34(3):13-15
    119 任晓光,刘长厚,赵起等.在流动沸腾装置中磁控溅射表面的抗垢性能.化工学报.2001,52(3):173-175
    120 齐欢.数学模型方法.华中理工大学出版社.1996
    121 Hoang T.A.,Ang H.M.,et al.Effects of temperature on the scaling of calcium sulphate in pipes.Power Technology.2007,179(1-2):31-37
    122 徐志明,张仲彬,郭闻州等.微粒和析晶混合污垢模型.工程热物理学报.2006,27(S2):81-84
    123 JB/T 7901-1999.金属材料实验室均匀腐蚀全浸试验方法.国家机械工业局.2000
    124 Crobu M.,Scorciapino A.,Elsener B.,et al.The corrosion Resistance of Electroless Deposited Nano-Crystalline Ni-P Alloys.Electrochimica Acta.2008,53(8):3364-3370
    125 林安,周苗银.功能性防腐蚀涂料及应用.化学工业出版社.2004
    126 张宏宝,丛文博,杨萍.金属电化学腐蚀与防护.化学工业出版社.2005
    127 Cheng Y.H.,Zou Y.,Cheng L.,Liu W.Effect of the Microstructure on the Properties of Ni-P Deposits on Heat Transfer Surface.Surface and Coatings Technology.2009,203(12):1559-1564
    128 Gao Y.,Huang L.,Zheng Z.J.,et al.The Influence of Cobalt on the Corrosion Resistance and Electromagnetic Shielding of Electroless NioCo-P Deposits on AI Substrate.Applied Surface Science.2007,253(24):9470-9475
    129 Schmidt E.,Schurig W.,Sellschop W.Versuche Uber Die Kondensation Von Wasserdampf in Film and Tropemform.Tech.Mech.Thermodyn.1930,(1):53-63
    130 Mu C.F.,Pang J.J.,Lu Q.Y.Effect of Surface Topography of Material on Nucleation Site Density of Dropwise Condensation.Chemical Engineering Science.2008,63(4):874-880
    131 Rose J.W.Dropwise Condensation Theory.International Journal of Heat and Mass Transfer.1981,24(2):191-194
    132 Ma X.H.,Chen J.B.,Xu D.Q.,et al.Heat Transfer Characteristics of Dropwise Condensation of Steam on Vertical Polymer Coated Plates.Chinese Journal of Chemical Engineering.2001,9(1):17-21
    133 Ma X.H.,Wang B.X.Film Condensation Heat Transfer on a Vertical Porous-Layer Coated Plate.Science in China(Series E).1998,41(2):169-175
    134 Rausch M.H.,Froba A.P.,Leipertz A.Dropwise condensation Heat Transfer on Ion Implanted Aluminum Surfaces.International Heat and Mass Transfer.2008,51(5-6):1061-1070
    135 Le E.J.,Rose J.W.An Experimental Study of Heat Transfer by Dropwise Condensation.International Heat and Mass Transfer.1965,8(8):1117-1133
    136 Rose J.W.Surface Tension Effects and Enhancement of Condensation Heat Transfer.Chemical Engineering Research and Design.2004,82(A4):419-429
    137 曹玉璋,邱绪光.实验传热学.国防工业出版社.1998
    138 JB/T10379-2002.换热器热工性能和流体阻力特性通用测定方法.中华人民共和国国家经济贸易委员会发布.2002
    139 廖强,顾扬彪,朱恂等.梯度表面能材料表面上滴状凝结换热.化工学报.2007,58(3):567-574
    140 张东昌,林载祁,林纪方.实现珠状凝结新途径的研究(1)基本概念及实验结果.化工 学报.1987,38(3):257-265
    141 史美中,王中铮.热交换器原理与设计.东南大学出版社.1996
    142 王贤林.珠状凝结的实验研究.中南大学硕士论文.2005
    143 周兴东,马学虎,兰忠,宋天一.珠状凝结强化含不凝气的蒸汽凝结传热机制.化工学报.2007,58(7):1619-1625
    144 Rose J W.Some Aspects of Condensation Heat Transfer Theory.Int Comm Heat Mass Transfer.1988,15(4):449-473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700