纳米颗粒吸附法微通道减阻机理研究及LBM模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油储层微通道纳米颗粒吸附法减阻技术是一种新兴的提高原油采收率技术,其核心机制在于疏水纳米颗粒在微通道壁面形成具有微-纳尺度的强疏水或超疏水粗糙表面结构,形成边界滑移效应。室内实验方法较好地验证了这一机制,在这项技术的研发过程中发挥了重要作用,但由于石油储层微通道的复杂性,使得一些机理研究无法利用实验方法完成,必须采用数值模拟的方法来进行。本文利用格子Boltzmann方法对纳米颗粒吸附法减阻机理进行了模拟研究,力图揭示壁面润湿性不同时流体在微通道和多孔介质内的运动方式,以及滑移产生的原因。为此,本文开发了二维和三维格子Boltzmann方法并行计算模拟程序,对微观尺度下流体的输运现象进行了模拟和分析,具体工作包括:
     1)对格子Boltzmann方法的本质及Shan-Chen模型的核心机制进行了全面阐述,并从应用实例角度对基于Shan-Chen模型的格子Boltzmann方法在微流动模拟方面的有效性、适应性进行了详细分析。
     2)采用纳米颗粒吸附法在天然岩心薄片上构建了微-纳尺度的粗糙结构表面,并对其进行了SEM扫描和接触角测试。结果表明,纳米颗粒能够吸附到岩石薄片表面并形成微-纳尺度的粗糙结构吸附层,并且具有明显的强疏水性质。然后通过室内岩心流动实验,验证了纳米颗粒吸附法的减阻效果。
     3)基于格子Boltzmann方法和Shan-Chen多相流模型,对平面静态接触角进行了模拟得到接触角与相关参数的关系,进而模拟局部粗糙表面(凹曲边界)的静态接触角,分析了凹曲边界的曲率和液滴大小对凹曲边界静态接触角的影响。然后从理论上对纳米颗粒压片表面的表观接触角进行分析和计算,指出该表面具有超疏水性的主要原因,并给出理论预测该表面表观接触角的计算方法。
     4)通过人工方式构建粗糙壁面,研究其表面润湿性和颗粒特征(包括颗粒的长度和高度,以及颗粒之间的间距)对流体流动特征的影响。研究了液滴在微通道内运动时的接触角滞后现象,发现液滴在具有一定润湿性的壁面上运动时,后退角和前进角的余弦差值与毛管数成正比。
     5)对滑移速度产生的原因进行了初步探讨。认为在微观情况下,由于壁面润湿性的影响,使流体在壁面附近形成一个低密度层。在低密度层内,沿径向流速变化很大,使流体在壁面上产生表观滑移现象,同时发现壁面润湿性越弱,低密度层内的流体的平均密度越低,平均流速越大,在壁面产生的滑移速度就越大。与宏观流动相比,在微观条件下,不能忽略这一低密度层。
     6)提出了通过接触角控制滑移边界条件的数值模拟方法,得到了接触角控制滑移长度模型。其一方面可以在数值模拟过程中实现可控滑移边界条件,即通过壁面润湿性确定滑移长度的大小,另一方面可以为工程应用中通过接触角估算滑移长度提供依据。最后运用所得到的接触角控制滑移长度模型对减阻发生的条件进行了分析。
     7)初步实现了二维和三维多孔介质内的微流动模拟,研究了壁面润湿性对流体流动特性的影响。考虑了纳米颗粒吸附对二维多孔介质孔隙度和微通道壁面润湿性的影响,模拟了纳米颗粒吸附前后多孔介质渗透率的变化。
Drag reduction by hydrophobic nanoparticles (HNPs) adsorption in reservoirmicrochannels is a new technology to enhance oil recovery in low permeabilityoilfields. Its mechanism is that HNPs are adsorbed on porous walls and a micro-andnano-structure rough surface is formed, which has strong-or super-hydrophobicproperties, and can generate the water-flow-slip effects. Laboratory experiments haveverified this mechanism and played an important role in the development of thistechnology. However, because of the complexity of the petroleum reservoir rockmicrochannel, numerical simulation methods must be adopted in order to see thedetails of the fluid flow. Based on lattice Boltzmann method (LBM), numericalsimulations were made to simulate the mechanism of HNPs. The dynamics oftwo-phase flows inside a microchannel and porous was studied by using the LBM andthe Shan-Chen multiphase model in this thesis, flow regimes under different wallwettability and over smooth and grooved geometric surfaces were investigated, thereason of sliding was discussed as well. Furthermore, parallel codes for LBMsimulations have been developed to simulate the liquid transportation at meso-scale.The details and some accomplishments are presented as follows.
     1) Based on the investigation of the related literatures, theoretical models,experimental techniques, and numerical simulation methods of micro-flows weresummarized to provide a basis for numerical and experimental researches in thisthesis. A practical overview of Shan-Chen-type LBM and implementation details wereprovided.
     2) Micro-and nano-structured surfaces on cores were constructed by the HNPsadsorption method. The surfaces were observed by Scanning Electron Microscope andthe contact angles on them were tested. The results show that nanoparticles can adsorbon core surfaces and compose a new micro-and nano-structured surfaces,whose wettability is changed from strong hydrophilic to hydrophobic. The flow-pressurerelationship of water flow through the microchannels of core before and after theadsorption of nanoparticles was tested through core flow experiments. The resultsshow that, after the adsorption of nanoparticles, water flow rates throughmicrochannels were increased observably and flow resistance was reduced.
     3) The contact angle on plane and concave boundary were simulated using theShan-Chen-type multiphase model lattice Boltzmann method, and the relationshipbetween the contact angles and related parameters was obtained. The predictionmethod of the apparent contact angle is established, which can also explain the reasonof super-hydrophobic of pelleting of the nano powder.
     4) The wettability and particle geometrical characteristics (including the lengthand height of rough particles, as well as the distance between the rough particles) onthe flow features were discussed. Hysteresis phenomenon of dynamics contact anglewas analyzed during droplet movement in the microchannel. The results show that thedifferent value between the back angle cosine and the forward angle cosine isproportional to capillary number.
     5) The reason of sliding was discussed. Because of the wettability, a layer ofmuch less dense fluid (most probably gas) is induced between the dense liquid andsolid surface. Different from the macroscopic flows, the layer can’t be ignored inmicro/mesoscopic hydrodynamics. The weaker the wettability of wall is, the less thedense of the fluid at the surface is, and the less viscous shear force is, and the moresignificant slippage is.
     6) A method was proposed to impose controllable slip boundary conditions inLBM. Different from the macroscopic flows, the velocity slippage on solid wallsshould be considered in micro/mesoscopic hydrodynamics. The strength of slippagecould be adjusted by variation of parameters in the present method, and the validityand availability of the approach were verified. Using the relationship between the sliplength and contact angle, it is easy to estimate the slip length because the contact angle is a parameter that can be easily measured.
     7) The phenomenon of the flow in porous media was simulated in pore-scale.The characteristics of fluid flow in porous media were investigated. The LBM wasused to predict permeability of the core of microchannels before and after theadsorption of nanoparticles.
引文
[1]李莹莹.中国石油发展现状、问题与前景分析[J].中国能源,2010,32(12):17-20
    [2]经济聚焦:石油年产2亿吨可延至2030年后[N].人民网,2011-11-25
    [3]狄勤丰,顾春元,施利毅等.疏水性纳米SiO2增注剂的降压作用机理[J].钻采工艺,2007,30(4):91-94
    [4]狄勤丰,李战华,施利毅等.疏水纳米SiO2对微管道流动特性的影响[J].中国石油大学学报(自然科学版),2009,33(1):109-119
    [5]狄勤丰,沈琛,王掌洪等.纳米吸附法降低岩石微孔道水流阻力的实验研究[J].石油学报,2009,30(1):125-128
    [6]顾春元,狄勤丰,沈琛等.疏水纳米颗粒在油层微孔道中的吸附机制[J].石油勘探与开发,2011,38(1):84-89
    [7]王新亮,狄勤丰,张任良等.疏水纳米颗粒在岩心表面的吸附特性试验研究[J].石油钻探技术,2010,38(002):10-13
    [8] Sinider.刺激地层的方法与装置[P]
    [9]狄勤丰,余祖斌,顾春元等.纳米颗粒吸附微管道水流特性的格子Boltzmann方法模拟[J].中国石油大学学报(自然科学版),2009,33(2):104-108
    [10]王新亮,狄勤丰,张任良等.超疏水表面滑移理论及其减阻应用研究进展[J].力学进展,2010,40(3):241-249
    [11]顾春元,狄勤丰,施利毅等.纳米粒子构建表面的超疏水性能实验研究[J].物理学报,2008,57(5):3071-3076
    [12] K. Fukuda, J. Tokunaga, T. Nobunaga et al. Frictional drag reduction with air lubricantover a super-water-repellent surface[J]. Journal of marine science and technology,2000,5(3):123-130
    [13] K. Watanabe, Y. Udagawa, H. Udagawa. Drag reduction of Newtonian fluid in a circularpipe with a highly water-repellent wall[J]. Journal of Fluid Mechanics,1999,381:225-238
    [14] C. Cottin-Bizonne, J.L. Barrat, L. Bocquet et al. Low-friction flows of liquid atnanopatterned interfaces[J]. Nature materials,2003,2(4):237-240
    [15]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学技术出版社,2009
    [16] D. Langley, R.A. Coutu, L.V.A. Starman et al. MEMS integrated metamaterial structurehaving variable resonance for RF applications[J]. MEMS and Nanotechnology,2011,2:115-120
    [17] M. Fan, L. Sun, F. Xu. Feasibility study of hydrogen production for micro fuel cell fromactivated Al-In mixture in water[J]. Energy,2010,35(3):1333-1337
    [18] Q. Guo, Z. Yang, J. Zhang. Influence of a combined external field on the agglomerationof inhalable particles from a coal combustion plant[J]. Powder Technology,2011,
    [19] J.V. Jokerst, J.T. McDevitt. Programmable nano-bio-chips: multifunctional clinical toolsfor use at the point-of-care[J]. Nanomedicine,2010,5(1):143-155
    [20] K. Mawatari, Y. Kazoe, A. Aota et al. Microflow Systems for Chemical Synthesis andAnalysis: Approaches to Full Integration of Chemical Process[J]. Journal of FlowChemistry,2011,1(1):3-12
    [21] Zhang Junfeng. Lattice Boltzmann method for microfluidics: models and applications[J].Microfluidics and Nanofluidics,2010,10(1):1-28
    [22]李元.格子Boltzmann方法的应用研究[D]:中国科学技术大学,2009
    [23] Voronov Roman S., Papavassiliou Dimitrios V., Lee Lloyd L. Slip length and contactangle over hydrophobic surfaces[J]. Chemical Physics Letters,2007,441(4-6):273-276
    [24] Barrat JL, Bocquet L. Large slip effect at a nonwetting fluid-solid interface[J]. PhysicalReview Letters,1999,82(23):4671-4674
    [25] P. Koumoutsakos, RL Jaffe, T. Werder et al. On the Validity of the No-Slip Condition inNanofluidics[J]. Nanotechnology,2003,1:148-151
    [26]邓旭辉,张平,许福等.具有滑移边界圆管层流减阻的CFD模拟[J].湘潭大学自然科学学报,2005,27(1):85-89
    [27]蒋开,陈云飞,庄苹等.纳米尺度边界滑移的分子动力学模拟研究[J].摩擦学学报,2005,25(3):238-242
    [28]曹炳阳,陈民,过增元.纳米通道滑移流动的分子动力学研究[J].工程热物理学报,2003,24(4):670-672
    [29]徐超,何雅玲,王勇.纳米通道滑移流动的分子动力学模拟研究[J].工程热物理学报,2005,26(6):14-16
    [30] M. Sbragaglia, R. Benzi, L. Biferale et al. Surface roughness-hydrophobicity coupling inmicrochannel and nanochannel flows[J]. PHys Rev Letters,2006,97(20):204503
    [31] Zhang Wenfei, Li Dongqing. Low speed water flow in silica nanochannel[J]. ChemicalPhysics Letters,2008,450(4-6):422-425
    [32] Chen Shiyi, Doolen G.D., Matthaeus W.H. Lattice gas automata for simple and complexfluids[J]. Journal of Statistical Physics,1991,64(5):1133-1162
    [33]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2008
    [34] Qian Yuehong, d' Humieres D., Lallemand P. Lattice BGK Models for Navier-StokesEquation[J]. Europhysics Letters,1992,17(6):479-484
    [35] X. Nie, G.D. Doolen, S. Chen. Lattice-Boltzmann simulations of fluid flows in MEMS[J].Journal of Statistical Physics,2002,107(1):279-289
    [36] D. Grunau, S. Chen, K. Egger. A lattice Boltzmann model for multi-phase fluid flows[J].Physics of Fluids aFluid Dynamics,1993,5(10):2557-2562
    [37] Q. Kang, D. Zhang, S. Chen et al. Lattice Boltzmann simulation of chemical dissolutionin porous media[J]. Physical Review E,2002,65(3):036318
    [38]许友生.一种新的模拟渗流运动的数值方法[J].物理学报,2003,52(3):626-629
    [39] H.P. Fang, L.W. Fan, Z.W. Wang et al. Studying the contact point and interface moving ina sinusoidal tube with lattice Boltzmann method[J]. International Journal of ModernPhysics B,2001,15(9):1287
    [40] Y. Zhu, S. Granick. Apparent slip of Newtonian fluids past adsorbed polymer layers[J].Macromolecules,2002,35(12):4658-4663
    [41] S. Jin, P. Huang, J. Park et al. Near-surface velocimetry using evanescent waveillumination[J]. Experiments in fluids,2004,37(6):825-833
    [42]赵秀才,姚军.数字岩心建模及其准确性评价[J].西安石油大学学报(自然科学版),2007,22(2):16-20
    [43] A.K. Gunstensen, D.H. Rothman, S. Zaleski et al. Lattice Boltzmann model ofimmiscible fluids[J]. Physical Review A,1991,43(8):4320
    [44] Shan Xiaowen, Chen Hudong. Lattice Boltzmann model for simulating flows withmultiple phases and components[J]. Physical Review E,1993,47(3):1815-1819
    [45] Shan Xiaowen, Chen Hudong. Simulation of nonideal gases and liquid-gas phasetransitions by the lattice Boltzmann equation[J]. Physical Review E,1994,49(4):2941-2948
    [46] Swift Michael R., Osborn W. R., Yeomans J. M. Lattice Boltzmann Simulation ofNonideal Fluids[J]. Physical Review Letters,1995,75(5):830-833
    [47] T Inamuro, T Ogata, S Tajima et al. A lattice Boltzmann method for incompressibletwo-phase flows with large density differences[J]. Journal of Computational Physics,2004,198(2):628-644
    [48] Zheng Hongwei, Shu Chang, Chew YT. A lattice Boltzmann model for multiphase flowswith large density ratio[J]. Journal of Computational Physics,2006,218(1):353-371
    [49] T Lee, CL Lin. A stable discretization of the lattice Boltzmann equation for simulation ofincompressible two-phase flows at high density ratio[J]. Journal of ComputationalPhysics,2005,206(1):16-47
    [50] X He, S Chen, R Zhang. A Lattice Boltzmann Scheme for Incompressible MultiphaseFlow and Its Application in Simulation of Rayleigh-Taylor Instability[J]. Journal ofComputational Physics,1999,152(2):642-663
    [51] Benzi R., Biferale L., Sbragaglia M. et al. Mesoscopic modeling of a two-phase flow inthe presence of boundaries: the contact angle[J]. Physical Review E,2006,74(2):21509
    [52] Extrand CW, Kumagai Y. An experimental study of contact angle hysteresis[J]. Journal ofColloid and Interface Science,1997,191(2):378-383
    [53] Extrand CW. Contact Angles and Their Hysteresis as a Measure of Liquid-SolidAdhesion[J]. Langmuir,2004,20(10):4017-4021
    [54] Hyv luoma J., Koponen A., Raiskinm ki P. et al. Droplets on inclined rough surfaces[J].The European Physical Journal E: Soft Matter and Biological Physics,2007,23(3):289-293
    [55] Huang Haibo, Thorne Jr D. T., Schaap M. G. et al. Proposed approximation for contactangles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J].Physical Review E,2007,76(6):1-6
    [56] Wenzel RN. Resistance of solid surfaces to wetting by water[J]. Industrial&EngineeringChemistry,1936,28(8):988-994
    [57] Cassie A.B.D., Baxter S. Wettability of porous surfaces[J]. Transactions of the FaradaySociety,1944,40:546-551
    [58] Patankar N. A. On the modeling of hydrophobic contact angles on rough surfaces[J].Langmuir,2003,19(4):1249-1253
    [59] Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?[J].Langmuir,2003,19(20):8343-8348
    [60] Bico J., Marzolin C., Quéré D. Pearl drops[J]. Europhysics Letters,1999,47(2):220-226
    [61] Dupuis A., Yeomans J. M. Modeling droplets on superhydrophobic surfaces: Equilibriumstates and transitions[J]. Langmuir,2005,21(6):2624-2629
    [62] Zhang Renliang, Di Qinfeng, Wang Xinliang et al. Numerical study of wall wettabilitiesand topography on drag reduction effect in micro-channel flow by Lattice BoltzmannMethod[J]. Journal of Hydrodynamics, Ser B,2010,22(3):366-372
    [63]张任良,狄勤丰,王新亮等.基于Shan-Chen模型的格子Boltzmann方法在微流动模拟研究中的应用[J].力学与实践,2012,34(2):10-18
    [64]林建忠,包福兵,张凯等.微纳流动理论与应用[M].北京:科学出版社,2010
    [65] D.C. Tretheway, C.D. Meinhart. Apparent fluid slip at hydrophobic microchannel walls[J].Physics of fluids,2002,14: L9
    [66] Choi ChangHwan, Westin K.Johan A., Breuer Kenneth S. Apparent slip flows inhydrophilic and hydrophobic microchannels[J]. Physics of fluids,2003,15(10):2897-2902
    [67] S. C. S. Lai. Mimicking Nature: Physical basis and artificial synthesis of theLotus-effect.[D]. Friesland: Universiteit Leiden,2003
    [68] C. Navier. Mémoire sur les lois du mouvement des fluides[J]. Mémoires de l’AcadémieRoyale des Sciences de l’Institut de France,1823,6:389-440
    [69] S Succi. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneouscatalysis[J]. Physical Review Letters,2002,89(6):1-4
    [70] Lajos Szalmas. Slip on curved boundaries in the lattice Boltzmann model[J]. InternationalJournal of Modern Physics C,2007,18(1):15-24
    [71]吴承伟,马国军.关于流体流动的边界滑移[J].中国科学: G辑,2004,34(006):681-690
    [72] Chen Yanyan, Yi Houhui, Li Huabing. Boundary Slip and Surface Interaction: A LatticeBoltzmann Simulation[J]. Chinese Phys Lett,2008,25(1):184-187
    [73] Raiskinm ki P., Shakib-Manesh A., J sberg A. et al. Lattice-Boltzmann Simulation ofCapillary Rise Dynamics[J]. Journal of Statistical Physics,2002,107(1):143-158
    [74]张任良,狄勤丰,王新亮等.用格子Boltzmann方法模拟壁面微结构对管流特性的影响[J].计算物理,2011,28(2):225-229
    [75] Burton Z., Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatternedpolymers and scale dependence for micro-and nanoelectromechanical systems[J]. NanoLett,2005,5(8):1607-1613
    [76] Kang Qinjun, Zhang Dongxiao, Chen Shiyi. Displacement of a two-dimensionalimmiscible droplet in a channel[J]. Physics of fluids,2002,14(9):3203-3214
    [77] F. Hai-Ping, W. Rong-Zheng, F. Le-Wen. Lattice Boltzmann method simulation on theflow of two immiscible fluids in complex geometry[J]. Chinese Physics,2000,9:515
    [78] Harting J., Kunert C., Herrmann H. J. Lattice Boltzmann simulations of apparent slip inhydrophobic microchannels[J]. Europhysics Letters,2006,75(2):328-334
    [79] DC Tretheway, CD Meinhart. A generating mechanism for apparent fluid slip inhydrophobic microchannels[J]. Physics of fluids,2004,16(5):1509-1517
    [80] Barrat Jean-Louis, Bocquet Lyderic. Large slip effect at a nonwetting fluid-solidinterface[J]. Physical Review Letters,1999,82(23):4671-4674
    [81] M Cieplak, J Koplik, JR Banavar. Boundary conditions at a fluid-solid interface[J].Physical Review Letters,2001,86(5):803-806
    [82] C Cottin-Bizonne, C Barentin, E Charlaix et al. Dynamics of simple liquids atheterogeneous surfaces: Molecular-dynamics simulations and hydrodynamicdescription[J]. The European Physical Journal E,2004,15(4):427-438
    [83] Kunert C., Harting J. Simulation of fluid flow in hydrophobic rough microchannels[J].International Journal of Computational Fluid Dynamics,2008,22(7):475-480
    [84] Kunert C., Harting J. Roughness induced boundary slip in microchannel flows[J].Physical Review Letters,2007,99(17):1-4
    [85] Kunert C., Harting J. On the effect of surfactant adsorption and viscosity change onapparent slip in hydrophobic microchannels[J]. Progress in Computational FluidDynamics,2008,8(1):197-205
    [86]周济福.渗流力学研究的现状和发展趋势[J].力学与实践,2007,29(003):1-6
    [87]赵秀才,姚军,陶军等.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报A辑,2007,22(2):127-133
    [88]赵秀才,姚军,衣艳静等.基于择多算子的随机搜索法建立数字岩心的新技术[J].岩土力学,2008,59(5):1339-1350
    [89]钱吉裕,李强,宣益民等.确定多孔介质流动参数的格子Boltzmann方法[J].工程热物理学报,2004,25(4):655-657
    [90]许友生.用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征[D]:华东师范大学,2006
    [91]阎广武,胡守信.用Lattice Boltzmann方法确定多孔介质的渗透率[J].计算物理,1997,14(1):63-67
    [92] Martys Nicos S., Chen Hudong. Simulation of multicomponent fluids in complexthree-dimensional geometries by the lattice Boltzmann method[J]. Physical Review E,1996,53(1):743-750
    [93] Sukop Michael C., Or Dani. Lattice Boltzmann method for modeling liquid-vaporinterface configurations in porous media[J]. Water Resources Research,2004,40(1):1-11
    [94] Hyv luoma J., Raiskinm ki P., J sberg A. et al. Simulation of liquid penetration inpaper[J]. Physical Review E,2006,73(3):1-8
    [95] Angelopoulos A.D., Paunov V.N., Burganos V.N. et al. Lattice Boltzmann simulation ofnonideal vapor-liquid flow in porous media[J]. Physical Review E,1998,57(3):3237-3245
    [96]任玲,陈建国.单组分多相系统驱替过程的格子Boltzmann模拟[J].力学与实践,2009,31(2):31-34
    [97] Huang Haibo, Li Zhitao, Liu Shuaishuai et al. Shan-and-Chen-type multiphase latticeBoltzmann study of viscous coupling effects for two-phase flow in porous media[J].International Journal for Numerical Methods in Fluids,2009,61(3):341-354
    [98] Pan Chongxun, Hilpert M., Miller C.T. Lattice-Boltzmann simulation of two-phase flowin porous media[J]. Water Resources Research,2004,40(1):1-14
    [99] Yuan Peng, Schaefer Laura. Equations of state in a lattice Boltzmann model[J]. Physics offluids,2006,18(4):042101-042111
    [100] A Kuzmin, AA Mohamad. Multirange multi-relaxation time Shan-Chen model withextended equilibrium[J]. Computers&Mathematics with Applications,2010,59(7):2260-2270
    [101] Shan Xiaowen. Analysis and reduction of the spurious current in a class of multiphaselattice Boltzmann models[J]. Physical Review E,2006,73(4):047701-047704
    [102] Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a latticeBoltzmann method[J]. Computers&Mathematics with Applications,2009,58(5):965-974
    [103] Sbragaglia M., Benzi R., Biferale L. et al. Generalized lattice Boltzmann method withmultirange pseudopotential[J]. Physical Review E,2007,75(2):1-23
    [104] Zhang Raoyang, Chen Hudong. Lattice Boltzmann method for simulations ofliquid-vapor thermal flows[J]. Physical Review E,2003,67(6):1-6
    [105] Li Zhitao, Li Gaojin, Huang Haibo et al. Lattice Boltzmann study of electrohydrodynamicdrop deformation with large density ratio[J]. International Journal of Modern Physics C,2011,22(7):729-744
    [106] Joshi Abhijit S., Sun Ying. Multiphase lattice Boltzmann method for particlesuspensions[J]. Physical Review E,2009,79(6):066703
    [107]郭永怀.边界层理论讲义[M].合肥:中国科学技术大学出版社,2008
    [108] X. Gao, L. Jiang. Biophysics: water-repellent legs of water striders[J]. Nature,2004,432(7013):36-36
    [109] Lajos Szalmás. Slip-flow boundary condition for straight walls in the lattice Boltzmannmodel[J]. Physical Review E,2006,73(6):066710
    [110]顾春元.石油储层微孔道纳米颗粒减阻机理研究[D].上海:上海大学,2008
    [111]李元香.模拟流体力学的离散运动论模型[J].数值计算与计算机应用,1995,(03):233-240
    [112] G.R. McNamara, G. Zanetti. Use of the Boltzmann equation to simulate lattice-gasautomata[J]. Physical Review Letters,1988,61(20):2332-2335
    [113] FJ Higuera, J. Jimenez. Boltzmann approach to lattice gas simulations[J]. EPL(Europhysics Letters),1989,9:663
    [114] FJ Higuera, S. Succi, R. Benzi. Lattice gas dynamics with enhanced collisions[J]. EPL(Europhysics Letters),1989,9(4):345-349
    [115] S. Chen, H. Chen, D. Martinez et al. Lattice Boltzmann model for simulation ofmagnetohydrodynamics[J]. Physical Review Letters,1991,67(27):3776-3779
    [116] Bhatnagar P.L., Gross E.P., Krook M. A model for collision processes in gases. I. Smallamplitude processes in charged and neutral one-component systems[J]. Physical Review,1954,94(3):511-524
    [117] S. Chapman, T.G. Cowling. The mathematical theory of non-uniform gases: an account ofthe kinetic theory of viscosity, thermal conduction, and diffusion in gases[M]. CambridgeUniv Pr,1991
    [118] Haibo Huang, M.Krafczyk, X.Y.Lu. Forcing term in single-phase andShan-and-Chen-type multiphase lattice Boltzmann models[J]. Physical Review E,2011,84(4):038701
    [119] Z. Guo, C. Zheng, B. Shi. Discrete lattice effects on the forcing term in the latticeBoltzmann method[J]. Physical Review E,2002,65(4):046308
    [120] N.S. Martys, X. Shan, H. Chen. Evaluation of the external force term in the discreteBoltzmann equation[J]. Physical Review E,1998,58:6855-6857
    [121] J. M. Buick, C. A. Greated. Gravity in a lattice Boltzmann model[J]. Physical Review E,2000,61(5):5307-5320
    [122] J.M. Buick. Lattice Boltzmann methods in interfacial wave modelling[J]. The Universityof Edinburgh,1997:54-79
    [123] AL Kupershtokh. New method of incorporating a body force term into the latticeBoltzmann equation: proceedings of,2004[C].
    [124] D.A.Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: AnIntroduction.[M]. Berlin: Springer,2000
    [125] Qian Yuehong, S. Succi, S. A. Orszag. Recent advances in lattice Boltzmanncomputing[J].1995:195–242
    [126] X. He, Q. Zou, L.S. Luo et al. Analytic solutions of simple flows and analysis of nonslipboundary conditions for the lattice Boltzmann BGK model[J]. Journal of StatisticalPhysics,1997,87(1):115-136
    [127]钱学森.现代科学的结构——再论科学技术体系学[J].哲学研究,1982,3
    [128]谈庆明.量纲分析[M].中国科学技术大学出版社,2005
    [129]曾建邦.基于气泡生长及多相流动的格子Boltzmann模型及应用研究[D]:重庆大学,2011
    [130] D.W.Heermann,秦克诚译.理论物理学中的计算机模拟方法[M].北京大学出版社,1996
    [131] D.P. Ziegler. Boundary conditions for lattice Boltzmann simulations[J]. Journal ofStatistical Physics,1993,71(5):1171-1177
    [132] Sukop Michael C. Lattice Boltzmann modeling: an introduction for geoscientists andengineers[M]. Springer,2006
    [133] D.R. Noble, S. Chen, J.G. Georgiadis et al. A consistent hydrodynamic boundarycondition for the lattice Boltzmann method[J]. Physics of fluids,1995,7:203
    [134] S. Chen, D. Martinez, R. Mei. On boundary conditions in lattice Boltzmann methods[J].Physics of fluids,1996,8:2527
    [135] Z. Guo, C. Zheng, B. Shi. An extrapolation method for boundary conditions in latticeBoltzmann method[J]. Physics of fluids,2002,14:2007
    [136]陈国良,孙广中,徐云等.并行计算的一体化研究现状与发展趋势[J].科学通报,2009,54(8):1043-1049
    [137] V. Kumar, A. Grama, A. Gupta et al. Introduction to parallel computing[M].Benjamin/Cummings USA,1994
    [138] Y. H. Qian, D. D' Humieres, P. Lallemand. Lattice BGK Models for Navier-StokesEquation[J]. Europhysics Letters,1992,17(6):479-484
    [139] Shan Xiaowen, Doolen Gary. Diffusion in a multicomponent lattice Boltzmann equationmodel[J]. Physical Review E,1996,54(4):3614-3620
    [140]杨世铭,陶文铨.传热学第三版[M].北京:高等教育出版社.1998
    [141]潘光,黄桥高,胡海豹等.超疏水表面的润湿性及其应用研究[J].材料导报,2009,(21):64-67
    [142] T. Young. An Essay on the Cohesion of Fluids[J]. Philosophical Transactions of the RoyalSociety of London,1805,95(1):65-87
    [143] D. H. Rothman, S. Zaleski. Lattice-gas cellular automata: simple models of complexhydrodynamics[M]. Cambridge University Press,1997
    [144] R. N. Wenzel. Surface Roughness and Contact Angle[J]. The Journal of PhysicalChemistry,1949,53(9):1466-1467
    [145] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination inbiological surfaces[J]. Planta,1997,202(1):1-8
    [146] L. Feng, S. Li, Y. Li et al. Super-hydrophobic surfaces: from natural to artificial[J].Advanced Materials,2002,14(24):1857-1860
    [147] C. Neinhuis, W. Barthlott. Characterization and distribution of water-repellent,self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667
    [148] C. Cottin-Bizonne, J.L. Barrat, L. Bocquet et al. Low friction flows of liquids atnanopatterned interfaces[J]. Arxiv preprint cond-mat/0304037,2003,
    [149] L Ding, D Qin-Feng, L Jing-Yuan et al. Large slip length over a nanopatterned surface[J].Chinese Physics Letters,2007,24:1021-1024
    [150] ABD Cassie, S Baxter. Wettability of porous surfaces[J]. Transactions of the FaradaySociety,1944,40:546-551
    [151] B. He, N.A. Patankar, J. Lee. Multiple equilibrium droplet shapes and design criterion forrough hydrophobic surfaces[J]. Langmuir,2003,19(12):4999-5003
    [152] G. Fang, W. Li, X. Wang et al. Droplet motion on designed microtexturedsuperhydrophobic surfaces with tunable wettability[J]. Langmuir,2008,24(20):11651-11660
    [153] J.Y. Shiu, C.W. Kuo, P. Chen et al. Fabrication of tunable superhydrophobic surfaces bynanosphere lithography[J]. Chemistry of materials,2004,16(4):561-564
    [154]潘光,黄桥高,胡海豹等.微观结构对超疏水表面润湿性的影响[J].高分子材料科学与工程,2010,26(007):163-166
    [155]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010
    [156] L. Feng, S. Li, Y. Li et al. Super‐Hydrophobic Surfaces: From Natural to Artificial[J].Advanced Materials,2002,14(24):1857-1860
    [157] D. Bernoulli. Hydrodynamica: sive de viribus et motibus fluidorum commentarii[M].1738
    [158] Zhang Junfeng, Daniel Y. Kwok. Apparent slip over a solid-liquid interface with a no-slipboundary condition[J]. Physical Review E,2004,70(5):1-4
    [159]李亨,张锡文,何枫.论多孔介质中流体流动问题的数值模拟方法[J].石油大学学报(自然科学版),2000,24(5):111-116
    [160] Z. Guo, TS Zhao. Lattice Boltzmann model for incompressible flows through porousmedia[J]. Physical Review E,2002,66(3):036304
    [161] L.P. Wang, B. Afsharpoya. Modeling fluid flow in fuel cells using the lattice-Boltzmannapproach[J]. Mathematics and Computers in Simulation,2006,72(2):242-248
    [162] T. Seta, E. Takegoshi, K. Okui. Lattice Boltzmann simulation of natural convection inporous media[J]. Mathematics and Computers in Simulation,2006,72(2):195-200
    [163] P.H. Kao, T.F. Ren, R.J. Yang. An investigation into fixed-bed microreactors using latticeBoltzmann method simulations[J]. International journal of heat and mass transfer,2007,50(21):4243-4255
    [164]张立朝,陈引川,曹广阔等.腐蚀膨胀算法在三维重构中的应用[J].测绘信息与工程,2006,31(5):12-13
    [165]许龙律,徐美瑞,顾宝根等.图象分析系统的腐蚀与膨胀算法[J].哈尔滨科学技术大学学报,1987,(2):74-80
    [166]陶军,姚军,赵秀才.利用IRIS Explorer数据可视化软件进行孔隙级数字岩心可视化研究[M].2006
    [167]姚军,赵秀才,衣艳静等.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6)
    [168] Anwar S.Z Al-Kharusi. Pore Scale Characterization of Carbonate Rocks[D]: ImperialCollege London,2007
    [169] T. Sochi. Pore-Scale Modeling of Non-Newtonian Flow in Porous Media[D]: ImperialCollege London,2007
    [170] H Dong, MJ Blunt. Pore-network extraction from micro-computerized-tomographyimages[J]. Physical Review E,2009,80(3):36307
    [171]黄丰.多孔介质模型的三维重构研究[D]:中国科学技术大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700