石油储层微通道纳米颗粒吸附法双重减阻机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油储层微通道纳米颗粒吸附法减阻技术是一种降低低渗透油田注水压力的新技术,其对我国低渗透油田的开发具有十分重要的意义。尽管纳米颗粒吸附法减阻技术矿场试验中普遍采用水基分散液,并可以取得显著的减阻效果,但是由于其内在机制尚不清楚,使得这项技术的发展和应用受到严重的制约。本文在此背景下,研究和提出了纳米颗粒吸附法减阻技术中纳米颗粒水基分散液的“力学-化学”双重减阻机制,并设计实验对其进行了较系统的验证。具体工作包括:
     1)分析了纳米颗粒水基分散液中微乳液滴在储层微通道中的受力特征,计算了微乳液滴与微通道壁面间的作用能,提出了纳米颗粒水基分散液在储层微通道壁面的双重吸附机制。研究结果表明,纳米颗粒水基分散液在储层微通道壁面具有“表面活性剂-纳米颗粒”双重吸附特征。
     2)分析了纳米颗粒水基分散液中表面活性剂在储层微通道壁面的吸附形式,并根据其吸附特征提出了基于表面活性剂作用的化学减阻机理。表面活性剂一方面通过吸附在微通道壁面的纳米颗粒吸附层上或者直接吸附在微通道壁面降低微通道壁面自由能,从而降低水分子与微通道壁面的作用来达到减阻目的;另一方面,水溶液中的表面活性剂胶束通过在微通道壁面附近形成一层“剪切诱导结构”,降低注入水的粘度,从而降低了水流阻力。
     3)根据纳米颗粒吸附岩心薄片表面的微结构特征,分析了纳米颗粒吸附岩心薄片表面具有强疏水特征的物理机制。吸附了纳米颗粒后,岩心薄片表面覆盖了一层亚微米级的纳米颗粒团聚体,而每个纳米团聚体又是由若干纳米颗粒单体组成的粗糙结构,因此纳米颗粒吸附岩心薄片表面具有类似荷叶表面的“纳米-亚微米”双重微结构特征,从而体现出强疏水性或超疏水性。由于储层微通道的孔隙及孔喉特征,只有粒径较小的纳米颗粒团聚体和具有正态分布特征的纳米颗粒单体才能够进入微通道,因此,纳米颗粒吸附储层微通道壁面的双重结构特征及疏水性能弱于岩心薄片表面。
     4)提出了以综合表面活性剂的化学减阻和以吸附疏水纳米颗粒产生的水流滑移效应的力学减阻为特色的“力学-化学”双重减阻机理:纳米颗粒被水基分散液携带至储层微通道,首先在微通道壁面形成一层纳米颗粒吸附层,随后在其上又吸附了一层亲水基朝外的表面活性剂。在注水初期,主要表现为表面活性剂的化学减阻作用,随着注水过程的进行,纳米颗粒吸附层表面的表面活性剂逐渐被“冲刷”干净,此时,主要表现为以疏水表面的水流滑移效应为主的力学减阻机制。
     5)通过岩心薄片吸附实验验证了纳米颗粒水基分散液的双重吸附特征。研究发现,经纳米颗粒水基分散液处理后的岩心薄片表面体现为强亲水性,并且存在一层致密的纳米颗粒吸附层;水流冲刷之后岩心薄片表面的纳米颗粒吸附层依然存在,但表面已逐渐转变为强疏水性,表现出了“表面活性剂-纳米颗粒”的双重吸附特征。
     6)通过开展岩心薄片吸附实验、接触角测试以及表面微结构测试,研究了纳米颗粒粒径、纳米颗粒浓度、吸附时间、吸附温度以及酸碱环境等因素对纳米颗粒吸附岩心薄片表面性能的影响规律,为现场工艺参数优选提供了指导。
     7)应用MATLAB软件编制了基于径向基函数的支持向量机预测程序,在验证程序正确可用的基础上,将该模型用于纳米颗粒吸附法减阻技术效果的快速评价。结果表明该方法可以实现预测目的,但预测精度依赖于大量样本的补充。
Drag reduction by hydrophobic nanoparticles (HNPs) adsorption in reservoirmicro-channels is a new technology to decrease the injection pressure in lowpermeability oil field, and it is of great importance to enhance the oil recovery rate.Although the water-based HNPs dispersion was widely adopted in field tests andsignificant drag reduction was achieved, the development and deployment of thistechnology is severely constrained due to the lack of a deep understanding of itsmechanisms. The “mechanical-chemical” drag reduction mechanism of water-baseddispersion with HNPs was proposed and validated by a series of experiments. Morespecifically, main achievements are presented as follows.
     1) Based on the mechanical characteristics and interaction energy calculation ofmicro-emulsion droplets in reservoir micro-channels, the dual drag reductionmechanism of water-based dispersion with HNPs was proposed. We found thatwater-based dispersion with HNPs has surfactant-HNPs double adsorptioncharacteristics on the wall of reservoir micro-channels.
     2) According to the adsorption properties of surfactants, the chemical dragreduction mechanism was investigated. First, surfactants adsorbed either on thesurface of the HNPs adsorption layer or directly on the wall of reservoirmicro-channels weaken the interaction between water molecules, and therefore reducethe drag. Second, surfactants dissolved in water solutions form a layer of“shear-induced structure” near the wall of reservoir micro-channels, which decreasesthe viscosity of the water and reduces the resistance of water flowing through thosemicro-channels.
     3) Observations of microstructures of HNPs adsorbed on core slice surfaceprovide the physical or mechanical mechanism of forming a strong hydrophobicsurface. After HNPs adsorption treatment, the core slice surface appears the dual-scalemicro-structure characteristics similar to those of lotus leaves that are superhydrophobic. Such kind of dual-scale micro-structure, because diameters ofHNPs are not equal, surfaces of reservoir micro-channels adsorbed with HNPs alsohave similar dual-scale structure characteristics, and are hydrophobic; which in turnresults in large slip effects.
     4) The dominance of chemical or mechanic mechanism of drag reduction ofwater-based dispersion with HNPs was further analyzed for different phases duringwater injection process. During the early phase of water injection, chemicalmechanism of surfactant drag reduction is dominant because of adsorption ofsurfactants. However, as most surfactants are washed away or removed from thesurface after certain period of water injection, the mechanical drag reductionmechanism induced by the slip effect of strong hydrophobic surfaces becomesdominant.
     5) The dual drag reduction mechanism of water-based dispersion with HNPs wasverified through a series of experiments. Experimental observations indicate that acompact nano-particle-adsorption layer forms on the surface of the core slice treatedby water-based dispersion with HNPs, and experimental measurements show that thesurface is strong hydrophilic. The HNPs adsorption layer still exists after washing bywater for a while; However, the wettability of the core slice surface becomes stronghydrophobic, indicating that the surfactants adsorbed on the surface of HNPsadsorption layer have been gradually washed away.
     6) The impact of some important factors, such as diameter and concentration ofnanoparticles, adsorption temperature, adsorption period and pH level, etc., weresystematically studied through core slices adsorption experiments, contact anglemeasurements and micro-structure imaging. Based on the experimental results, someoperating parameters of field tests were optimized.
     7) Support vector machine (SVM) was used to establish a more comprehensiverapid evaluation system. A-SVR(Support Vector Regression) program with RBFkernel function was developed and verified. The method and the program developed can be used to effectively evaluate the drag reduction effects of the HNPs adsorptiontechnology. Our results show that the method is quite promising and the accuracyprediction depends on the size of training data set.
引文
【1】.李莹莹.中国石油发展现状、问题与前景分析[J].中国能源, Vol.32, No.12,2010,pp.17~20
    【2】.胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学, Vol.11, No.8,2009, pp.29~37
    【3】.万彬.表面活性剂降压增注技术现场应用效果分析[J].江汉石油职工大学学报, Vol.21, No.6,2008, pp.46~49
    【4】.顾春元.石油储层微孔道纳米减阻机理研究[D]:上海大学博士论文,2008.
    【5】.狄勤丰,顾春元,施利毅等.疏水性纳米SiO2增注剂的降压作用机理[J].钻采工艺,Vol.30, No.4,2007, pp.91~94
    【6】.狄勤丰,沈琛,王掌洪等.纳米吸附法降低岩石微孔道水流阻力的实验研究[J].石油学报, Vol.30, No.1,2009, pp.125~128
    【7】.顾春元,狄勤丰,施利毅等.纳米颗粒在储层微流道中的减阻机理实验研究[J].实验流体力学, Vol.24, No.6,2010, pp.6~10
    【8】.吴非.疏水纳米颗粒吸附微通道减阻效果的实验研究[D]:上海大学硕士论文,2008.
    【9】.余祖斌.石油储层微通道纳米颗粒吸附法减阻实验及数值模拟[D]:上海大学硕士论文,2009.
    【10】.丁伟朋.纳米颗粒吸附法减阻技术内在机制及快速评价方法研究[D]:上海大学硕士论文,2012.
    【11】.苏咸涛,闫军,吕广忠.纳米聚硅材料在油田开发中的应用[J].石油钻采工艺, Vol.24, No.3,2002, pp.48~51
    【12】.杨灵信,郭文军,徐艳伟.聚硅纳米材料降压增注技术在文东油田的应用[J].江汉石油学院学报, Vol.25, No.增刊A,2003, pp.105~106
    【13】.张继超,曹绪龙,汤战宏.聚硅材料改善低渗透油藏注水效果实验[J].油气地质与采收率, Vol.10, No.4,2003, pp.59~60
    【14】.孙治国,韦良霞,郭慧.聚硅纳米材料在纯梁中低渗透油田的增注试验研究[J].石油天然气学报, Vol.28, No.1,2006, pp.105
    【15】.曹智,张治军,赵永峰.低渗透油田增注用SiO2纳米微粒的制备和表征[J].化学研究, Vol.16, No.1,2005, pp.32~34
    【16】.洪祥珍.活性纳米材料增注技术的研究与应用[J].断块油气田, Vol.11, No.3,2004,pp.49~51
    【17】.陈晓彦.聚硅纳米材料增注效果研究[J].精细石油化工进展, Vol.11, No.2,2010,pp.1~3
    【18】.张顶学,廖锐全,杨慧.低渗透油田酸化降压增注技术研究与应用[J].西安石油大学学报(自然科学版), Vol.26, No.2,2011, pp.52~54
    【19】.王道成.酸压技术在砂岩储层中的应用[J].石油天然气学报, Vol.30, No.1,2008,pp.338~340
    【20】.田东江,牛新年,郜国玺等.哈拉哈塘区块碳酸盐岩储集层酸压改造评价方法[J].新疆石油地质, Vol.33, No.2,2012, pp.236~238
    【21】.杨永华,胡丹,黄禹忠.砂岩储层增产新技术——酸压[J].断块油气田, Vol.13, No.3,2006, pp.78~80
    【22】.许志赫,吴均,姚飞等.柳北低渗区注水井压裂增注技术[J].石油钻采工艺, Vol.29,No.3,2007, pp.49
    【23】.张永发,祝济之,胡长华.超声波地层解堵机理研究初步[J].北京理工大学学报,Vol.26, No.5,2006, pp.397~400
    【24】.王洪波.超声波采油技术在孤岛油田的应用[J].内蒙古石油化工, Vol.16, No.2008,pp.85
    【25】.王世荣,李祥高,刘东志.表面活性剂化学(第二版)[M].北京:化学工业出版社,2010.5.
    【26】.贺承祖,华明琪.油气藏中水膜的厚度[J].石油勘探与开发, Vol.25, No.2,1998, pp.75~77
    【27】. JU B, Dai S, Luan Z. A study of wettability and permeability change caused byadsorption of nanometer structured polysilicon on the surface of porous media [J]. SPE77938,Asia Pacific Oil and Gas Conference, Vol.915, No.2002,
    【28】.易华,孙洪海.聚硅纳米材料在油藏注水井中降压增注机理研究[J].哈尔滨师范大学学报, Vol.21, No.6,2005, pp.66~69
    【29】.程亚敏,李小红,李庆华等.油田用水基纳米聚硅增注剂的制备及其性能研究[J].化学研究, Vol.17, No.4,2006, pp.56~59
    【30】.吴非,狄勤丰,顾春元等.疏水纳米SiO2降低岩心滚动阻力效果的室内实验研究[J].钻采工艺, Vol.31, No.2,2008, pp.102~103,112
    【31】. Zhang RL, Di QF, Wang XL.et.al. Numerical study of wall wettabilities and topographyon drag reduction effect in micro-channel flow by lattice boltzmann method [J]. Journalof Hydrodynamics, Vol.22, No.3,2010, pp.366~372
    【32】.王新亮,狄勤丰,张任良等.纳米颗粒水基分散液在岩心微通道中的双重减阻机制及其实验验证[J].物理学报, Vol.61, No.14,2012, pp.146801
    【33】. Zhang Ren-liang, Di Qin-feng, Wang Xin-liang.et.al. Numerical study of therelationship between apparent slip length and contact angle by Lattice BoltzmannMethod [J].Journal of Hydrodynamics, Vol. No.4,2012,
    【34】. Young T. An essay on the cohesion of fluids [J]. The Royal Society, Vol.95, No.1,1805,pp.65~87
    【35】. Wenzel RN. Resistance of solid surfaces to wetting by water [J]. Industrial andEnggneering Chemistry, Vol.28, No.8,1936, pp.988~994
    【36】. Cassie ABD, Baxter S. Wettability of porous surfaces [J]. Trans Faraday Soc, Vol.40,No.1944, pp.546~551
    【37】. Onda T, Shibuichi S, Satoh N.et.al. Super-water-repellent fractal surfaces [J].Journal ofPhysical Chemistry, Vol.12, No.9,1996, pp.2125~2127
    【38】. Shibuichi S, Onda T, Satoh N.et.al. Super water-repellent surfaces resulting from fractalstructure [J]. Langmuir, Vol.100, No.50,1996, pp.19512~19517
    【39】. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta, Vol.202, No.1,1997, pp.1~8
    【40】. Feng L, Li S, Li Y.et.al. Super-hydrophobic surfaces: from natural to artificial [J].Advanced Materials, Vol.14, No.24,2002, pp.1857~1860
    【41】. Cheng YT, Rodak DE, Wong CA.et.al. Effects of micro-and nano-structures on theself-cleaning behaviour of lotus leaves [J]. Nanotechnology, Vol.17, No.5,2006, pp.1359~1362
    【42】. Gao XF, Jiang L. Water-repellent legs of water striders [J]. Nature, Vol.432, No.7013,2003, pp.36
    【43】. Autumn K, Liang YA, Hsieh ST.et.al. Adhesive force of a single gecko foot-hair [J].Nature, Vol.405, No.6787,2000, pp.681~685
    【44】. Marmur A. The lotus effect: superhydrophobicity and metastability [J]. Langmuir, Vol.20, No.9,2004, pp.3517~3519
    【45】.李鼎.人工纳米结构表面的去润湿和对流体的超弱阻尼[D]:中国科学院研究生院博士论文,2007.
    【46】. Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces [J].Langmuir, Vol.19, No.4,2003, pp.1249~1253
    【47】. Extrand CW. Model for contact angles and hysteresis on rough and ultraphobic surfaces[J]. Langmuir, Vol.18, No.21,2002, pp.7991~7999
    【48】. Extrand CW. Criteria for ultralyophobic surfaces [J]. Langmuir, Vol.20, No.12,2004,pp.5013~5018
    【49】. Gao L, McCarthy TJ. How Wenzel and Cassie were wrong [J]. Langmuir, Vol.23, No.7,2007, pp.3762~3765
    【50】.任露泉,王淑杰,周长海等.典型植物非光滑疏水表面的理想模型[J].吉林大学学报, Vol.36, No.增刊2,2006, pp.97~102
    【51】. Masashi.M, Nakajima A, Fujishima A.et.al. Effects of the Surface Roughness on SlidingAngles of Water Droplets on Superhydrophobic Surfaces [J]. Langmuir, Vol.16, No.13,2000, pp.5754~5760
    【52】. Gao L, McCarthy TJ. The “lotus effect” explained: two reasons why two length scalesof topography are important [J]. Langmuir, Vol.22, No.7,2006, pp.2966~2967
    【53】. Neinhuis C, Barthlott W. Characterization and distribution of water-repellent,self-cleaning plant surfaces [J]. Annals of Botany, Vol.79, No.6,1997, pp.667~677
    【54】. Johnson RE, Dettre RH. Contact angle hysteresis II. Contact Angle Measurements [J].Advances in Chemistry, Vol.43, No.1964, pp.136~144
    【55】. Furmidge CGL. Studies at phase interfaces. I. The sliding of liquid drops on solidsurfaces and a theory for spray retention [J]. Journal of Colloid Science, Vol.17, No.2,1962, pp.309~324
    【56】. Extrand CW, Kumagai Y. An experimental study of contact angle hysteresis [J]. Journalof Colloid Science, Vol.191, No.2,1997, pp.378~383
    【57】. Extrand CW. A thermodynamic model for contact angle hysteresis [J]. Langmuir, Vol.207, No.1,1998, pp.11~19
    【58】.王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程, Vol.21, No.2,2005, pp.6~10
    【59】.高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理, Vol.35, No.7,2006, pp.559~564
    【60】. Nakajima A, Hashimoto K, Watanabe T.et.al. Transparent superhydrophobic thin filmswith self-cleaning properties [J]. Langmuir, Vol.16, No.17,2000, pp.7044~7047
    【61】. Erbil HY, Demirel AL, Avci Y.et.al. Transformation of a simple plastic into asuperhydrophobic surface [J]. Science, Vol.299, No.28,2003, pp.1377~1380
    【62】. Li H, Wang X, Song Y.et.al. Super-"amphiphobic" aligned carbon nanotube films [J].Angewandte Chemie International Edition, Vol.40, No.9,2001, pp.1743~1746
    【63】. Liu B, He Y, Fan Y.et.al. Fabricating super-hydrophobic lotus-leaf-like surfaces throughsoft-lithographic imprinting [J]. Macromol Rapid Commun, Vol.27, No.21,2006, pp.1859~1864
    【64】. Feng L, Li S, Li H.et.al. Super-hydrophobic surface of aligned polyacrylonitrilenanofibers [J]. Angewandte Chemie International Edition Int Ed, Vol.41, No.7,2002,pp.1221~1223.
    【65】. Feng L, Song Y, Zhai J.et.al. Creation of a superhydrophobic surface from anamphiphilic polymer [J]. Angewandte Chemie International Edition Int Ed, Vol.42, No.7,2003, pp.800~802
    【66】. Feng L, Zhang Z, Mai Z.et.al. A super-hydrophobic and super-oleophilic coating meshfilm for the separation of oil and water [J]. Angewandte Chemie International Edition IntEd, Vol.43, No.15,2004, pp.2012~2014
    【67】. Feng L, Yang ZL, Zhai J. Super-hydrophobicity of nanostructured carbon films in a widerange of pH values [J]. Angewandte Chemie International Edition Int Ed, Vol.42, No.2003, pp.4217~4220
    【68】. Zhao N, Weng L, Zhang X.et.al. A lotus-leaf-like superhydrophobic surface prepared bysolvent-induced crystallization [J]. A European Journal of Chemical and PhysicalChemistrydm, Vol.7, No.4,2006, pp.824~827
    【69】. Shibuichi S, Yamamoto T, Onda T.et.al. Super water-and oil-repellent surfaces resultingfrom fractal structure [J]. Langmuir, Vol.208, No.1,1998, pp.287~294
    【70】.徐建海,李梅,赵燕等.具有微纳米结构超疏水表面润湿性的研究[J].化学进展,Vol.18, No.11,2006, pp.1425~1433
    【71】. Saison T, Peroz C, Chauveau V.et.al. Replication of butterfly wing and natural lotus leafstructures by nanoimprint on silica sol--gel films [J]. Bioinsp Biomim, Vol.3, No.4,2008, pp.046004
    【72】. Bico J, Marzolin C, Quere D. Pearl drops [J]. Europhysics Letters, Vol.47, No.2,1999,pp.220~226
    【73】.段辉,白晨,汪厚植等.氟树脂/硅溶胶复合涂层的制备和超疏水性能研究[J].化工新型材料, Vol.34, No.7,2006, pp.55~57
    【74】. Blossey R. Self-cleaning surfaces-virtual realities [J]. Nature materials, Vol.2, No.5,2003, pp.301~306
    【75】.赵家军.超疏水表面微通道中滑移流动的实验研究与数值模拟[D]:大连理工大学博士论文,2006.
    【76】. Barrat JL, Bocquet L. Influence of wetting properties on the hydrodynamic boundarycondition at a fluid-solid interface [J]. Faraday Discuss, Vol.112, No.1998, pp.121~129
    【77】. Barrat J, Bocquet L. Large slip effect at a nonwetting fluid-solid interface [J]. PhysicalReview Letters, Vol.82, No.23,1999, pp.4671~4674
    【78】. Pit R, Hervet H, Leger L. Direct experimental evidence of slip in hexadecane: solidinterfaces [J]. Physical Review Letters, Vol.85, No.5,2000, pp.980~983
    【79】. Gennes PG. On fluid/wall slippage [J]. Langmuir, Vol.18, No.9,2001, pp.3413~3414
    【80】. Tyrrell J, Attard P. Images of nanobubbles on hydrophobic surfaces and theirinteractions [J]. Physical Review Letters, Vol.87, No.17,2001, pp.176104
    【81】. Choi C, Westin K, Breuer K. Apparent slip flows in hydrophilic and hydrophobicmicrochannels [J]. Physics of Fluids, Vol.15, No.2003, pp.2897~2902
    【82】. Cottin B, C., Barrat JL, Bocquet L.et.al. Low-friction flows of liquid at nanopatternedinterfaces [J]. Nature Materials, Vol.2, No.4,2003, pp.237~240
    【83】. Granick S, Zhu Y, Lee H. Slippery questions about complex fluids flowing past solids[J]. nature materials, Vol.2, No.4,2003, pp.221~227
    【84】. Choi C, Ulmanella U, Kim J.et.al. Effective slip and friction reduction in nanogratedsuperhydrophobic microchannels [J]. Physics of Fluids, Vol.18, No.2006, pp.087105
    【85】. Li D, Di QF, Li JY.et.al. Large slip length over a nanopatterned surface [J]. ChinesePhysicsLetterst, Vol.24, No.4,2007, pp.1021~1024
    【86】. Lauga E, Brenner MP, Stone HA. Microfluidics: the no-slip boundary condition[M].New York: Springer,2005: Chap.15..
    【87】. Zhao JP, Shi XH, Geng XG.et.al. Liquid slip over super-hydrophobic surface and itsapplication in drag reduction [J]. Journal of Ship Mechnics, Vol.13, No.2,2009, pp.325~330
    【88】. Tretheway D, Meinhart C. Apparent fluid slip at hydrophobic microchannel walls [J].Physics of Fluids, Vol.14, No.3,2002, pp. L9~L12
    【89】. Tretheway D, Meinhart C. A generating mechanism for apparent fluid slip inhydrophobic microchannels [J]. Physics of Fluids, Vol.16, No.5,2004, pp.1509~1515
    【90】. Lum K, Chandler D, Weeks J. Hydrophobicity at small and large length scales[J].Journal of Physical Chemistry B, Vol.103, No.22,1999, pp.4570~4577
    【91】. Choi CH, Kim CJ. Large slip of aqueous liquid flow over a nanoengineeredsuperhydrophobic surface [J]. Physical Review Letters, Vol.96, No.2006, pp.066001
    【92】. Zhu Y, Granick S. Limits of the hydrodynamic no-slip boundary condition [J]. PhysicalReview Letters, Vol.88, No.10,2002, pp.106102
    【93】. Voronov R, Papavassiliou D, Lee L. Slip length and contact angle over hydrophobicsurfaces [J]. Chemical Physics Letters, Vol.441, No.4-6,2007, pp.273~276
    【94】.田军,徐锦芬,薛群基.低表面涂层的减阻试验研究[J].水动力学研究与进展A辑,Vol.12, No.1,1997, pp.27~32
    【95】. Watanabe K, Udagawa Y, Udagawa H. Drag reduction of Newtonian fluid in a circularpipe with a highly water-repellent wall [J]. Jounrnal of Fluid Mechnics, Vol.381, No.1999, pp.225~238
    【96】. Bechert DW, Bruse M, Hage W. Experiments with three-dimensional riblets as anidealized model of shark skin [J]. Experiments in fluids, Vol.28, No.5,2000, pp.403~412
    【97】. Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wallriblets [J]. Experiments in fluids, Vol.33, No.2,2002, pp.346~350
    【98】. Ou J, Perot B, Rothstein JP. Laminar drag reduction in microchannels usingultrahydrophobic surfaces [J]. Physics of Fluids, Vol.16, No.12,2004, pp.4635~4643
    【99】.徐永生,魏庆鼎.疏水性材料减阻特性实验研究[J].实验流体力学, Vol.19, No.2,2005, pp.60~66
    【100】.王家楣,曹春燕.船舶微气泡减阻数值试验研究[J].航海工程, Vol.2, No.2005, pp.21~23
    【101】. Truesdell R, Mammoli A, Vorobieff P.et.al. Drag reduction on a patternedsuperhydrophobic surface [J]. Physical Review Letters, Vol.97, No.4,2006, pp.44504
    【102】.陈丽莉.注射器针头表面仿生非光滑形态减阻的实验研究[D]:吉林大学硕士论文,2006.
    【103】.刘博,姜鹏,李旭朝等.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报, Vol.22, No.7,2008, pp.14~17
    【104】.蒋雄,乔生儒,张程煜等.疏水表面及其减阻研究[J].化学进展, Vol.20, No.4,2008, pp.450~456
    【105】. Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows oversuperhydrophobic surfaces [J]. Physics of Fluids, Vol.21, No.2009, pp.085103
    【106】.徐中,徐宇,王磊等.凹坑形表面在空气介质中的减阻性能研究[J].摩擦学学报,Vol.29, No.6,2009, pp.579~583
    【107】.柯贵喜,潘光,黄桥高等.水下减阻技术研究综述[J].力学进展, Vol.39, No.5,2009, pp.546~554
    【108】.近藤精一,石川达雄等著,李国希译.吸附科学[M].北京:化学工业出版社,2006.1
    【109】.德鲁·迈尔斯著,吴大诚等译.表面、界面和胶体——原理及应用[M].北京:化学工业出版社,2005.
    【110】.赵振国.应用胶体与界面化学[M].北京:化学工业出版社,2008.8
    【111】.陆佩文.无机材料基础(第二版)[M].武汉:武汉理工大学出版社,2011.8
    【112】.郑忠,李宁.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995.10
    【113】.高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2004.9
    【114】.任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.6
    【115】.周霞,越传赞.砂岩表面Zeta电位测定探讨[J].西安石油大学学报(自然科学版),Vol.24, No.6,2009, pp.49~51
    【116】.顾春元,狄勤丰,沈琛等.疏水纳米颗粒在油层微孔道中的吸附机制[J].石油勘探与开发, Vol.38, No.1,2011, pp.84~89
    【117】.龚跃法.有机化学(上册)[M].上海:华东理工大学出版社,2009.2
    【118】.梁亚宁.大庆外围油田表面活性剂降压增注技术研究[D]:大庆石油学院工程硕士论文,2006.
    【119】.李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004.2
    【120】.左加传.微管中液体流动减阻特征研究[D]:浙江师范大学硕士论文,2009.
    【121】. Li FC, Kawaguchi Y, Yu B.et.al. Experimental study of drag-reduction mechanism for adilute surfactant solution flow [J]. International Journal of Heat and Mass Transfer, Vol.51, No.2008, pp.835~843
    【122】. Zhang HX, Wang DZ, Chen HP. Experimental study on the effects of shear inducedstructure in a drag-reducing surfactant solution flow [J]. Archive of Applied Mechanics,Vol.79, No.2009, pp.773~778
    【123】.孔祥清,吴承伟.蚊子腿表面多级微纳米结构的超疏水特征[J].科学通报, Vol.55,No.16,2010, pp.1589~1594
    【124】. Voronov RS, Papavassiliou DV. Review of Fluid Slip over Superhydrophobic Surfacesand Its Dependence on the Contact Angle [J]. Industrial and Enginnering ChemistryResearch, Vol.47, No.2008, pp.2455~2477
    【125】.顾春元,狄勤丰,施利毅等.纳米粒子构建表面的超疏水性能实验研究[J].物理学报, Vol.57, No.5,2008, pp.3071~3076
    【126】.王新亮,狄勤丰,张任良等.疏水纳米颗粒在岩心表面的吸附特性试验研究[J].石油钻探技术, Vol.38, No.2,2010, pp.10~13
    【127】.王新亮,狄勤丰,张任良等.纳米颗粒吸附岩心表面的强疏水特征[J].物理学报,Vol.61, No.21,2012,
    【128】. Rothstein JP. Slip on Superhydrophobic Surfaces [J]. Annual Review of FluidMechanics, Vol.42, No.2010, pp.89~109
    【129】. Huang DM, Sendner C, Horinek D.et.al. Water Slippage versus Contact Angle: AQuasiuniversal Relationship [J]. Physical Review Letters, Vol.101, No.2008, pp.226101
    【130】. Gao P, Geng XG, Ou XL.et.al. Drag-reduction property of composite structure surfacewith planar quasicrystal [J]. Acta Physica Sinica, Vol.85, No.1,2009, pp.421~426
    【131】. Gong MG, Xu XL, Yang Z.et.al. Superhydrophobic surfaces via controlling themorphology of ZnO micro/nano complex structure [J]. Chinese Physics B, Vol.19, No.5,2010, pp.056701
    【132】. Yang Z, Xu XL, Gong MG.et.al. Wettability and formation mechanism of ZnOmicro-spheres composed film [J]. Chinese Physics B, Vol.19, No.12,2010, pp.126103
    【133】. Extrand CW. Modeling of ultralyophobicity: Suspension of liquid drops by a singleasperity [J]. Langmuir, Vol.21, No.23,2005, pp.10370~10374
    【134】.王新亮,狄勤丰,张任良等.水基纳米分散液双重减阻机制的实验验证。第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议,西安,2011[C].
    【135】.蔡自兴.人工智能及其应用[M].北京:清华大学出版社,2010.5
    【136】.潘星,杨汝月.关于泛化神经网络与支持向量机的研究[J]. Vol.13, No.1,2007, pp.32~36,
    【137】. Vapnik V. The nature of statistical learning theory[M]. Berlin: Springer,1999.
    【138】.丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,Vol.40, No.1,2011, pp.2~10
    【139】.白鹏,张喜斌,张斌等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.8
    【140】.邓乃扬,田英杰.支持向量机:理论、算法与拓展[M].北京:科学出版社,2009.8
    【141】.范昕炜.支持向量机算法的研究及其应用[D]:浙江大学,2003.
    【142】.唐发明.基于统计学习理论的支持向量机算法研究[D].武汉:华中科技大学,2005.
    【143】.朱国强,刘士荣,俞金寿.支持向量机及其在函数逼近中的应用[J].华东理工大学学报, Vol.28, No.5,2002, pp.555~559
    【144】.肖建,于龙,白裔峰.支持向量机回归中核函数和超参数选择方法综述[J].西南交通大学学报, Vol.43, No.3,2008, pp.297~303
    【145】.成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J].计算机工程, Vol.37, No.3,2011, pp.190~191
    【146】.王兴玲,李占斌.基于网络搜索的支持向量机核函数参数的确定[J].中国海洋大学学报, Vol.35, No.5,2005, pp.859~862
    【147】. ZHENG C-h, JIAO L-c. Automatic parameters selection for SVM based on GA:Proceedings of the the5th World Congress on Intelligent Control and Automation,2004[C].
    【148】.杨洁,郑宁,刘董等.基于遗传算法的SVM带权特征和模型参数优化[J].计算机仿真, Vol.25, No.9,2008, pp.48~51
    【149】. SHAO X-g, YANG H-z, CHEN G. Parameters selection and application of supportvector machines based on particle swarm optimization algorithm [J]. Control Theoryand Applications, Vol.23, No.5,2006, pp.740~743
    【150】.齐亮.基于蚁群算法的支持向量机参数选择方法研究[J].系统仿真技术, Vol. No.28,2008, pp.5
    【151】.秦军立,倪世宏,苏晨.基于蚁群优化的SVM及其应用研究[J].计算机仿真, Vol.26, No.11,2009, pp.46~49
    【152】.陈涛.基于差分进化算法的支持向量回归机参数优化[J].计算机仿真, Vol.28, No.6,2011, pp.198~201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700